首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurosphere cultures derived from fetal brain regions can proliferate in response to exogenous growth factors such as basic fibroblast growth factor (bFGF) and give rise to undifferentiated precursor cells that form a floating neurosphere. In this study, neurospheres generated from the ganglionic eminence region of embryonic day 15 (E15) rat embryos were treated in the presence or absence of ethanol. We found that such neurospheres respond to environmental toxins such as alcohol and still retain the multi-potential capability of differentiation into neuronal and glial cell types. Ethanol at high concentration (50 mM) affected proliferation, gliogenesis and neurogenesis, although the most profound effect was observed on glial phenotype. Our findings suggest that extrinsic agents, such as alcohol can alter intrinsic cellular mechanisms of stem cell fate choices contributing to altered neurogenesis and gliogenesis during central nervous system (CNS) maturation, which might in part be responsible for defective astroglial and neuronal functions in fetal alcohol syndrome (FAS).  相似文献   

2.
Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during differentiation, but they generated normal percentages of neuronal cells. Neuronal fate commitment therefore appears to be controlled through a non-clock function of BMAL1. This study provides insight into how cell autonomous circadian clocks and clock genes regulate adult neural stem cells with implications for treating neurodegenerative disorders and impaired brain functions by manipulating neurogenesis.  相似文献   

3.
Strengths and limitations of the neurosphere culture system   总被引:8,自引:0,他引:8  
After the initial reports of free-floating cultures of neural stem cells termed neurospheres (1,2), a wide array of studies using this promising culture system emerged. In theory, this was a nearperfect system for large-scale production of neural cells for use in cell replacement therapies and to assay for and characterize neural stem cells. More than a decade later, after rigorous scrutiny and ample experimental testing of the neurosphere culture system, it has become apparent that the culture system suffers from several disadvantages, and its usefulness is limited for several applications. Nevertheless, the bulk of high-quality research produced over the last decade has also shown that under the right circumstances and for the appropriate purposes, neurospheres hold up to their initial promise. This article discusses the pros and cons of the neurosphere culture system regarding its three major applications: as an assay for neural stem cells, as a model system for neurogenesis and neural development, and for expansion of neural stem cells for transplantation purposes.  相似文献   

4.
Neural progenitor cells (NPCs) are considered to be a promising source for stem cell-based regenerative therapy for central nervous disorders. However, the widespread clinical application of NPCs requires another technology that permits the efficient production of pure NPCs in large quantities. In this study, culture substrates were designed by immobilizing epidermal growth factor (EGF) onto the substrate and evaluated for their feasibility of expanding NPCs obtained through the neurosphere culture of induced pluripotent stem (iPS) cells. After three passages we obtained neurospheres that contained cells abundantly expressing an EGF receptor. The neurospheres were dissociated into single cells and seeded onto the EGF-immobilized substrates. It was observed that neurosphere-forming cells seeded and cultured on the EGF-immobilized surface formed a two-dimensional cellular network characteristic of NPCs. These cells were found to be capable of being subcultured, while remaining their proliferation potential. Furthermore, a majority of cells (~99% of total cells) on the substrate was shown to express an NPC marker, nestin, whereas a limited number of cells (~1% of total cells) expressed neuronal marker, β-tubulin III. These results as a whole demonstrate that the EGF-immobilized substrate allows for iPS cell-derived NPCs to efficiently proliferate while maintaining the undifferentiated state.  相似文献   

5.
The zebrafish is a highly relevant model organism for understanding the cellular and molecular mechanisms involved in neurogenesis and brain regeneration in vertebrates. However, an in-depth analysis of the molecular mechanisms underlying zebrafish adult neurogenesis has been limited due to the lack of a reliable protocol for isolating and culturing neural adult stem/progenitor cells. Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from zebrafish whole brain or from the telencephalon, tectum and cerebellum regions of the adult zebrafish brain. The protocol involves, first the microdissection of zebrafish adult brain, then single cell dissociation and isolation of self-renewing multipotent neural stem/progenitor cells. The entire procedure takes eight days. Additionally, we describe how to manipulate gene expression in zebrafish neurospheres, which will be particularly useful to test the role of specific signaling pathways during adult neural stem/progenitor cell proliferation and differentiation in zebrafish.  相似文献   

6.
Wnt signaling plays an essential role in the development of mammalian central nervous system. We investigated the impact of activation/inhibition of the Wnt signaling pathway on neuronal/glial differentiation in neurospheres derived from neonatal mouse forebrains. For short term alterations, neurospheres were stimulated with recombinant Wnt-3a, Wnt-5a and the Wnt inhibitor Dickkopf-1 (Dkk1). Furthermore, neurospheres were transduced with retroviral vectors encoding Wnt-3a, Wnt-7a and their inhibitors Dkk1 and soluble Frizzled related protein-5 (sFRP5). Long-term activation of Wnt pathway by Wnt-7a or by treatment with GSK3 inhibitors promoted a moderate increase of the neuronal differentiation and blocked gliogenesis. In contrast, Wnt pathway inhibition in neurospheres, induced by retroviral overexpression of either Dkk1 or sFRP5, robustly increased the gliogenesis at the expense of neurogenesis. In summary, our data demonstrate that activation or inhibition of Wnt/β-catenin signaling in neurospheres regulates neuronal and glial differentiation, respectively. Thus, our results suggest that Wnt signaling may also contribute to regulate these processes in the neonatal brain.  相似文献   

7.
Lu F  Wong CS 《Radiation research》2005,163(1):63-71
Neural stem cells play an important role in neurogenesis of the adult central nervous system (CNS). Inhibition of neurogenesis has been suggested to be an underlying mechanism of radiation-induced CNS damage. Here we developed an in vivo/ in vitro clonogenic assay to characterize the survival of neural stem cells after exposure to ionizing radiation. Cells were isolated from the rat cervical spinal cord and plated as single cell suspensions in defined medium containing epidermal growth factor and basic fibroblast growth factor. The survival of the proliferating cells was determined by their ability to form neurosphere colonies. The number and size of neurospheres were analyzed quantitatively at day 10, 12, 14 and 16 after plating. Plating cells from 5, 10 and 15 mm of the cervical spinal cord resulted in a linear increase in the number of neurospheres from day 10-16. Compared to the nonirradiated spinal cord, there was a significant decrease in the number and size of neurosphere colonies cultured from a 10-mm length of the rat spinal cord after a single dose of 5 Gy. When dissociated neurospheres derived from a spinal cord that had been irradiated with 5 Gy were allowed to differentiate, the percentages of neurons, oligodendrocytes and astrocytes as determined by immunocytohistochemistry were not altered compared to those from the nonirradiated spinal cord. Secondary neurospheres could be obtained from cells dissociated from primary neurospheres that had been cultured from the irradiated spinal cord. In conclusion, exposure to ionizing radiation reduces the clonogenic survival of neural stem cells cultured from the rat spinal cord. However, neural stem cells retain their pluripotent and self-renewing properties after irradiation. A neurosphere-based assay may provide a quantitative measure of the clonogenic survival of neural stem cells in the adult CNS after irradiation.  相似文献   

8.
AIM: To develop an in vitro model based on neural stem cells derived from transgenic animals, to be used in the study of pathological mechanisms of Alzheimer’s disease and for testing new molecules.METHODS: Neural stem cells(NSCs) were isolated from the subventricular zone of Wild type(Wt) and Tg2576 mice. Primary and secondary neurosphere generation was studied, analysing population doubling and the cell yield per animal. Secondary neurospheres were dissociated and plated on MCM Gel Cultrex 2D and after 6 d in vitro(DIVs) in mitogen withdrawal conditions,spontaneous differentiation was studied using specific neural markers(MAP2 and TuJ-1 for neurons, GFAP forastroglial cells and CNPase for oligodendrocytes). Gene expression pathways were analysed in secondary neurospheres, using the QIAGEN PCR array for neurogenesis, comparing the Tg2576 derived cell expression with the Wt cells. Proteins encoded by the altered genes were clustered using STRING web software.RESULTS: As revealed by 6E10 positive staining, all Tg2576 derived cells retain the expression of the human transgenic Amyloid Precursor Protein. Tg2576 derived primary neurospheres show a decrease in population doubling. Morphological analysis of differentiated NSCs reveals a decrease in MAP2- and an increase in GFAP-positive cells in Tg2576 derived cells. Analysing the branching of TuJ-1 positive cells, a clear decrease in neurite number and length is observed in Tg2576 cells.The gene expression neurogenesis pathway revealed11 altered genes in Tg2576 NSCs compared to Wt.CONCLUSION: Tg2576 NSCs represent an appropriate AD in vitro model resembling some cellular alterations observed in vivo, both as stem and differentiated cells.  相似文献   

9.
Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates cortical development. Here we examined how LPA influences the cell fate of cortical neuroblasts using a neurosphere culture system. We generated neurospheres in the presence of basic fibroblast growth factor (bFGF). Treatment with LPA throughout the culture period significantly reduced the number of cells in the neurospheres. When dissociated single cells derived from neurospheres were induced to differentiate by adherence on coverslips, the proportion of MAP2-positive neurons was higher in LPA-treated neurospheres than in those treated with bFGF alone, and the proportion of myelin basic protein-positive oligodendrocytes was lower. Consistent with this finding, LPA raised the ratio of beta-tubulin type III-positive young neurons and reduced the ratio of CD140a-positive oligodendrocyte precursors in neurospheres. These effects of LPA were inhibited by pretreatment of neurospheres with pertussis toxin or an LPA(1)-preferring antagonist, Ki16425. Moreover, LPA-induced enhancement of neuronal differentiation was not observed in neurospheres derived from lpa(1)-null mice. These results suggest that LPA promotes the commitment of neuroblasts to the neural lineage through the LPA(1)-G(i/o) pathway.  相似文献   

10.
11.
A possible strategy to develop more diverse cell culture systems permissive to infection with naturally occurring prions is to exploit culture of neurospheres from transgenic mice expressing the normal prion protein (PrP) of the native host species. Accordingly, we developed differentiated neurosphere cultures from the cervid PrP-expressing mice to investigate whether this in vitro system would support replication of non-adapted cervid-origin chronic wasting disease (CWD) prions. Here we report the successful amplification of disease-associated PrP in differentiated neurosphere cultures within 3 weeks after exposure to CWD prions from both white-tailed deer or elk. This neurosphere culture system provides a new in vitro tool that can be used to assess non-adapted CWD prion propagation and transmission.  相似文献   

12.
13.
During Drosophila neurogenesis, glial differentiation depends on the expression of glial cells missing (gcm). Understanding how glial fate is achieved thus requires knowledge of the temporal and spatial control mechanisms directing gcm expression. A recent report showed that in the adult bristle lineage, gcm expression is negatively regulated by Notch signaling ( Van De Bor, V. and Giangrande, A. (2001). Development 128, 1381-1390). Here we show that the effect of Notch activation on gliogenesis is context-dependent. In the dorsal bipolar dendritic (dbd) sensory lineage in the embryonic peripheral nervous system (PNS), asymmetric cell division of the dbd precursor produces a neuron and a glial cell, where gcm expression is activated in the glial daughter. Within the dbd lineage, Notch is specifically activated in one of the daughter cells and is required for gcm expression and a glial fate. Thus Notch activity has opposite consequences on gcm expression in two PNS lineages. Ectopic Notch activation can direct gliogenesis in a subset of embryonic PNS lineages, suggesting that Notch-dependent gliogenesis is supported in certain developmental contexts. We present evidence that POU-domain protein Nubbin/PDM-1 is one of the factors that provide such context.  相似文献   

14.
Das S  Basu A 《Journal of neurochemistry》2008,106(4):1624-1636
Japanese encephalitis virus (JEV), a common cause of encephalitis in humans, especially in children, leads to substantial neuronal injury. The survivors of JEV infection have severe cognitive impairment, motor and behavioral disorders. We hypothesize that depletion of neural progenitor cells (NPCs) by the virus culminates in neurological sequelae in survivors of Japanese encephalitis (JE). We utilized both in vivo model of JEV infection and in vitro neurosphere cultures to study progressive JEV infection. Cellular infection and cell death was determined by flow cytometry. BrdU administration in animals and in neurospheres was used to determine the proliferative ability of NPCs. JEV leads to massive loss of actively proliferating NPC population from the subventricular zone (SVZ). The ability of JEV infected subventricular zone cells to form neurospheres is severely compromised. This can be attributed to JEV infection in NPCs, which however do not result in robust death of the resilient NPC cells. Instead, JEV suppresses the cycling ability of these cells, preventing their proliferation. JEV primarily targets at a critical postnatal age and severely diminishes the NPC pool in SVZ, thus impairing the process of recovery after the insult. This arrested growth and proliferation of NPCs might have an effect on the neurological consequences in JE survivors.  相似文献   

15.
体外神经干细胞克隆球的超微结构-透射电镜观察   总被引:5,自引:0,他引:5  
许汉鹏  卢春蓉  苟琳  鞠躬 《细胞生物学杂志》2002,24(4):251-254,T004
为观察培养的神经干细胞克隆球内部的超微结构特征,采用无血清培养技术,在体外进行小鼠纹状体神经干细胞克隆球的培养传代,经过免疫细胞化学鉴定后,对单一的神经干细胞克隆球进行固定,常规透射电镜观察。结果表明,神经干细胞可以在bFGF等生长因子存在的情况下,在无血清培养液内增殖生成悬浮状态的神经干细胞克隆球,这种克隆可被诱导生成神经细胞和神经胶质细胞,电镜下,神经干细胞克隆球内部细胞相互间可形成特化的膜性结构,细胞内可有小泡出现,部分细胞有凋亡的形态。  相似文献   

16.
Biologists long believed that, once development is completed, no new neurons are produced in the forebrain. However, as is now firmly established, new neurons can be produced at least in two specific forebrain areas: the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampal formation. Neurogenesis within the adult DG occurs constitutively throughout postnatal life, and the rate of neurogenesis within the DG can be altered under various physiological and pathophysiological conditions. The process of adult neurogenesis within the DG is a multi-step process (proliferation, differentiation, migration, targeting, and synaptic integration) that ends with the formation of a post-mitotic functionally integrated new neuron. Various markers are expressed during specific stages of adult neurogenesis. The availability of such markers allows the time-course and fate of newly born cells to be followed within the DG in a detailed and precise fashion. Several of the available markers (e.g., PCNA, Ki-67, PH3, MCM2) are markers for proliferative events, whereas others are more specific for early phases of neurogenesis and gliogenesis within the adult DG (e.g., nestin, GFAP, Sox2, Pax6). In addition, markers are available allowing events to be distinguished that are related to later steps of gliogenesis (e.g., vimentin, BLBP, S100beta) or neurogenesis (e.g., NeuroD, PSA-NCAM, DCX).  相似文献   

17.
Adult neurogenesis is impaired by inflammatory processes, which are linked to altered cholinergic signalling and cognitive decline in Alzheimer's disease. In this study, we investigated how amyloid beta (Aβ)‐evoked inflammatory responses affect the generation of new neurons from human embryonic stem (hES) cells and the role of cholinergic signalling in regulating this process. The hES were cultured as neurospheres and exposed to fibrillar and oligomeric Aβ1‐42 (Aβf, AβO) or to conditioned medium from human primary microglia activated with either Aβ1‐42 or lipopolysaccharide. The neurospheres were differentiated for 29 days in vitro and the resulting neuronal or glial phenotypes were thereafter assessed. Secretion of cytokines and the enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and choline acetyltransferase (ChAT) involved in cholinergic signalling was measured in medium throughout the differentiation. We report that differentiating neurospheres released various cytokines, and exposure to Aβf, but not AβO, increased the secretion of IL‐6, IL‐1β and IL‐2. Aβf also influenced the levels of AChE, BuChE and ChAT in favour of a low level of acetylcholine. These changes were linked to an altered secretion pattern of cytokines. A different pattern was observed in microglia activated by Aβf, demonstrating decreased secretion of TNF‐α, IL‐1β and IL‐2 relative to untreated cells. Subsequent exposure of differentiating neurospheres to Aβf or to microglia‐conditioned medium decreased neuronal differentiation and increased glial differentiation. We suggest that a basal physiological secretion of cytokines is involved in shaping the differentiation of neurospheres and that Aβf decreases neurogenesis by promoting a microenvironment favouring hypo‐cholinergic signalling and gliogenesis.  相似文献   

18.
19.
We examined the morphological, phenotypic, and functional characteristics of human amniotic fluid mesenchymal stem cells (AF-MSCs) differentiated towards a Schwann cell lineage. Initially, we induced human AF-MSCs into nestin-positive AF-MSCs. And then, these nestin-positive AF-MSCs were induced into floating neurospheres. After that, neurospheres were induced to differentiate into Schwann-like cells using glia growth factors. In comparison with AF-MSCs, nestin-positive AF-MSCs significantly increased the ratio of neurosphere formation and the percentage of nestin expression in the neurosphere. Differentiated AF-MSCs showed morphological changes similar to those found in Schwann cells. Expression of the Schwann cell markers was determined by immunocytochemical staining and western blotting. Furthermore, differentiated AF-MSCs could promote neurite outgrowth in co-culture with dorsal root ganglia neurons. These results suggest that conversion of human nestin-positive AF-MSCs into cells with Schwann-like cell characteristics is possible and that these cells may have the potential for future cellular therapy for peripheral neurological disorders.  相似文献   

20.
Specialized microenvironment, or neurogenic niche, in embryonic and postnatal mouse brain plays critical roles during neurogenesis throughout adulthood. The subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus in the mouse brain are two major neurogenic niches where neurogenesis is directed by numerous regulatory factors. Now, we report Akhirin (AKH), a stem cell maintenance factor in mouse spinal cord, plays a pivotal regulatory role in the SVZ and in the DG. AKH showed specific distribution during development in embryonic and postnatal neurogenic niches. Loss of AKH led to abnormal development of the ventricular zone and the DG along with reduction of cellular proliferation in both regions. In AKH knockout mice (AKH−/−), quiescent neural stem cells (NSCs) increased, while proliferative NSCs or neural progenitor cells decreased at both neurogenic niches. In vitro NSC culture assay showed increased number of neurospheres and reduced neurogenesis in AKH−/−. These results indicate that AKH, at the neurogenic niche, exerts dynamic regulatory role on NSC self-renewal, proliferation and differentiation during SVZ and hippocampal neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号