首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Many lichen species are regarded as extremophiles in terms of temperature, radiation and desiccation survival. Therefore, lichens have been previously proposed, together with unicellular algae and bacteria, as the living system most likely to resist the extreme conditions of outer space. This enables, following the “Panspermia” theory, speculation about the possibility of life transfer between Earth and other planets. Different experiments have been designed to establish the survival capability of these organisms exposed to space conditions. In particular, the damaging effect of solar UV was studied under various protecting conditions. Different lichen species were exposed to space in the BIOPAN-5 and BIOPAN-6 facilities of the European Space Agency located at the outer shell of the Russian Earth orbiting FOTON M2 satellite. Chlorophyll fluorescence and gas exchange systems were used for the measurement of photosynthetic parameters. All exposed lichens, independently of the filters used, showed after the flight nearly the same photosynthetic activity as measured before the flight. These findings suggest that lichens could stay alive in space even completely exposed to massive UV and cosmic radiation, which have been proved being lethal for bacteria and other microorganisms. Improvements and possible upgrading of the existing experiment designs are also explored in view of a future and more intensive use of lichens in Astrobiology.  相似文献   

2.
Lichens, which are symbioses of a fungus and one or two photoautotrophs, frequently tolerate extreme environmental conditions. This makes them valuable model systems in astrobiological research to fathom the limits and limitations of eukaryotic symbioses. Various studies demonstrated the high resistance of selected extremotolerant lichens towards extreme, non-terrestrial abiotic factors including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. This study focusses on the diverse set of secondary lichen compounds (SLCs) that act as photo- and UVR-protective substances. Five lichen species used in present-day astrobiological research were compared: Buellia frigida, Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, and Pleopsidium chlorophanum. Detailed investigation of secondary substances including photosynthetic pigments was performed for whole lichen thalli but also for axenically cultivated mycobionts and photobionts by methods of UV/VIS-spectrophotometry and two types of high performance liquid chromatography (HPLC). Additionally, a set of chemical tests is presented to confirm the formation of melanic compounds in lichen and mycobiont samples. All investigated lichens reveal various sets of SLCs, except C. gyrosa where only melanin was putatively identified. Such studies will help to assess the contribution of SLCs on lichen extremotolerance, to understand the adaptation of lichens to prevalent abiotic stressors of the respective habitat, and to form a basis for interpreting recent and future astrobiological experiments. As most of the identified SLCs demonstrated a high capacity in absorbing UVR, they may also explain the high resistance of lichens towards non-terrestrial UVR.  相似文献   

3.
Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis.  相似文献   

4.
Cyanobacteria are photosynthetic organisms that have been considered for space applications, such as oxygen production in bioregenerative life support systems, and can be used as a model organism for understanding microbial survival in space. Akinetes are resting-state cells of cyanobacteria that are produced by certain genera of heterocystous cyanobacteria to survive extreme environmental conditions. Although they are similar in nature to endospores, there have been no investigations into the survival of akinetes in extraterrestrial environments. The aim of this work was to examine the survival of akinetes from Anabaena cylindrica in simulated extraterrestrial conditions and in Low Earth Orbit (LEO). Akinetes were dried onto limestone rocks and sent into LEO for 10 days on the ESA Biopan VI. In ground-based experiments, the rocks were exposed to periods of desiccation, vacuum (0.7 × 10−3 kPa), temperature extremes (−80 to 80°C), Mars conditions (−27°C, 0.8 kPa, CO2) and UV radiation (325–400 nm). A proportion of the akinete population was able to survive a period of 10 days in LEO and 28 days in Mars simulated conditions, when the rocks were not subjected to UV radiation. Furthermore, the akinetes were able to survive 28 days of exposure to desiccation and low temperature with high viability remaining. Yet long periods of vacuum and high temperature were lethal to the akinetes. This work shows that akinetes are extreme-tolerating states of cyanobacteria that have a practical use in space applications and yield new insight into the survival of microbial resting-state cells in space conditions.  相似文献   

5.
The environment in space and on planets such as Mars can be lethal to microorganisms because of the high vacuum and high solar radiation flux, in particular UV radiation, in such environments. Spores of various Bacillus species are among the organisms most resistant to the lethal effects of high vacuum and UV radiation, and as a consequence are of major concern for planetary contamination via unmanned spacecraft or even natural processes. This review focuses on the spores of various Bacillus species: (i) their mechanisms of UV resistance; (ii) their survival in unmanned spacecraft, space flight and simulated space flight and Martian conditions; (iii) the UV flux in space and on Mars; (iv) factors affecting spore survival in such high UV flux environments.  相似文献   

6.
Ultraviolet (UV) radiation has been an important environmental parameter during the evolution of life on Earth, both in its role as a mutagen and as a selective agent. This was probably especially true during the time from 3.8 to 2.5 billion years ago, when atmospheric ozone levels were less than 1% of present levels. Early Mars may not have had an "ozone shield" either, and it never developed a significant one. Even though Mars is farther away from the Sun than the Earth, a substantial surficial UV flux is present on Mars today. But organisms respond to dose rate, and on Mars, like on Earth, organisms would be exposed to diurnal variations in UV flux. Here we present data on the effect of diurnal patterns of UV flux on microbial ecosystems in nature, with an emphasis on photosynthesis and DNA synthesis effects. These results indicate that diurnal patterns of metabolism occur in nature with a dip in photosynthesis and DNA synthesis in the afternoon, in part regulated by UV flux. Thus, diurnal patterns must be studied in order to understand the effect of UV radiation in nature. The results of this work are significant to the success of human missions to Mars for several reasons. For example, human missions must include photosynthetic organisms for food production and likely oxygen production. An evolutionary approach suggests which organisms might be best suited for high UV fluxes. The diurnal aspect of these studies is critical. Terraforming is a potential goal of Mars exploration, and it will require studies of the effect of Martian UV fluxes, including their diurnal changes, on terrestrial organisms. Such studies may suggest that diurnal changes in UV only require mitigation at some times of day or year.  相似文献   

7.
Lichens are described as a symbiosis formed by a myco- and photobiont, capable of colonizing habitats where their separate symbionts would not be able to survive. Space simulation studies on the separated symbionts of the lichen Xanthoria elegans have been performed to test their capacity to resist the most extreme conditions. The isolated cultured symbiont cells were exposed to different doses of the UV spectrum, and to vacuum. Cultures of both symbionts were analysed by specific vitality tests (LIVE/DEAD-staining detected by Confocal Laser Scanning Microscopy). Growth capacity of symbiont cultures on different media was analysed after exposure to extreme environmental stresses. The data obtained support the hypothesis that the symbiotic state considerably enhances the ability of the respective symbionts to survive exposure to extreme conditions, including the conditions of space simulation. Species such as X. elegans may, therefore, be suitable for use as model organisms in exobiological studies.  相似文献   

8.
Lichens are symbioses of two organisms, a fungal mycobiont and a photoautotrophic photobiont. In nature, many lichens tolerate extreme environmental conditions and thus became valuable models in astrobiological research to fathom biological resistance towards non-terrestrial conditions; including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. All studies demonstrated the high resistance towards non-terrestrial abiotic factors of selected extremotolerant lichens. Besides other adaptations, this study focuses on the morphological and anatomical traits by comparing five lichen species—Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, Buellia frigida, Pleopsidium chlorophanum—used in present-day astrobiological research. Detailed investigation of thallus organization by microscopy methods allows to study the effect of morphology on lichen resistance and forms a basis for interpreting data of recent and future experiments. All investigated lichens reveal a common heteromerous thallus structure but diverging sets of morphological-anatomical traits, as intra-/extra-thalline mucilage matrices, cortices, algal arrangements, and hyphal strands. In B. frigida, R. geographicum, and X. elegans the combination of pigmented cortex, algal arrangement, and mucilage seems to enhance resistance, while subcortex and algal clustering seem to be crucial in C. gyrosa, as well as pigmented cortices and basal thallus protrusions in P. chlorophanum. Thus, generalizations on morphologically conferred resistance have to be avoided. Such differences might reflect the diverging evolutionary histories and are advantageous by adapting lichens to prevalent abiotic stressors. The peculiar lichen morphology demonstrates its remarkable stake in resisting extreme terrestrial conditions and may explain the high resistance of lichens found in astrobiological research.  相似文献   

9.
The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive robust EFP estimates from gross primary productivity (GPP) obtained from eddy covariance flux measurements. Second, we investigate the impact of synchronizing EFPs and plant functional traits in time and space to evaluate their relationships, and the extent to which we can benefit from global plant trait databases to explain the variability of ecosystem photosynthetic capacity. Finally, we identify a set of plant functional traits controlling ecosystem photosynthetic capacity at selected sites. Suitable estimates of the ecosystem photosynthetic capacity can be derived from light response curve of GPP responding to radiation (photosynthetically active radiation or absorbed photosynthetically active radiation). Although the effect of climate is minimized in these calculations, the estimates indicate substantial interannual variation of the photosynthetic capacity, even after removing site‐years with confounding factors like disturbance such as fire events. The relationships between foliar nitrogen concentration and ecosystem photosynthetic capacity are tighter when both of the measurements are synchronized in space and time. When using multiple plant traits simultaneously as predictors for ecosystem photosynthetic capacity variation, the combination of leaf carbon to nitrogen ratio with leaf phosphorus content explains the variance of ecosystem photosynthetic capacity best (adjusted R2 = 0.55). Overall, this study provides an objective approach to identify links between leaf level traits and canopy level processes and highlights the relevance of the dynamic nature of ecosystems. Synchronizing measurements of eddy covariance fluxes and plant traits in time and space is shown to be highly relevant to better understand the importance of intra‐ and interspecific trait variation on ecosystem functioning.  相似文献   

10.
Hyun M  Lee J  Lee K  May A  Bohr VA  Ahn B 《Nucleic acids research》2008,36(4):1380-1389
DNA repair is an important mechanism by which cells maintain genomic integrity. Decline in DNA repair capacity or defects in repair factors are thought to contribute to premature aging in mammals. The nematode Caenorhabditis elegans is a good model for studying longevity and DNA repair because of key advances in understanding the genetics of aging in this organism. Long-lived C. elegans mutants have been identified and shown to be resistant to oxidizing agents and UV irradiation, suggesting a genetically determined correlation between DNA repair capacity and life span. In this report, gene-specific DNA repair is compared in wild-type C. elegans and stress-resistant C. elegans mutants for the first time. DNA repair capacity is higher in long-lived C. elegans mutants than in wild-type animals. In addition, RNAi knockdown of the nucleotide excision repair gene xpa-1 increased sensitivity to UV and reduced the life span of long-lived C. elegans mutants. These findings support that DNA repair capacity correlates with longevity in C. elegans.  相似文献   

11.
Anthropogenic stratospheric ozone depletion causes an increase in UVB radiation impinging on the earth's surface, which is a threat to plants not adapted to higher UVB irradiances. Investigations were carried out among tropical marine macrophytes, Turbinaria turbinata, Sargassum polyceratium var. ovatum, Padina sanctae-crucis, Lobophora variegate, Dictyota spec., Halimeda discoidea, Udotea flabellum, Thalassia testudinum and Syringodium filiforme collected from 0.3 to 26 m depths at the Belizean barrier reef, where ultraviolet radiation (UV)-irradiances are naturally high. Photoinhibition was induced under full solar, UV (UVA + UVB), and UVA only-depleted radiation conditions. Photosynthetic activity during high radiation stress and during recovery in reduced solar radiation was determined in vivo by measuring fluorescence changes using a PAM fluorometer device. Generally, UV caused an additional decrease of photosynthetic performance during high light stress which varies according to species, depth of growth and UV penetration at the site of collection; an observation in concordance with the conventional harmful UV-radiation effects on phototrophs. When solar radiation was reduced by 50%, significant photosynthetic recovery was observed. However, some shallow water species which are adapted to high UV were observed to recover less under treatment with depleted solar UVB radiation. Our result supports earlier reports that UVB causes not only negative effects on photosynthesis, but may also facilitate or induce recovery processes in aquatic macrophytes acclimated to high solar radiation which grow at the upper shoreline. Among the eulittoral macroalgae, e.g. Dictyota spec., P. sanctae-crucis, and H. discoidea and the seagrass T. testudinum, initiation of photosynthetic recovery processes in the presence of low irradiance of short UV-wavelengths may present an ecophysiological advantage compared to macrophytes which initiate photosynthetic recovery process during low light or in the absence of UV.  相似文献   

12.
1. The gelatinous cyanobacterial Collema tenax is a dominant lichen of biotic soil crusts in the western United States. In laboratory experiments, we studied CO2 exchange of this species as dependent on water content (WC), light and temperature. Results are compared with performance of green-algal lichens of the same site investigated earlier.
2. As compared with published data, photosynthetic capacity of C. tenax is higher than that of other cyanobacterial and green-algal soil-crust species studied. At all temperatures and photon flux densities of ecological relevance, net photosynthesis (NP) shows a strong depression at high degrees of hydration; maximal apparent quantum-use efficiency of CO2 fixation is also reduced. Water requirements (moisture compensation point, WC for maximal NP) are higher than that of the green-algal lichens. Collema tenax exhibits extreme 'sun plant' features and is adapted to high thallus temperatures.
3. Erratic rain showers are the main source of moisture for soil crusts on the Colorado Plateau, quickly saturating the lichens with liquid water. High water-holding capacity of C. tenax ensures extended phases of favourable hydration at conditions of high light and temperature after the rain for substantial photosynthetic production. Under such conditions the cyanobacterial lichen appears superior over its green-algal competitors, which seem better adapted to habitats with high air humidity, dew or fog as prevailing source of moisture.  相似文献   

13.
Iron deficiency has been considered one of the main limiting factors of phytoplankton productivity in some aquatic systems including oceans and lakes. Concomitantly, solar ultraviolet‐B radiation has been shown to have both deleterious and positive impacts on phytoplankton productivity. However, how iron‐deficient cyanobacteria respond to UV‐B radiation has been largely overlooked in aquatic systems. In this study, physiological responses of four cyanobacterial strains (Microcystis and Synechococcus), which are widely distributed in freshwater or marine systems, were investigated under different UV‐B irradiances and iron conditions. The growth, photosynthetic pigment composition, photosynthetic activity, and nonphotochemical quenching of the different cyanobacterial strains were drastically altered by enhanced UV‐B radiation under iron‐deficient conditions, but were less affected under iron‐replete conditions. Intracellular reactive oxygen species (ROS) and iron content increased and decreased, respectively, with increased UV‐B radiation under iron‐deficient conditions for both Microcystis aeruginosa FACHB 912 and Synechococcus sp. WH8102. On the contrary, intracellular ROS and iron content of these two strains remained constant and increased, respectively, with increased UV‐B radiation under iron‐replete conditions. These results indicate that iron‐deficient cyanobacteria are more susceptible to enhanced UV‐B radiation. Therefore, UV‐B radiation probably plays an important role in influencing primary productivity in iron‐deficient aquatic systems, suggesting that its effects on the phytoplankton productivity may be underestimated in iron‐deficient regions around the world.  相似文献   

14.
Summary A facility was established for long-duration ultraviolet (UV) radiation exposure of natural and synthetic materials in order to test hypotheses concerning Martian soil chemistry observed by the Viking Mars landers. The system utilized a 2500 watt xenon lamp as the radiation source, with the beam passing through a heat-dissipating water filter before impinging upon an exposure chamber containing the samples to be irradiated. The chamber was designed to allow for continuous tumbling of the samples, maintenance of temperatures below 0° during exposure, and monitoring of beam intensity. The facility also provided for sample preparation under a variety of atmospheric conditions, in addition to the Mars nominal. As many as 33 sealed sample ampules have been irradiated in a single exposure. Over 100 samples have been irradiated for approximately 100 to 700 h. The facility has performed well in providing continuous UV irradiation of multiple samples for long periods of time under simulated Mars atmospheric and thermal conditions.  相似文献   

15.
CO2 exchange and water relations of selected lichen species were investigated in the field and also in the laboratory, at a height of 3106 m above sea level in the Austrian Alps, during the short snowless summer period from middle of July to the end of August. In the course of the field investigations, clear summer days were quite rare. Altogether 14 diurnal courses of CO2 exchange were measured spanning a time of 255 h of measurements.The air temperatures measured close to the ground ranged between −0.7 and 17.1 °C and their daily fluctuation was lower than 10.7 °C. Fog was present for more than one-third of the measuring period and relative humidity (RH) exceeded 90% in almost half of the time. Temperature optimum of net photosynthesis (NP) of Xanthoria elegans and Brodoa atrofusca determined in the laboratory increased with increasing photosynthetic photon flux density (PPFD) from 1.5 to 11.3 °C and the maximal CO2 uptake was found to be at 10 °C. In the field the lichens were metabolically active at air temperatures between −0.7 and 12.8 °C. The light compensation points (LCP) of both lichen species ranged in the laboratory between 50 and 200 μmol m−2 s−1 PPFD (0–20 °C) and in the field between 22 and 56 μmol m−2 s−1 PPFD (3–8 °C). At 30 °C the NP of X. elegans surpassed the LCP, whereas B. atrofusca remained below the LCP. NP in X. elegans did not reach light saturation at 1500 μmol m−2 s−1 PPFD. NP in B. atrofusca reached light saturation at low temperatures (−5 to +5 °C). At higher temperatures light saturation was almost detectable. On sunny days the lichens in the field were metabolically active only for 3 h during the early morning. In this time they reached the maximal values or values close to their maximal CO2 uptake in situ. Under dry weather conditions the lichens dried out to a minimal water content (WC) of 5–12% which is below the moisture compensation point (MCP) of 34–25%. The optimal WC was between 90% and 120% dry weight (DW) in B. atrofusca and Umbilicaria cylindrica, in X. elegans between 140% and 180% DW. Species specific differences in water-holding capacity, desiccation intensity and in the compensation points of temperature, light and moisture are responsible for differences in metabolic activity. The lichens were active during less than half of the observation time. Total time of NP of X. elegans was 24% of the measuring period, for U. cylindrica 22% and for B. atrofusca 16%.  相似文献   

16.
Are lichens active under snow in continental Antarctica?   总被引:6,自引:0,他引:6  
Photosynthetic activity, detected as chlorophyll a fluorescence, was measured for lichens under undisturbed snow in continental Antarctica using fibre optics. The fibre optics had been buried by winter snowfall after being put in place the previous year under snow-free conditions. The fibre optics were fixed in place using specially designed holding devices so that the fibre ends were in close proximity to selected lichens. Several temperature and PPFD (photosynthetic photon flux density) sensors were also installed in or close to the lichens. By attaching a chlorophyll a fluorometer to the previously placed fibre optics it proved possible to measure in vivo potential photosynthetic activity of continental Antarctic lichens under undisturbed snow. The snow cover proved to be a very good insulator for the mosses and lichens but, in contrast to the situation reported for the maritime Antarctic, it retained the severe cold of the winter and prevented early warming. Therefore, the lichens and mosses under snow were kept inactive at subzero temperatures for a prolonged time, even though the external ambient air temperatures would have allowed metabolic activity. The results suggest that the major activity period of the lichens was at the time of final disappearance of the snow and lasted about 10-14 days. The activation of lichens under snow by high air humidity appeared to be very variable and species specific. Xanthoria mawsonii was activated at temperatures below -10 degrees C through absorption of water from high air humidity. Physcia dubia showed some activation at temperatures around -5 degrees C but only became fully activated at thallus temperatures of 0 degrees C through liquid water. Candelariella flava stayed inactive until thallus temperatures close to zero indicated that liquid water had become available. Although the snow cover represented the major water supply for the lichens, lichens only became active for a brief time at or close to the time the snow disappeared. The snow did not provide a protected environment, as reported for alpine habitats, but appeared to limit lichen activity. This provides at least one explanation for the observed negative effect of extended snow cover on lichen growth.  相似文献   

17.
附生地衣是哀牢山湿性常绿阔叶林生态系统中重要的结构性组分。通过对该区域山地森林中3种典型附生地衣平滑牛皮叶 (Sticta nylanderiana)、网肺衣 (Lobaria retigera) 和橄榄斑叶 (Cetrelia olivetorum)在不同水分条件下的光合光响应及荧光参数的测定分析,结果显示,附生地衣光补偿点 (LCP)、光饱和点 (LSP)较高,对强光适应能力较强。在水分胁迫 (含水量5%~10%) 条件下,3种附生地衣的最大净光合速率 (Pmax) 仅为17~50nmol·g-1·s-1。随着含水量的增加,地衣的最大净光合速率 (Pmax) 与暗呼吸速率 (Rday) 逐渐增大,LCP降低,而LSP随之提高,这表明3种附生地衣具备“阳生植物”的某些特性,从而能够在一定程度上适应野外光照较强的灌丛、向阳林冠等生境。地衣叶绿素光反应中心初始荧光参数 (F0) 和最大光化学效率 (Fv/Fm) 随含水量下降而显著降低,暗示其光反应中心对水分有很强的敏感性。水分条件的改善有助于附生地衣的光反应中心进入到较高的生理活性状态。  相似文献   

18.
The Antarctic black meristematic fungus Cryomyces antarcticus CCFEE 515 occurs endolithically in the McMurdo Dry Valleys of Antarctica, one of the best analogue for Mars environment on Earth. To date, this fungus is considered one of the best eukaryotic models for astrobiological studies and has been repeatedly selected for space experiments in the last decade. The obtained results are reviewed here, with special focus on responses to space relevant irradiation, UV radiation, and both sparsely and densely ionizing radiation, which represent the major injuries for a putative space-traveller. The remarkable resistance of this model organism to space stress, its radioresistance in particular, and mechanisms involved, significantly contributed to expanding our concept of limits for life and provided new insights on the origin and evolution of life in planetary systems, habitability, and biosignatures for life detection as well as on human protection during space missions.  相似文献   

19.
《Flora》2007,202(5):417-428
The role of different sources of water (rain, dew and water vapor) has been investigated under natural conditions in order to explain the activity and the distribution patterns of Teloschistes lacunosus (Rupr.) Sav. in the Tabernas Desert (Almeria, Spain). This field work was carried out at two neighboring sites: a pediment where T. lacunosus is well developed and an east-facing slope where only few small thalli are developed. Diurnal courses of photosynthetic activity were assessed by the use of chlorophyll a fluorescence measurements, at each site for a total of 12 days distributed among different seasons over the year. Microclimatic data (thallus temperature, relative humidity (RH) and light intensity) were recorded continuously for a period of 1 year including all the days on which fluorescence measurements were made. Dried T. lacunosus in its natural habitat only became photosynthetically active after re-hydration with liquid water (dew or rain). In contact with an atmosphere of high RH (higher than 90%) but without dew condensation, thalli were not able to obtain sufficient water to become physiologically active. The microclimatic study showed notably differences between the two studied expositions. After dawn, thalli from the east-facing slope were exposed to higher temperatures and light intensity (PPFD) levels than thalli from the pediment. This was reflected in the length of time that the air remained saturated and the lichen remained wet and active. The high incident PPFD and the resultant increased temperatures at the east-facing slope led to short dew duration and, therefore to shorter periods of morning photosynthetic activity than on the pediment as fluorescence measurements showed. Additionally, the microclimatic differences between the two sites indicated a high frequency of dew fall events on the thalli from the pediment. The time periods of thallus dew imbibition vary strongly with the exposure of the lichens.  相似文献   

20.
Predicted elevated temperatures and a shift from a winter to summer rainfall pattern associated with global warming could result in the exposure of hydrated lichens during summer to more numerous temperature extremes that exceed their thermal thresholds. This hypothesis was tested by measuring lethal temperature thresholds under laboratory and natural conditions for four epilithic lichen species (Xanthoparmelia austro‐africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta) occurring on quartz gravel substrates at a hot arid inland site two epigeous lichen species (Teloschistes capensis, Ramalina sp.) occurring on gypsum‐rich topsoil at a warm humid coastal site. Extrapolated lethal temperatures for photosynthetic quantum yield under laboratory conditions were up to 4°C higher for lichens from a dry inland site than those from a humid coastal site. Lethal temperatures extrapolated for photosynthetic quantum yield at a saturating photosynthetic photon flux density of ≥11,000 μmol photons m?2 s?1 under natural conditions were up to 6°C higher for lichens from the dry inland site than the more humid coastal site. It is concluded that only under atypical conditions of lichen exposure in a hydrated state to temperature extremes at high midday solar irradiances during summer could lethal photosynthetic thresholds in sensitive lichen species be potentially exceeded, but whether the increased frequency of such conditions with climate warming would lead to increased likelihood of lichen mortality is debatable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号