首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of NF-κB ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and IκB, as well as IκB degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption. [BMB Reports 2014; 47(8): 451-456]  相似文献   

2.
《Phytomedicine》2015,22(1):27-35
Osteopenic diseases, such as osteoporosis, are characterized by progressive and excessive bone resorption mediated by enhanced receptor activator of nuclear factor-κB ligand (RANKL) signaling. Therefore, downregulation of RANKL downstream signals may be a valuable approach for the treatment of bone loss-associated disorders. In this study, we investigated the effects of the naphthohydroquinone mollugin on osteoclastogenesis and its function in vitro and in vivo. Mollugin efficiently suppressed RANKL-induced osteoclast differentiation of bone marrow macrophages (BMMs) and bone resorbing activity of mature osteoclasts by inhibiting RANKL-induced c-Fos and NFATc1 expression. Mollugin reduced the phosphorylation of signaling pathways activated in the early stages of osteoclast differentiation, including the MAP kinase, Akt, and GSK3β and inhibited the expression of different genes associated with osteoclastogenesis, such as OSCAR, TRAP, DC-STAMP, OC-STAMP, integrin αν, integrin β3, cathepsin K, and ICAM-1. Furthermore, mice treated with mollugin showed significant restoration of lipopolysaccharide (LPS)-induced bone loss as indicated by micro-CT and histological analysis of femurs. Consequently, these results suggested that mollugin could be a novel therapeutic candidate for bone loss-associated disorders including osteoporosis, rheumatoid arthritis, and periodontitis.  相似文献   

3.
Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone.  相似文献   

4.
Perturbations in the balanced process of osteoblast-mediated bone formation and osteoclast-mediated bone resorption leading to excessive osteoclast formation and/or activity is the cause of many pathological bone conditions such as osteoporosis. The osteoclast is the only cell in the body capable of resorbing and degrading the mineralized bone matrix. Osteoclast formation from monocytic precursors is governed by the actions of two key cytokines macrophage-colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL). Binding of RANKL binding to receptor RANK initiates a series of downstream signaling responses leading to monocytic cell differentiation and fusion, and subsequent mature osteoclast bone resorption and survival. The phosphoinositide-3-kinase (PI3K)-protein kinase B (Akt) signaling cascade is one such pathway activated in response to RANKL. The 3-phosphoinositide-dependent protein kinase 1 (PDK1), is considered the master upstream lipid kinase of the PI3K-Akt cascade. PDK1 functions to phosphorylate and partially activate Akt, triggering the activation of downstream effectors. However, the role of PDK1 in osteoclasts has yet to be clearly defined. In this study, we specifically deleted the PDK1 gene in osteoclasts using the cathepsin-K promoter driven Cre-LoxP system. We found that the specific genetic ablation of PDK1 in osteoclasts leads to an osteoclast-poor osteopetrotic phenotype in mice. In vitro cellular assays further confirmed the impairment of osteoclast formation in response to RANKL by PDK1-deficient bone marrow macrophage (BMM) precursor cells. PDK1-deficient BMMs exhibited reduced ability to reorganize actin cytoskeleton to form a podosomal actin belt as a result of diminished capacity to fuse into giant multinucleated osteoclasts. Notably, biochemical analyses showed that PDK1 deficiency attenuated the phosphorylation of Akt and downstream effector GSK3β, and reduced induction of NFATc1. GSK3β is a reported negative regulator of NFATc1. GSK3β activity is inhibited by Akt-dependent phosphorylation. Thus, our data provide clear genetic and mechanistic insights into the important role for PDK1 in osteoclasts.  相似文献   

5.
MCP-1 (monocyte chemotactic protein-1) is a CC chemokine that is induced by receptor activator of NFkappaB ligand (RANKL) in human osteoclasts. In the absence of RANKL, treatment of human peripheral blood mononuclear cells with macrophage colony-stimulating factor and MCP-1 resulted in tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells that are positive for calcitonin receptor (CTR) and a number of other osteoclast markers, including nuclear factor of activated t cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). Although NFATc1 was strongly induced by MCP-1 and was observed in the nucleus, MCP-1 did not permit the formation of bone-resorbing osteoclasts, although these cells had the typical TRAP(+)/CTR(+) multinuclear phenotype of osteoclasts. Despite a similar appearance to osteoclasts, RANKL treatment was required in order for TRAP(+)/CTR(+) multinuclear cells to develop bone resorption activity. The lack of bone resorption was correlated with a deficiency in expression of certain genes related to bone resorption, such as cathepsin K and MMP9. Furthermore, calcitonin blocked the MCP-1-induced formation of TRAP(+)/CTR(+) multinuclear cells as well as blocking osteoclast bone resorption activity, indicating that calcitonin acts at two stages of osteoclast differentiation. Ablation of NFATc1 in mature osteoclasts did not prevent bone resorption activity, suggesting NFATc1 is involved in cell fusion events and not bone resorption. We propose that the MCP-1-induced TRAP(+)/CTR(+) multinuclear cells represent an arrested stage in osteoclast differentiation, after NFATc1 induction and cellular fusion but prior to the development of bone resorption activity.  相似文献   

6.
The contribution of osteoclasts to the process of bone loss in inflammatory arthritis has recently been demonstrated. Studies in osteoclast biology have led to the identification of factors responsible for the differentiation and activation of osteoclasts, the most important of which is the receptor activator of NF-κB ligand/osteoclast differentiation factor (RANKL/ODF), a tumor necrosis factor (TNF)-like protein. The RANKL/ODF receptor, receptor activator of NF-κB (RANK), is a TNF-receptor family member present on both osteoclast precursors and mature osteoclasts. Like other TNF-family receptors and the IL-1 receptor, RANK mediates its signal transduction via TNF receptor-associated factor (TRAF) proteins, suggesting that the signaling pathways activated by RANK and other inflammatory cytokines involved in osteoclast differentiation and activation are interconnected.  相似文献   

7.
IntroductionC-reactive protein (CRP) is one of the biomarkers for the diagnosis and assessment of disease activity in rheumatoid arthritis (RA). CRP is not only the by-product of inflammatory response, but also plays proinflammatory and prothrombotic roles. The aim of this study was to determine the role of CRP on bone destruction in RA.MethodsCRP levels in RA synovial fluid (SF) and serum were measured using the immunoturbidimetric method. The expression of CRP in RA synovium was assessed using immunohistochemical staining. CD14+ monocytes from peripheral blood were cultured with CRP, and receptor activator of nuclear factor-κB ligand (RANKL) expression and osteoclast differentiation were evaluated using real-time PCR, counting tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells and assessing bone resorbing function. CRP-induced osteoclast differentiation was also examined after inhibition of Fcγ receptors.ResultsThere was a significant correlation between CRP levels in serum and SF in RA patients. The SF CRP level was correlated with interleukin (IL)-6 levels, but not with RANKL levels. Immunohistochemical staining revealed that compared with the osteoarthritis synovium, CRP was more abundantly expressed in the lining and sublining areas of the RA synovium. CRP stimulated RANKL production in monocytes and it induced osteoclast differentiation from monocytes and bone resorption in the absence of RANKL.ConclusionsCRP could play an important role in the bony destructive process in RA through the induction of RANKL expression and direct differentiation of osteoclast precursors into mature osteoclasts. In the treatment of RA, lowering CRP levels is a significant parameter not only for improving disease activity but also for preventing bone destruction.  相似文献   

8.
9.
The contribution of osteoclasts to the process of bone loss in inflammatory arthritis has recently been demonstrated. Studies in osteoclast biology have led to the identification of factors responsible for the differentiation and activation of osteoclasts, the most important of which is the receptor activator of NF-kappa B ligand/osteoclast differentiation factor (RANKL/ODF), a tumor necrosis factor (TNF)-like protein. The RANKL/ODF receptor, receptor activator of NF-kappa B (RANK), is a TNF-receptor family member present on both osteoclast precursors and mature osteoclasts. Like other TNF-family receptors and the IL-1 receptor, RANK mediates its signal transduction via TNF receptor-associated factor (TRAF) proteins, suggesting that the signaling pathways activated by RANK and other inflammatory cytokines involved in osteoclast differentiation and activation are interconnected.  相似文献   

10.
Youn YN  Lim E  Lee N  Kim YS  Koo MS  Choi SY 《Genes & nutrition》2008,2(4):375-380
Bone undergoes continuous remodeling through bone formation and resorption, and maintaining the balance for skeletal rigidity. Bone resorption and loss are generally attributed to osteoclasts. Differentiation of osteoclasts is regulated by receptor activator of nuclear factor NF-kB ligand (RANKL), a member of tumor necrosis factor family. When the balance is disturbed, pathological bone abnormality ensues. Through the screening of traditional Korean medicinal plants, the effective molecules for inhibition and stimulation of RANKL-induced osteoclast differentiation in mouse bone marrow macrophages were identified. Among 222 methanol extracts, of medicinal plants, 10 samples exhibited ability to induce osteoclast differentiation. These include Dryobalanops aromatica, Euphoria longana, Lithospermum erythrorhizon, Prunus mume, Prunus nakaii, and Polygonatum odoratum. In contrast, Ailanthus altissima, Curcuma longa, Solanum nigrum, Taraxacum platycarpa, Trichosanthes kirilowii, and Daphne genkwa showed inhibitory effects in RANKL-induced osteoclast differentiation.  相似文献   

11.
Periodontitis has been associated with rheumatoid arthritis. In experimental arthritis, concomitant periodontitis caused by oral infection with Porphyromonas gingivalis enhances articular bone loss. The aim of this study was to investigate how lipopolysaccharide (LPS) from P. gingivalis stimulates bone resorption. The effects by LPS P. gingivalis and four other TLR2 ligands on bone resorption, osteoclast formation, and gene expression in wild type and Tlr2-deficient mice were assessed in ex vivo cultures of mouse parietal bones and in an in vivo model in which TLR2 agonists were injected subcutaneously over the skull bones. LPS P. gingivalis stimulated mineral release and matrix degradation in the parietal bone organ cultures by increasing differentiation and formation of mature osteoclasts, a response dependent on increased RANKL (receptor activator of NF-κB ligand). LPS P. gingivalis stimulated RANKL in parietal osteoblasts dependent on the presence of TLR2 and through a MyD88 and NF-κB-mediated mechanism. Similarly, the TLR2 agonists HKLM, FSL1, Pam2, and Pam3 stimulated RANKL in osteoblasts and parietal bone resorption. LPS P. gingivalis and Pam2 robustly enhanced osteoclast formation in periosteal/endosteal cell cultures by increasing RANKL. LPS P. gingivalis and Pam2 also up-regulated RANKL and osteoclastic genes in vivo, resulting in an increased number of periosteal osteoclasts and immense bone loss in wild type mice but not in Tlr2-deficient mice. These data demonstrate that LPS P. gingivalis stimulates periosteal osteoclast formation and bone resorption by stimulating RANKL in osteoblasts via TLR2. This effect might be important for periodontal bone loss and for the enhanced bone loss seen in rheumatoid arthritis patients with concomitant periodontal disease.  相似文献   

12.
13.
Excessive bone-resorbing osteoclast activity during bone remodeling is a major feature of bone diseases, such as osteoporosis. Therefore, the inhibition of osteoclast formation and bone resorption can be an effective therapeutic target for various bone diseases. Gryllus biomaculatus (GB) has recently been approved as an alternative food source because of its high nutritional value and environmental sustainability. Traditionally, GB has been known to have various pharmacological properties, including antipyretic and blood pressure-lowering activity, and it has recently been reported to have various biological activities, including protective effects against inflammation, oxidative stress, insulin resistance, and alcohol-induced liver injury. However, the effect of GB on osteoclast differentiation and bone metabolism has not yet been demonstrated. In this study, we confirmed the inhibitory effect of GB extract (GBE) on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. To determine the effect of GBE on RANKL-induced osteoclast differentiation and function, we performed TRAP and F-actin staining, as well as a bone-resorbing assay. The intracellular mechanisms of GBE responsible for the regulation of osteoclastogenesis were revealed by Western blot analysis and quantitative real-time polymerase chain reaction. We investigated the relationship between GBE and expression of osteoclast-specific molecules to further elucidate the underlying mechanisms. It was found that GBE significantly suppressed osteoclastogenesis by decreasing the phosphorylation of Akt, p38, JNK, and ERK, as well as Btk-PLCγ2 signaling, in pathways involved in early osteoclastogenesis as well as through the subsequent suppression of c-Fos, NFATc1, and osteoclastogenesis-specific marker genes. Additionally, GBE inhibited the formation of F-actin ring-positive osteoclasts and bone resorption activity of mature osteoclasts. Our findings suggest that GBE is a potential functional food and therapeutic candidate for bone diseases involving osteoclasts.  相似文献   

14.
15.
Chronic inflammation associated with bone tissues often destructs bones, which is essentially performed by osteoclasts in the presence of immunoregulatory molecules. Hence, regulating osteoclastogenesis is crucial to develop therapeutics for bone-destructive inflammatory diseases. It is believed that reactive oxygen species (ROS) are involved in receptor activator of NF-κB (RANK) ligand (RANKL)-induced osteoclast differentiation, and, therefore, glutathione (GSH), the most abundant endogenous antioxidant, suppresses osteoclast differentiation and bone resorption by RANKL. Interestingly, GSH also contributes to inflammatory responses, and the effects of GSH on osteoclast differentiation and bone destruction under inflammatory conditions have not yet been determined. Here, we investigated how GSH affects inflammatory cytokine-stimulated osteoclast differentiation in vitro and in a mouse model of inflammatory bone destruction. We found that GSH significantly promoted TNFα-stimulated osteoclast formation, while an inhibitor of GSH synthesis, buthionine sulfoximine, suppressed it. GSH facilitated the nuclear localisation of the nuclear factor of activated T cells c1 (NFATc1) protein, a master regulator of osteoclastogenesis, as well as the expression of osteoclast marker genes in a dose-dependent manner. N-acetylcysteine, a substrate of GSH synthesis, also stimulated osteoclast formation and NFATc1 nuclear localisation. GSH did not suppress cell death after osteoclast differentiation. In mouse calvaria injected with lipopolysaccharide, GSH treatment resulted in a fivefold increase in the osteolytic lesion area. These results indicate that GSH accelerates osteoclast differentiation and inflammatory bone destruction, suggesting GSH appears to be an important molecule in the mechanisms responsible for inflammatory bone destruction by osteoclasts.  相似文献   

16.
IL-4 is an important immune cytokine that regulates bone homeostasis. We investigated the molecular mechanism of IL-4 action on bone-resorbing mature osteoclasts. Using a highly purified population of mature osteoclasts, we show that IL-4 dose-dependently inhibits receptor activator of NF-kappaB ligand (RANKL)-induced bone resorption by mature osteoclasts. We detected the existence of IL-4R mRNA in mature osteoclasts. IL-4 decreases TRAP expression without affecting multinuclearity of osteoclasts, and inhibits actin ring formation and migration of osteoclasts. Interestingly, IL-4 inhibition of bone resorption occurs through prevention of RANKL-induced nuclear translocation of p65 NF-kappaB subunit, and intracellular Ca(2+) changes. Moreover, IL-4 rapidly decreases RANKL-stimulated ionized Ca(2+) levels in the blood, and mature osteoclasts in IL-4 knockout mice are sensitive to RANKL action to induce bone resorption and hypercalcemia. Furthermore, IL-4 inhibits bone resorption and actin ring formation by human mature osteoclasts. Thus, we reveal that IL-4 acts directly on mature osteoclasts and inhibits bone resorption by inhibiting NF-kappaB and Ca(2+) signaling.  相似文献   

17.
Osteoclast activation is a critical cellular process for pathological bone resorption, such as erosions in rheumatoid arthritis (RA) or generalized bone loss. Among many factors triggering excessive osteoclast activity, cytokines such as IL-1 or tumour necrosis factor (TNF)-α play a central role. New members of the TNF receptor ligand family (namely receptor activator of nuclear factor-κB [RANK] and RANK ligand [RANKL]) have been discovered whose cross-interaction is mandatory for the differentiation of osteoclasts from hemopoietic precursors, in both physiological and pathological situations. Osteoprotegerin, a decoy receptor which blocks this interaction, decreases osteoclast activity and could have a fascinating therapeutic potential in conditions associated with upregulated bone resorption.  相似文献   

18.
19.
Ryu J  Kim H  Lee SK  Chang EJ  Kim HJ  Kim HH 《Proteomics》2005,5(16):4152-4160
Osteoclasts are cells specialized for bone resorption. For osteoclast activation, tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role. To find new molecules that bind TRAF6 and have a function in osteoclast activation, we employed a proteomic approach. TRAF6-binding proteins were purified from osteoclast cell lysates by affinity chromatography and their identity was disclosed by MS. The identified proteins included several heat shock proteins, actin and actin-binding proteins, and vacuolar ATPase (V-ATPase). V-ATPase, documented for a great increase in expression during osteoclast differentiation, is an important enzyme for osteoclast function; it transports proton to resorption lacunae for hydroxyapatite dissolution. The binding of V-ATPase with TRAF6 was confirmed both in vitro by GST pull-down assays and in osteoclasts by co-immunoprecipitation and confocal microscopy experiments. In addition, the V-ATPase activity associated with TRAF6 increased in osteoclasts stimulated with receptor activator of nuclear factor kappaB ligand (RANKL). Furthermore, a dominant-negative form of TRAF6 abrogated the RANKL stimulation of V-ATPase activity. Our study identified V-ATPase as a TRAF6-binding protein using a proteomics strategy and proved a direct link between these two important molecules for osteoclast function.  相似文献   

20.
Bone is maintained by two cell types, bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts express two factors, osteoprotegerin and receptor activator of NF-kappaB ligand (RANKL), inhibiting and promoting osteoclast differentiation, respectively. In contrast, modulators of bone resorption expressed by osteoclasts have not been so well studied enough. In the present study, we demonstrate proteome analysis of secreted proteins during osteoclast differentiation to elucidate the molecular mechanism of bone resorption and bone remodeling. To achieve this objective, we chose RAW264.7 cells with RANKL as a homogeneous osteoclast differentiation model and used two methods, two-dimensional gel electrophoresis (2-DE) and isotope-coded affinity tags (ICAT) analysis with two-dimensional liquid chromatography. We found 23 spots in 2-DE and 19 proteins in ICAT analysis which were expressed differently during osteoclast differentiation. These two methods gave us closely related but different information about proteins, suggesting they are complementary or at least supplementary methods at present. Cathepsins, osteopontin, legumain, macrophage inflammatory protein-1alpha, and other proteins were observed as up- or down-regulated proteins and are discussed in the context of osteoclast differentiation and bone resorption. In addition to confirming previous observations, this study indicates novel proteins related to osteoclast differentiation which are potential therapeutic targets for the treatment of bone diseases, such as osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号