首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila embryogenesis is an established model to investigate mechanisms and genes related to cell divisions in an intact multicellular organism. Progression through the cell cycle phases can be monitored in vivo using fluorescently labeled fusion proteins and time-lapse microscopy. To measure cellular properties in microscopic images, accurate and fast image segmentation methods are a critical prerequisite. To quantify static and dynamic features of interphase nuclei and mitotic chromosomes, we developed a three-dimensional (3D) segmentation method based on multiple level sets. We tested our method on 3D time-series images of live embryos expressing histone-2Av-green fluorescence protein. Our method is robust to low signal-to-noise ratios inherent to high-speed imaging, fluorescent signals in the cytoplasm, and dynamic changes of shape and texture. Comparisons with manual ground-truth segmentations showed that our method achieves more than 90% accuracy on the object as well as voxel levels and performs consistently throughout all cell cycle phases and developmental stages from syncytial blastoderm to postblastoderm mitotic domains.  相似文献   

2.
Variations in the normal regulation of the mitotic cell cycle can lead to such global cellular changes as differential development or malignant transformation. Studies on the control of mitosis are particularly important to discover the details of the basic mechanisms responsible for normal cell division, as well as to learn about strategies employed by cancerous cells to indefinitely proliferate. The past years have brought noteworthy progress in elucidating the molecular pathways that regulate crucial events during mitosis such as: chromosome condensation, formation of the mitotic spindle, chromosome segregation, cytokinesis, and disassembly of the mitotic spindle.  相似文献   

3.
Spindle mechanics and dynamics during mitosis in Drosophila   总被引:8,自引:0,他引:8  
Drosophila melanogaster is an excellent model for studying mitosis. Syncytial embryos are amenable to time-lapse imaging of hundreds of synchronously dividing spindles, allowing the quantitation of spindle and chromosome dynamics with unprecedented fidelity. Other Drosophila cell types, including neuroblasts, cultured cells, spermatocytes and oocytes, contain spindles that differ in their design, providing cells amenable to different types of experiments and allowing identification of common core mechanisms. The function of mitotic proteins can be studied using mutants, inhibitor microinjection and RNA interference (RNAi) to identify the full inventory of mitotic proteins encoded by the genome. Here, we review recent advances in understanding how ensembles of mitotic proteins coordinate spindle assembly and chromosome motion in this system.  相似文献   

4.
A cell proliferation marker protein, pKi-67, distributes to the chromosome periphery during mitosis and nucleolar heterochromatin in the interphase. We report here on the structural domains of pKi-67 that are required for its correct distribution. While both the LR domain and the conserved domain were involved in localization to the nucleolar heterochromatin, both the LR domain and the Ki-67 repeat domain were required for its distribution to the mitotic chromosome periphery. Using in vivo time-lapse microscopy, GFP-pKi-67 was dynamically tracked from the mitotic chromosome periphery to reforming nucleoli via prenucleolar bodies (PNBs). The signals in PNBs then moved towards and fused into the reforming nucleoli with a thin string-like fluorescence during early G1 phase. An analysis of the in vivo kinetics of pKi-67 using photobleaching indicated that the association of pKi-67 with chromatin was progressively altered from "loose" to "tight" after the onset of anaphase. These findings indicate that pKi-67 dynamically alters the nature of the interaction with chromatin structure during the cell cycle, which is closely related to the reformation process of the interphase nucleolar chromatin.  相似文献   

5.
MCAK, a kinesin related motor protein with microtubule depolymerizing activity, is known to play an important role in spindle assembly and correcting errors in mitotic chromosome alignment. Experiments to determine how cellular levels of the protein are regulated demonstrate that MCAK accumulates during cell cycle progression, reaches a maximum at G2/M phase, and is rapidly degraded by the proteasome during mitosis. Immunofluorescence microscopy further indicates that MCAK largely disappears from kinetochores and spindle poles at the metaphase to anaphase transition. A phosphorylated form of MCAK appears during mitosis and seems to be preferentially degraded, but degradation does not appear to depend on Aurora B, a kinase reported to be involved in regulating the error correcting activity of the protein. These studies indicate that MCAK activity is limited during the latter stages of mitosis by protein degradation, and argue against a role for the protein in anaphase chromosome movement.  相似文献   

6.
Variations in the normal regulation of the mitotic cell cycle can lead to such global cellular changes as differential development or malignant transformation. Studies on the control of mitosis are particularly important to discover the details of the basic mechanisms responsible for normal cell division, as well as to learn about strategies employed by cancerous cells to indefinitely proliferate. The past years have brought noteworthy progress in elucidating the molecular pathways that regulate crucial events during mitosis such as: chromosome condensation, formation of the mitotic spindle, chromosome segregation, cytokinesis, and disassembly of the mitotic spindle.

Key Words:

Mitosis, FEAR, MEN  相似文献   

7.
Precise timing of mitosis is essential for high-fidelity cell duplication. However, temporal measurements of the mitotic clock have been challenging. Here we present a fluorescent mitosis biosensor that monitors the time between nuclear envelope breakdown (NEB) and re-formation using parallel total internal reflection fluorescence (TIRF) microscopy. By tracking tens to hundreds of mitotic events per experiment, we found that the mitotic clock of unsynchronized rat basophilic leukemia cells has a marked precision with 80% of cells completing mitosis in 32 +/- 6 min. This assay further allowed us to observe delays in mitotic timing at Taxol concentrations 100 times lower than previous minimal effective doses, explaining why Taxol is clinically active at low concentrations. Inactivation of the spindle checkpoint by targeting the regulator Mad2 with RNAi consistently shortened mitosis, providing direct evidence that the internal mitotic timing mechanism is much faster in cells that lack the checkpoint.  相似文献   

8.
The cell division cycle and mitosis of intra-erythrocytic (IE) Plasmodium falciparum are poorly understood aspects of parasite development which affect malaria molecular pathogenesis. Specifically, the timing of the multiple gap (G), DNA synthesis (S) and chromosome separation (M) phases of parasite mitosis are not well defined, nor whether genome divisions are immediately followed by cleavage of the nuclear envelope. Curiously, daughter merozoite numbers do not follow the geometric expansion expected from equal numbers of binary divisions, an outcome difficult to explain using the standard model of cell cycle regulation. Using controlled synchronisation techniques, confocal microscopy to visualise key organelles and fluorescence in situ hybridization (FISH) to follow the movements and replication of genes and telomeres, we have re-analysed the timing and progression of mitotic events. The asynchronous duplications of the P. falciparum centrosome equivalents, the centriolar plaques, are established and these are correlated with chromosome and nuclear divisions in a new model of P. falciparum schizogony. Our results improve the resolution of the cell cycle and its phases during P. falciparum IE development, showing that asynchronous, independent nuclear division occurs during schizogony, with the centriolar plaques playing a major role in regulating mitotic progression.  相似文献   

9.
We have previously shown that the herpes simplex virus tegument protein VP22 localizes predominantly to the cytoplasm of expressing cells. We have also shown that VP22 has the unusual property of intercellular spread, which involves the movement of VP22 from the cytoplasm of these expressing cells into the nuclei of nonexpressing cells. Thus, VP22 can localize in two distinct subcellular patterns. By utilizing time-lapse confocal microscopy of live cells expressing a green fluorescent protein-tagged protein, we now report in detail the intracellular trafficking properties of VP22 in expressing cells, as opposed to the intercellular trafficking of VP22 between expressing and nonexpressing cells. Our results show that during interphase VP22 appears to be targeted exclusively to the cytoplasm of the expressing cell. However, at the early stages of mitosis VP22 translocates from the cytoplasm to the nucleus, where it immediately binds to the condensing cellular chromatin and remains bound there through all stages of mitosis and chromatin decondensation into the G(1) stage of the next cycle. Hence, in VP22-expressing cells the subcellular localization of the protein is regulated by the cell cycle such that initially cytoplasmic protein becomes nuclear during cell division, resulting in a gradual increase over time in the number of nuclear VP22-expressing cells. Importantly, we demonstrate that this process is a feature not only of VP22 expressed in isolation but also of VP22 expressed during virus infection. Thus, VP22 utilizes an unusual pathway for nuclear targeting in cells expressing the protein which differs from the nuclear targeting pathway used during intercellular trafficking.  相似文献   

10.
Transgenic Arabidopsis thaliana, stably expressing a GFP-TUA6 fusion protein, were subcultured in B5 medium supplemented with 2,4-D and BA. In the cell suspensions, the microtubular changes in the mitotic cells could be monitored by time-sequence observations using a time-lapse system of fluorescence microscopy. We have succeeded in following the microtubule (MT) dynamics in living cells throughout mitosis, from the late G2 phase to early G1 phase, and found that, at the M/G1 interface, the cortical MTs were firstly reorganized in the perinuclear regions and then in the cortex, as we had previously suggested (Hasezawa and Nagata 1991, Nagata et al. 1994). The significance of this observation on the origin of cortical MTs is discussed.  相似文献   

11.
During mitosis, chromosome segregation is regulated by a spindle checkpoint mechanism. This checkpoint delays anaphase until all kinetochores are captured by microtubules from both spindle poles, chromosomes congress to the metaphase plate, and the tension between kinetochores and their attached microtubules is properly sensed. Although the spindle checkpoint can be activated in many different cell types, the role of this regulatory mechanism in rapidly dividing embryonic animal cells has remained controversial. Here, using time-lapse imaging of live embryonic cells, we show that chemical or mutational disruption of the mitotic spindle in early Caenorhabditis elegans embryos delays progression through mitosis. By reducing the function of conserved checkpoint genes in mutant embryos with defective mitotic spindles, we show that these delays require the spindle checkpoint. In the absence of a functional checkpoint, more severe defects in chromosome segregation are observed in mutants with abnormal mitotic spindles. We also show that the conserved kinesin CeMCAK, the CENP-F-related proteins HCP-1 and HCP-2, and the core kinetochore protein CeCENP-C all are required for this checkpoint. Our analysis indicates that spindle checkpoint mechanisms are functional in the rapidly dividing cells of an early animal embryo and that this checkpoint can prevent chromosome segregation defects during mitosis.  相似文献   

12.
Multicellular development requires that cells reduce in size as a result of consecutive cell divisions without increase in embryo volume. To maintain cellular integrity, organelle size adapts to cell size throughout development. During mitosis, the longest chromosome arm must be shorter than half of the mitotic spindle for proper chromosome segregation. Using high-resolution time-lapse microscopy of living Caenorhabditis elegans embryos, we have quantified the relation between cell size and chromosome length. In control embryos, chromosome length scaled to cell size. Artificial reduction of cell size resulted in a shortening of chromosome length, following a trend predicted by measurements from control embryos. Disturbing the RAN (Ras-related nuclear protein)-GTP gradient decoupled nuclear size from cell size and resulted in chromosome scaling to nuclear size rather than cell size; smaller nuclei contained shorter chromosomes independent of cell size. In sum, quantitative analysis relating cell, nuclear, and chromosome size predicts two levels of chromosome length regulation: one through cell size and a second in response to nuclear size.  相似文献   

13.
Fragkos M  Beard P 《PloS one》2011,6(8):e22946
Cell death occurring during mitosis, or mitotic catastrophe, often takes place in conjunction with apoptosis, but the conditions in which mitotic catastrophe may exhibit features of programmed cell death are still unclear. In the work presented here, we studied mitotic cell death by making use of a UV-inactivated parvovirus (adeno-associated virus; AAV) that has been shown to induce a DNA damage response and subsequent death of p53-defective cells in mitosis, without affecting the integrity of the host genome. Osteosarcoma cells (U2OSp53DD) that are deficient in p53 and lack the G1 cell cycle checkpoint respond to AAV infection through a transient G2 arrest. We found that the infected U2OSp53DD cells died through mitotic catastrophe with no signs of chromosome condensation or DNA fragmentation. Moreover, cell death was independent of caspases, apoptosis-inducing factor (AIF), autophagy and necroptosis. These findings were confirmed by time-lapse microscopy of cellular morphology following AAV infection. The assays used readily revealed apoptosis in other cell types when it was indeed occurring. Taken together the results indicate that in the absence of the G1 checkpoint, mitotic catastrophe occurs in these p53-null cells predominantly as a result of mechanical disruption induced by centrosome overduplication, and not as a consequence of a suicide signal.  相似文献   

14.
To ensure accurate inheritance of genetic information through cell proliferation, chromosomes must be precisely copied only during S phase, and then correctly condensed and segregated during mitosis. Several new findings suggest that this tight coupling between DNA replication and mitosis is in part controlled by cell cycle regulated chromatin modifications, in particular due to the changing activity of lysine methyltransferase PR-Set7/SET8 that is responsible for the monomethylation of histone H4 at lysine 20. Cell cycle oscillation of PR-Set7 is orchestrated by ubiquitin-mediated proteolysis, and interference with this regulatory process leads to unscheduled licensing of replication origins and altered timing of mitotic chromosome compaction. This review provides an overview of how PR-Set7 regulates these two cell cycle events and highlights questions that remain to be addressed.  相似文献   

15.
Cyclin-dependent kinases (Cdks) are the central regulators of the cell division cycle. Inhibitors of Cdks ensure proper coordination of cell cycle events and help regulate cell proliferation in the context of tissues and organs. Wee1 homologs phosphorylate a conserved tyrosine to inhibit the mitotic cyclin-dependent kinase Cdk1. Loss of Wee1 function in fission or budding yeast causes premature entry into mitosis. The importance of metazoan Wee1 homologs for timing mitosis, however, has been demonstrated only in Xenopus egg extracts and via ectopic Cdk1 activation . Here, we report that Drosophila Wee1 (dWee1) regulates Cdk1 via phosphorylation of tyrosine 15 and times mitotic entry during the cortical nuclear cycles of syncytial blastoderm embryos, which lack gap phases. Loss of maternal dwee1 leads to premature entry into mitosis, mitotic spindle defects, chromosome condensation problems, and a Chk2-dependent block of subsequent development, and then embryonic lethality. These findings modify previous models about cell cycle regulation in syncytial embryos and demonstrate that Wee1 kinases can regulate mitotic entry in vivo during metazoan development even in cycles that lack a G2 phase.  相似文献   

16.
We have investigated the relationship between nuclear envelope fission and cytokinesis during mitotic cell division in budding yeast. By carrying out time-lapse and optical sectioning video microscopy analysis of cells that express green fluorescent protein (GFP)-tagged nuclear envelope and actomyosin ring components, we found that nuclear division is temporally coupled to cytokinesis. Light and electron microscopy analysis also showed that nuclear envelope fission and the division of the nucleoplasm are severely delayed in cytokinesis mutants, resulting in discoupling between the nuclear division cycle and the budding cycle. These results suggest that homotypic membrane fusion may be activated by components or the mechanical action of cytokinetic structures and presents a mechanism for the equal partitioning of the nucleus and the temporal coordination of this event with chromosome segregation during mitosis.  相似文献   

17.
Mitotic spindle assembly and chromosome segregation are controlled by the cell cycle machinery and by the guanosine triphosphatase Ran (RanGTPase). We developed a spatial model that allows us to simulate RanGTP production with different degrees of chromosome alignment in mitosis. Aided by this model, we defined three factors that modulate mitotic RanGTP gradients and mitotic progression in somatic cells. First, the concentration of RanGTPtransport-receptor (represented by RanGTP-importin β) and its spatial distribution are very sensitive to the level of RanBP1. Reduction of RanBP1 leads to an elevated RanGTP-transport receptor concentration throughout the cell, which disrupts spindle assembly and weakens spindle checkpoint control. Second, the completion of chromosome alignment at the metaphase plategenerates highest local RanGTP concentrations on chromosomes that could lead to spindle checkpoint silencing and metaphase-anaphase transition. Finally, chromosomal RanGTP production could be dampened by a reduction of RCC1 phosphorylation in mitosis. Our spatialsimulation of RanGTP production using individual chromosomes should provide means to further understand how the Ran system and the cell cycle machinery coordinately regulate mitosis.  相似文献   

18.
V Simanis  P Nurse 《Cell》1986,45(2):261-268
The cdc2+ gene function has an important role in controlling the commitment of the fission yeast cell to the mitotic cycle and the timing of mitosis. We have raised antibodies against the cdc2+ protein using synthetic peptides and have demonstrated that it is a 34 kd phosphoprotein with protein kinase activity. The protein level and phosphorylation state remain unchanged during the mitotic cycle of rapidly growing cells. When cells cease to proliferate and arrest in G1 the protein becomes dephosphorylated and loses protein kinase activity. Exit from the mitotic cycle and entry into stationary phase may be controlled in part by modulation of the cdc2 protein kinase activity by changes in its phosphorylation state.  相似文献   

19.
Accurate coordination between chromosome segregation and cytokinesis by various mitotic kinases, such as Aurora, prevent tetraploidization and subsequent tumorigensis. The tumor suppressors Lats1 and Lats2 are serine/threonine kinases that localize to the centrosome and regulate cell cycle progression and apoptosis. In the present study, Aurora A was demonstrated to phosphorylate Lats2 on serine 380 (S380) during mitosis. Immunocytochemical observations revealed that the subcellular localization of Lats2 was distinct during the cell cycle and depended on which site was phosphorylated. Interestingly, the S380-phosphorylated Lats2 protein (pS380) colocalized at the central spindle with Aurora B. Physical interactions were observed between Aurora A, Lats2, Lats1 and Aurora B. The Lats1 kinase was shown to phosphorylate Aurora B. Cells expressing a nonphosphorylated mutant (S380A) of Lats2 caused chromosome missegregation and cytokinesis failure, similar to cells with aberrantly expressed Aurora B. Together, the results suggest that the Aurora A-Lats1/2-Aurora B axis might be a novel pathway that regulates accurate mitotic progression by ensuring the proper mitotic localization of Lats2.  相似文献   

20.
? The high mobility group (HMG)-box represents a DNA-binding domain that is found in various eukaryotic DNA-interacting proteins. Proteins that contain three copies of the HMG-box domain, termed 3 × HMG-box proteins, appear to be specific to plants. The Arabidopsis genome encodes two 3 × HMG-box proteins that were studied here. ? DNA interactions were examined using electrophoretic mobility shift assays, whereas expression, subcellular localization and chromosome association were mainly analysed by different types of fluorescence microscopy. ? The 3 × HMG-box proteins bind structure specifically to DNA, display DNA bending activity and, in addition to the three HMG-box domains, the basic N-terminal domain contributes to DNA binding. The expression of the two Arabidopsis genes encoding 3 × HMG-box proteins is linked to cell proliferation. In synchronized cells, expression is cell cycle dependent and peaks in cells undergoing mitosis. 3 × HMG-box proteins are excluded from the nuclei of interphase cells and localize to the cytosol, but, during mitosis, they associate with condensed chromosomes. The 3 × HMG-box2 protein generally associates with mitotic chromosomes, while 3 × HMG-box1 is detected specifically at 45S rDNA loci. ? In addition to mitotic chromosomes the 3 × HMG-box proteins associate with meiotic chromosomes, suggesting that they are involved in a general process of chromosome function related to cell division, such as chromosome condensation and/or segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号