首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Protein redox regulation plays important roles in many biological processes. Protein cysteine thiols are sensitive to redox changes and may function as redox switches, which turn signaling and metabolic pathways on or off to ensure speedy responses to environmental stimuli or stresses. Here we report a novel integrative proteomics method called cysTMTRAQ that combines two types of isobaric tags, cysteine tandem mass tags and isobaric tag for relative and absolute quantification, in one experiment. The method not only enables simultaneous analysis of cysteine redox changes and total protein level changes, but also allows the determination of bona fide redox modified cysteines in proteins through the correction of protein turnover. Overlooking the factor of protein-level changes in the course of protein posttranslational modification experiments could lead to misleading results. The capability to analyze protein posttranslational modification dynamics and protein-level changes in one experiment will advance proteomic studies in many areas of biology and medicine.Changes in the redox states of protein cysteine thiols serve as regulatory switches in diverse biological processes (1). The redox cycle is regulated by well-known factors such as the ferredoxin-thioredoxin and glutathione-glutaredoxin systems, which reduce oxidized cysteines. Other oxidoreductases and oxidants such as reactive oxygen species act primarily to oxidize cysteine thiol groups (2, 3). In order to map and quantify cysteine redox modifications on the proteome scale, several approaches and methods have been developed, mostly using thiol-specific reagents and isotope tags. Two-dimensional gel electrophoresis technology combined with fluorescent dye labeling (e.g. monobromobimane (4, 5) and cyanine dyes (6, 7)) and gel-free technology with isotope tagging (e.g. isotope-coded affinity tagging (68), cysTMT1 (9), and iTRAQ labeling of enriched cysteine-containing peptides (1014)) are often used to identify potential redox-sensitive cysteine residues and quantify redox changes.In addition to the well-known capabilities and limitations associated with two-dimensional gel electrophoresis–based and gel-free approaches (15), each method has its strengths and weaknesses in redox proteomics. For example, the two-dimensional gel electrophoresis methods allow the inspection of spot patterns related to redox and protein-level changes. However, spot-volume-based quantification becomes problematic, as each spot often contains more than one protein species from complex samples. In addition, the limited number of fluorescent reagents compromises multiplexing capability, and the use of cyanine dyes does not allow mapping of the modified cysteines (6, 7). Other thiol labeling approaches such as the use of N-ethylmaleimide, biotin-N-[6-(Biotinamido)hexyl]-3-(2-pyridyldithio) propionamide (16), and isotope-coded affinity tags allow specific enrichment of cysteine-containing peptides, mapping of cysteine modification sites, and duplex experiments in the case of isotope-coded affinity tags (6, 7). To enable multiplexing, 4- or 8-plex iTRAQ tags were recently used to label cysteine-containing peptides isolated from thiol-affinity chromatography (10, 11, 14, 16). Another multiplexing technology, cysTMT, was developed to specifically label cysteines with free thiol groups of proteins from six different samples (9). Although these multiplexing technologies have found utility, they do not address the issue of protein turnover in the course of experiments, and many researchers have overlooked this important factor that could lead to misleading results (8, 13, 14, 17). Only a small number of researchers have attempted to compare potential redox changes determined in proteomics experiments to total protein-level changes obtained from parallel or different studies (6, 7, 16). However, the success of this strategy is often low because many proteins quantified in redox experiments are either absent or not quantified with confidence in total proteomics experiments as a result of experimental variation and mass spectrometry stochastical sampling issues (18, 19).To overcome this challenge, we have developed a double-labeling strategy that uses iTRAQ and cysTMT in one experiment for the simultaneous determination of quantifiable cysteine redox changes and protein-level changes. This new strategy, named cysTMTRAQ, utilizes each of the tags for their specific chemical properties. cysTMT tags (m/z 126, 127, 128, 129, 130, and 131 for six samples) were used to label protein thiols responsive to a treatment, and iTRAQ tags (m/z 114, 115, 116, 117, 119, and 121 for six samples) were used to label the N termini of peptides for analysis of protein-level changes during the experiments. By taking advantage of the different mass tags and their labeling specificities, one can quantify changes in protein redox and total levels in the same experiment. As protein redox regulation is a ubiquitous process (1, 2, 12), the utility of this new integrative cysTMTRAQ method is expected to greatly advance redox proteomic studies in many fields of biology and medicine, and thus benefit a broad range of scientists.  相似文献   

3.
A complete understanding of the biological functions of large signaling peptides (>4 kDa) requires comprehensive characterization of their amino acid sequences and post-translational modifications, which presents significant analytical challenges. In the past decade, there has been great success with mass spectrometry-based de novo sequencing of small neuropeptides. However, these approaches are less applicable to larger neuropeptides because of the inefficient fragmentation of peptides larger than 4 kDa and their lower endogenous abundance. The conventional proteomics approach focuses on large-scale determination of protein identities via database searching, lacking the ability for in-depth elucidation of individual amino acid residues. Here, we present a multifaceted MS approach for identification and characterization of large crustacean hyperglycemic hormone (CHH)-family neuropeptides, a class of peptide hormones that play central roles in the regulation of many important physiological processes of crustaceans. Six crustacean CHH-family neuropeptides (8–9.5 kDa), including two novel peptides with extensive disulfide linkages and PTMs, were fully sequenced without reference to genomic databases. High-definition de novo sequencing was achieved by a combination of bottom-up, off-line top-down, and on-line top-down tandem MS methods. Statistical evaluation indicated that these methods provided complementary information for sequence interpretation and increased the local identification confidence of each amino acid. Further investigations by MALDI imaging MS mapped the spatial distribution and colocalization patterns of various CHH-family neuropeptides in the neuroendocrine organs, revealing that two CHH-subfamilies are involved in distinct signaling pathways.Neuropeptides and hormones comprise a diverse class of signaling molecules involved in numerous essential physiological processes, including analgesia, reward, food intake, learning and memory (1). Disorders of the neurosecretory and neuroendocrine systems influence many pathological processes. For example, obesity results from failure of energy homeostasis in association with endocrine alterations (2, 3). Previous work from our lab used crustaceans as model organisms found that multiple neuropeptides were implicated in control of food intake, including RFamides, tachykinin related peptides, RYamides, and pyrokinins (46).Crustacean hyperglycemic hormone (CHH)1 family neuropeptides play a central role in energy homeostasis of crustaceans (717). Hyperglycemic response of the CHHs was first reported after injection of crude eyestalk extract in crustaceans. Based on their preprohormone organization, the CHH family can be grouped into two sub-families: subfamily-I containing CHH, and subfamily-II containing molt-inhibiting hormone (MIH) and mandibular organ-inhibiting hormone (MOIH). The preprohormones of the subfamily-I have a CHH precursor related peptide (CPRP) that is cleaved off during processing; and preprohormones of the subfamily-II lack the CPRP (9). Uncovering their physiological functions will provide new insights into neuroendocrine regulation of energy homeostasis.Characterization of CHH-family neuropeptides is challenging. They are comprised of more than 70 amino acids and often contain multiple post-translational modifications (PTMs) and complex disulfide bridge connections (7). In addition, physiological concentrations of these peptide hormones are typically below picomolar level, and most crustacean species do not have available genome and proteome databases to assist MS-based sequencing.MS-based neuropeptidomics provides a powerful tool for rapid discovery and analysis of a large number of endogenous peptides from the brain and the central nervous system. Our group and others have greatly expanded the peptidomes of many model organisms (3, 1833). For example, we have discovered more than 200 neuropeptides with several neuropeptide families consisting of as many as 20–40 members in a simple crustacean model system (5, 6, 2531, 34). However, a majority of these neuropeptides are small peptides with 5–15 amino acid residues long, leaving a gap of identifying larger signaling peptides from organisms without sequenced genome. The observed lack of larger size peptide hormones can be attributed to the lack of effective de novo sequencing strategies for neuropeptides larger than 4 kDa, which are inherently more difficult to fragment using conventional techniques (3437). Although classical proteomics studies examine larger proteins, these tools are limited to identification based on database searching with one or more peptides matching without complete amino acid sequence coverage (36, 38).Large populations of neuropeptides from 4–10 kDa exist in the nervous systems of both vertebrates and invertebrates (9, 39, 40). Understanding their functional roles requires sufficient molecular knowledge and a unique analytical approach. Therefore, developing effective and reliable methods for de novo sequencing of large neuropeptides at the individual amino acid residue level is an urgent gap to fill in neurobiology. In this study, we present a multifaceted MS strategy aimed at high-definition de novo sequencing and comprehensive characterization of the CHH-family neuropeptides in crustacean central nervous system. The high-definition de novo sequencing was achieved by a combination of three methods: (1) enzymatic digestion and LC-tandem mass spectrometry (MS/MS) bottom-up analysis to generate detailed sequences of proteolytic peptides; (2) off-line LC fractionation and subsequent top-down MS/MS to obtain high-quality fragmentation maps of intact peptides; and (3) on-line LC coupled to top-down MS/MS to allow rapid sequence analysis of low abundance peptides. Combining the three methods overcomes the limitations of each, and thus offers complementary and high-confidence determination of amino acid residues. We report the complete sequence analysis of six CHH-family neuropeptides including the discovery of two novel peptides. With the accurate molecular information, MALDI imaging and ion mobility MS were conducted for the first time to explore their anatomical distribution and biochemical properties.  相似文献   

4.
Optimal performance of LC-MS/MS platforms is critical to generating high quality proteomics data. Although individual laboratories have developed quality control samples, there is no widely available performance standard of biological complexity (and associated reference data sets) for benchmarking of platform performance for analysis of complex biological proteomes across different laboratories in the community. Individual preparations of the yeast Saccharomyces cerevisiae proteome have been used extensively by laboratories in the proteomics community to characterize LC-MS platform performance. The yeast proteome is uniquely attractive as a performance standard because it is the most extensively characterized complex biological proteome and the only one associated with several large scale studies estimating the abundance of all detectable proteins. In this study, we describe a standard operating protocol for large scale production of the yeast performance standard and offer aliquots to the community through the National Institute of Standards and Technology where the yeast proteome is under development as a certified reference material to meet the long term needs of the community. Using a series of metrics that characterize LC-MS performance, we provide a reference data set demonstrating typical performance of commonly used ion trap instrument platforms in expert laboratories; the results provide a basis for laboratories to benchmark their own performance, to improve upon current methods, and to evaluate new technologies. Additionally, we demonstrate how the yeast reference, spiked with human proteins, can be used to benchmark the power of proteomics platforms for detection of differentially expressed proteins at different levels of concentration in a complex matrix, thereby providing a metric to evaluate and minimize preanalytical and analytical variation in comparative proteomics experiments.Access to proteomics performance standards is essential for several reasons. First, to generate the highest quality data possible, proteomics laboratories routinely benchmark and perform quality control (QC)1 monitoring of the performance of their instrumentation using standards. Second, appropriate standards greatly facilitate the development of improvements in technologies by providing a timeless standard with which to evaluate new protocols or instruments that claim to improve performance. For example, it is common practice for an individual laboratory considering purchase of a new instrument to require the vendor to run “demo” samples so that data from the new instrument can be compared head to head with existing instruments in the laboratory. Third, large scale proteomics studies designed to aggregate data across laboratories can be facilitated by the use of a performance standard to measure reproducibility across sites or to compare the performance of different LC-MS configurations or sample processing protocols used between laboratories to facilitate development of optimized standard operating procedures (SOPs).Most individual laboratories have adopted their own QC standards, which range from mixtures of known synthetic peptides to digests of bovine serum albumin or more complex mixtures of several recombinant proteins (1). However, because each laboratory performs QC monitoring in isolation, it is difficult to compare the performance of LC-MS platforms throughout the community.Several standards for proteomics are available for request or purchase (2, 3). RM8327 is a mixture of three peptides developed as a reference material in collaboration between the National Institute of Standards and Technology (NIST) and the Association of Biomolecular Resource Facilities. Mixtures of 15–48 purified human proteins are also available, such as the HUPO (Human Proteome Organisation) Gold MS Protein Standard (Invitrogen), the Universal Proteomics Standard (UPS1; Sigma), and CRM470 from the European Union Institute for Reference Materials and Measurements. Although defined mixtures of peptides or proteins can address some benchmarking and QC needs, there is an additional need for more complex reference materials to fully represent the challenges of LC-MS data acquisition in complex matrices encountered in biological samples (2, 3).Although it has not been widely distributed as a reference material, the yeast Saccharomyces cerevisiae proteome has been extensively used by the proteomics community to characterize the capabilities of a variety of LC-MS-based approaches (415). Yeast provides a uniquely attractive complex performance standard for several reasons. Yeast encodes a complex proteome consisting of ∼4,500 proteins expressed during normal growth conditions (7, 1618). The concentration range of yeast proteins is sufficient to challenge the dynamic range of conventional mass spectrometers; the abundance of proteins ranges from fewer than 50 to more than 106 molecules per cell (4, 15, 16). Additionally, it is the most extensively characterized complex biological proteome and the only one associated with several large scale studies estimating the abundance of all detectable proteins (5, 9, 16, 17, 19, 20) as well as LC-MS/MS data sets showing good correlation between LC-MS/MS detection efficiency and the protein abundance estimates (4, 11, 12, 15). Finally, it is inexpensive and easy to produce large quantities of yeast protein extract for distribution.In this study, we describe large scale production of a yeast S. cerevisiae performance standard, which we offer to the community through NIST. Through a series of interlaboratory studies, we created a reference data set characterizing the yeast performance standard and defining reasonable performance of ion trap-based LC-MS platforms in expert laboratories using a series of performance metrics. This publicly available data set provides a basis for additional laboratories using the yeast standard to benchmark their own performance as well as to improve upon the current status by evolving protocols, improving instrumentation, or developing new technologies. Finally, we demonstrate how the yeast performance standard, spiked with human proteins, can be used to benchmark the power of proteomics platforms for detection of differentially expressed proteins at different levels of concentration in a complex matrix.  相似文献   

5.
The field of proteomics has evolved hand-in-hand with technological advances in LC-MS/MS systems, now enabling the analysis of very deep proteomes in a reasonable time. However, most applications do not deal with full cell or tissue proteomes but rather with restricted subproteomes relevant for the research context at hand or resulting from extensive fractionation. At the same time, investigation of many conditions or perturbations puts a strain on measurement capacity. Here, we develop a high-throughput workflow capable of dealing with large numbers of low or medium complexity samples and specifically aim at the analysis of 96-well plates in a single day (15 min per sample). We combine parallel sample processing with a modified liquid chromatography platform driving two analytical columns in tandem, which are coupled to a quadrupole Orbitrap mass spectrometer (Q Exactive HF). The modified LC platform eliminates idle time between measurements, and the high sequencing speed of the Q Exactive HF reduces required measurement time. We apply the pipeline to the yeast chromatin remodeling landscape and demonstrate quantification of 96 pull-downs of chromatin complexes in about 1 day. This is achieved with only 500 μg input material, enabling yeast cultivation in a 96-well format. Our system retrieved known complex-members and the high throughput allowed probing with many bait proteins. Even alternative complex compositions were detectable in these very short gradients. Thus, sample throughput, sensitivity and LC/MS-MS duty cycle are improved severalfold compared with established workflows. The pipeline can be extended to different types of interaction studies and to other medium complexity proteomes.Shotgun proteomics is concerned with the identification and quantification of proteins (13). Prior to analysis, the proteins are digested into peptides, resulting in highly complex mixtures. To deal with this complexity, the peptides are separated by liquid chromatography followed by online analysis with mass spectrometry (MS), today facilitating the characterization of almost complete cell line proteomes in a short time (35). In addition to the characterization of entire proteomes, there is also a great demand for analyzing low or medium complexity samples. Given the trend toward a systems biology view, relatively larges sets of samples often have to be measured. One such category of lower complexity protein mixtures occurs in the determination of physical interaction partners of a protein of interest, which requires the identification and quantification of the proteins “pulled-down” or immunoprecipitated via a bait protein. Protein interactions are essential for almost all biological processes and orchestrate a cell''s behavior by regulating enzymes, forming macromolecular assemblies and functionalizing multiprotein complexes that are capable of more complex behavior than the sum of their parts. The human genome has almost 20,000 protein encoding genes, and it has been estimated that 80% of the proteins engage in complex interactions and that 130,000 to 650,000 protein interactions can take place in a human cell (6, 7). These numbers demonstrate a clear need for systematic and high-throughput mapping of protein–protein interactions (PPIs) to understand these complexes.The introduction of generic methods to detect PPIs, such as the yeast two-hybrid screen (Y2H) (8) or affinity purification combined with mass spectrometry (AP-MS)1 (9), have revolutionized the protein interactomics field. AP-MS in particular has emerged as an important tool to catalogue interactions with the aim of better understanding basic biochemical mechanisms in many different organisms (1017). It can be performed under near-physiological conditions and is capable of identifying functional protein complexes (18). In addition, the combination of affinity purification with quantitative mass spectrometry has greatly improved the discrimination of true interactors from unspecific background binders, a long-standing challenge in the AP-MS field (1921). Nowadays, quantitative AP-MS is employed to address many different biological questions, such as detection of dynamic changes in PPIs upon perturbation (2225) or the impact of posttranslational signaling on PPIs (26, 27). Recent developments even make it possible to provide abundances and stoichiometry information of the bait and prey proteins under study, combined with quantitative data from very deep cellular proteomes. Furthermore, sample preparation in AP-MS can now be performed in high-throughput formats capable of producing hundreds of samples per day. With such throughput in sample generation, the LC-MS/MS part of the AP-MS pipeline has become a major bottleneck for large studies, limiting throughput to a small fraction of the available samples. In principle, this limitation could be circumvented by multiplexing analysis via isotope-labeling strategies (28, 29) or by drastically reducing the measurement time per sample (3032). The former strategy requires exquisite control of the processing steps and has not been widely implemented yet. The latter strategy depends on mass spectrometers with sufficiently high sequencing speed to deal with the pull-down in a very short time. Since its introduction about 10 years ago (33), the Orbitrap mass spectrometer has featured ever-faster sequencing capabilities, with the Q Exactive HF now reaching a peptide sequencing speed of up to 17 Hz (34). This should now make it feasible to substantially lower the amount of time spent per measurement.Although very short LC-MS/MS runs can in principle be used for high-throughput analyses, they usually lead to a drop in LC-MS duty cycle. This is because each sample needs initial washing, loading, and equilibration steps, independent of gradient time, which takes a substantial percentage for most LC setups - typically at least 15–20 min. To achieve a more efficient LC-MS duty cycle, while maintaining high sensitivity, a second analytical column can be introduced. This enables the parallelization of several steps related to sample loading and to the LC operating steps, including valve switching. Such dual analytical column or “double-barrel: setups have been described for various applications and platforms (30, 3539).Starting from the reported performance and throughput of workflows that are standard today (16, 21, 4042), we asked if it would be possible to obtain a severalfold increase in both sample throughput and sensitivity, as well as a considerable reduction in overall wet lab costs and working time. Specifically, our goal was to quantify 96 medium complexity samples in a single day. Such a number of samples can be processed with a 96-well plate, which currently is the format of choice for highly parallelized sample preparation workflows, often with a high degree of automation. We investigated which advances were needed in sample preparation, liquid chromatography, and mass spectrometry. Based on our findings, we developed a parallelized platform for high-throughput sample preparation and LC-MS/MS analysis, which we applied to pull-down samples from the yeast chromatin remodeling landscape. The extent of retrieval of known complex members served as a quality control of the developed pipeline.  相似文献   

6.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

7.
A major unmet need in LC-MS/MS-based proteomics analyses is a set of tools for quantitative assessment of system performance and evaluation of technical variability. Here we describe 46 system performance metrics for monitoring chromatographic performance, electrospray source stability, MS1 and MS2 signals, dynamic sampling of ions for MS/MS, and peptide identification. Applied to data sets from replicate LC-MS/MS analyses, these metrics displayed consistent, reasonable responses to controlled perturbations. The metrics typically displayed variations less than 10% and thus can reveal even subtle differences in performance of system components. Analyses of data from interlaboratory studies conducted under a common standard operating procedure identified outlier data and provided clues to specific causes. Moreover, interlaboratory variation reflected by the metrics indicates which system components vary the most between laboratories. Application of these metrics enables rational, quantitative quality assessment for proteomics and other LC-MS/MS analytical applications.LC-MS/MS provides the most widely used technology platform for proteomics analyses of purified proteins, simple mixtures, and complex proteomes. In a typical analysis, protein mixtures are proteolytically digested, the peptide digest is fractionated, and the resulting peptide fractions then are analyzed by LC-MS/MS (1, 2). Database searches of the MS/MS spectra yield peptide identifications and, by inference and assembly, protein identifications. Depending on protein sample load and the extent of peptide fractionation used, LC-MS/MS analytical systems can generate from hundreds to thousands of peptide and protein identifications (3). Many variations of LC-MS/MS analytical platforms have been described, and the performance of these systems is influenced by a number of experimental design factors (4).Comparison of data sets obtained by LC-MS/MS analyses provides a means to evaluate the proteomic basis for biologically significant states or phenotypes. For example, data-dependent LC-MS/MS analyses of tumor and normal tissues enabled unbiased discovery of proteins whose expression is enhanced in cancer (57). Comparison of data-dependent LC-MS/MS data sets from phosphotyrosine peptides in drug-responsive and -resistant cell lines identified differentially regulated phosphoprotein signaling networks (8, 9). Similarly, activity-based probes and data-dependent LC-MS/MS analysis were used to identify differentially regulated enzymes in normal and tumor tissues (10). All of these approaches assume that the observed differences reflect differences in the proteomic composition of the samples analyzed rather than analytical system variability. The validity of this assumption is difficult to assess because of a lack of objective criteria to assess analytical system performance.The problem of variability poses three practical questions for analysts using LC-MS/MS proteomics platforms. First, is the analytical system performing optimally for the reproducible analysis of complex proteomes? Second, can the sources of suboptimal performance and variability be identified, and can the impact of changes or improvements be evaluated? Third, can system performance metrics provide documentation to support the assessment of proteomic differences between biologically interesting samples?Currently, the most commonly used measure of variability in LC-MS/MS proteomics analyses is the number of confident peptide identifications (1113). Although consistency in numbers of identifications may indicate repeatability, the numbers do not indicate whether system performance is optimal or which components require optimization. One well characterized source of variability in peptide identifications is the automated sampling of peptide ion signals for acquisition of MS/MS spectra by instrument control software, which results in stochastic sampling of lower abundance peptides (14). Variability certainly also arises from sample preparation methods (e.g. protein extraction and digestion). A largely unexplored source of variability is the performance of the core LC-MS/MS analytical system, which includes the LC system, the MS instrument, and system software. The configuration, tuning, and operation of these system components govern sample injection, chromatography, electrospray ionization, MS signal detection, and sampling for MS/MS analysis. These characteristics all are subject to manipulation by the operator and thus provide means to optimize system performance.Here we describe the development of 46 metrics for evaluating the performance of LC-MS/MS system components. We have implemented a freely available software pipeline that generates these metrics directly from LC-MS/MS data files. We demonstrate their use in characterizing sources of variability in proteomics platforms, both for replicate analyses on a single instrument and in the context of large interlaboratory studies conducted by the National Cancer Institute-supported Clinical Proteomic Technology Assessment for Cancer (CPTAC)1 Network.  相似文献   

8.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

9.
10.
Comprehensive proteomic profiling of biological specimens usually requires multidimensional chromatographic peptide fractionation prior to mass spectrometry. However, this approach can suffer from poor reproducibility because of the lack of standardization and automation of the entire workflow, thus compromising performance of quantitative proteomic investigations. To address these variables we developed an online peptide fractionation system comprising a multiphasic liquid chromatography (LC) chip that integrates reversed phase and strong cation exchange chromatography upstream of the mass spectrometer (MS). We showed superiority of this system for standardizing discovery and targeted proteomic workflows using cancer cell lysates and nondepleted human plasma. Five-step multiphase chip LC MS/MS acquisition showed clear advantages over analyses of unfractionated samples by identifying more peptides, consuming less sample and often improving the lower limits of quantitation, all in highly reproducible, automated, online configuration. We further showed that multiphase chip LC fractionation provided a facile means to detect many N- and C-terminal peptides (including acetylated N terminus) that are challenging to identify in complex tryptic peptide matrices because of less favorable ionization characteristics. Given as much as 95% of peptides were detected in only a single salt fraction from cell lysates we exploited this high reproducibility and coupled it with multiple reaction monitoring on a high-resolution MS instrument (MRM-HR). This approach increased target analyte peak area and improved lower limits of quantitation without negatively influencing variance or bias. Further, we showed a strategy to use multiphase LC chip fractionation LC-MS/MS for ion library generation to integrate with SWATHTM data-independent acquisition quantitative workflows. All MS data are available via ProteomeXchange with identifier PXD001464.Mass spectrometry based proteomic quantitation is an essential technique used for contemporary, integrative biological studies. Whether used in discovery experiments or for targeted biomarker applications, quantitative proteomic studies require high reproducibility at many levels. It requires reproducible run-to-run peptide detection, reproducible peptide quantitation, reproducible depth of proteome coverage, and ideally, a high degree of cross-laboratory analytical reproducibility. Mass spectrometry centered proteomics has evolved steadily over the past decade, now mature enough to derive extensive draft maps of the human proteome (1, 2). Nonetheless, a key requirement yet to be realized is to ensure that quantitative proteomics can be carried out in a timely manner while satisfying the aforementioned challenges associated with reproducibility. This is especially important for recent developments using data independent MS quantitation and multiple reaction monitoring on high-resolution MS (MRM-HR)1 as they are both highly dependent on LC peptide retention time reproducibility and precursor detectability, while attempting to maximize proteome coverage (3). Strategies usually employed to increase the depth of proteome coverage utilize various sample fractionation methods including gel-based separation, affinity enrichment or depletion, protein or peptide chemical modification-based enrichment, and various peptide chromatography methods, particularly ion exchange chromatography (410). In comparison to an unfractionated “naive” sample, the trade-off in using these enrichments/fractionation approaches are higher risk of sample losses, introduction of undesired chemical modifications (e.g. oxidation, deamidation, N-terminal lactam formation), and the potential for result skewing and bias, as well as numerous time and human resources required to perform the sample preparation tasks. Online-coupled approaches aim to minimize those risks and address resource constraints. A widely practiced example of the benefits of online sample fractionation has been the decade long use of combining strong cation exchange chromatography (SCX) with C18 reversed-phase (RP) for peptide fractionation (known as MudPIT – multidimensional protein identification technology), where SCX and RP is performed under the same buffer conditions and the SCX elution performed with volatile organic cations compatible with reversed phase separation (11). This approach greatly increases analyte detection while avoiding sample handling losses. The MudPIT approach has been widely used for discovery proteomics (1214), and we have previously shown that multiphasic separations also have utility for targeted proteomics when configured for selected reaction monitoring MS (SRM-MS). We showed substantial advantages of MudPIT-SRM-MS with reduced ion suppression, increased peak areas and lower limits of detection (LLOD) compared with conventional RP-SRM-MS (15).To improve the reproducibility of proteomic workflows, increase throughput and minimize sample loss, numerous microfluidic devices have been developed and integrated for proteomic applications (16, 17). These devices can broadly be classified into two groups: (1) microfluidic chips for peptide separation (1825) and; (2) proteome reactors that combine enzymatic processing with peptide based fractionation (2630). Because of the small dimension of these devices, they are readily able to integrate into nanoLC workflows. Various applications have been described including increasing proteome coverage (22, 27, 28) and targeting of phosphopeptides (24, 31, 32), glycopeptides and released glycans (29, 33, 34).In this work, we set out to take advantage of the benefits of multiphasic peptide separations and address the reproducibility needs required for high-throughput comparative proteomics using a variety of workflows. We integrated a multiphasic SCX and RP column in a “plug-and-play” microfluidic chip format for online fractionation, eliminating the need for users to make minimal dead volume connections between traps and columns. We show the flexibility of this format to provide robust peptide separation and reproducibility using conventional and topical mass spectrometry workflows. This was undertaken by coupling the multiphase liquid chromatography (LC) chip to a fast scanning Q-ToF mass spectrometer for data dependent MS/MS, data independent MS (SWATH) and for targeted proteomics using MRM-HR, showing clear advantages for repeatable analyses compared with conventional proteomic workflows.  相似文献   

11.
Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post-translational modifications (PTMs) is still limited.Here, we present a detailed PTM1 characterization of a series of the main and clinically relevant allergens used in allergy tests and vaccines. We employ Orbitrap-based mass spectrometry with complementary fragmentation techniques (HCD/ETD) for site-specific PTM characterization by bottom-up analysis. In addition, top-down mass spectrometry is utilized for targeted analysis of individual proteins, revealing hitherto unknown PTMs of HDM allergens. We demonstrate the presence of lysine-linked polyhexose glycans and asparagine-linked N-acetylhexosamine glycans on HDM allergens. Moreover, we identified more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens, implicating important roles for carbohydrates in allergen recognition and response by the immune system. The new findings are important for understanding basic disease-causing mechanisms at the cellular level, which ultimately may pave the way for instigating novel approaches for targeted desensitization strategies and improved allergy vaccines.Allergic respiratory disease is a global health problem and current clinical guidelines recommend a combination of allergen avoidance, pharmacotherapy, and allergen specific immunotherapy for treatment (14). At present allergy testing and vaccines are based on isolated crude antigen preparations from natural sources (i.e. HDM, pollens, etc.), but a move toward recombinant allergen design is ongoing (5, 6). This could have important functional implications because the production host will determine the repertoire of post-translational modifications (PTMs) and in particular glycan modifications presented on allergens.The carbohydrate structures found on allergens are in most cases not found in mammals and therefore frequently lead to the induction IgE antibodies named Cross-reactive Carbohydrate Determinants (CCD) (711). Moreover, glycans may directly be involved in and promote uptake and target allergens to carbohydrate lectin receptors on antigen presenting cells (APC) (1214). Therefore, a full structural characterization of the glycans on the natural allergens is a prerequisite for understanding both antibody reactivity and lectin receptor mediated allergen recognition and modulation of the immune response (15, 16). Furthermore, a detailed characterization of PTMs of allergens is important for standardization of allergen products for diagnostic purposes as well as for vaccine use (17, 18). Although many major allergens and their etiology have been characterized in some detail, structural information on for example their immunological important PTM status is still incomplete (1921).Mass spectrometry-based technologies offer sensitive and accurate analyses for identification and characterization of proteins. The common proteomics workflow typically adopts the bottom-up approach, i.e. in vitro proteolytic digestion of proteins followed by nanoflow-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) for protein identification and PTM characterization. Electron- or collision-driven fragmentation techniques, e.g. electron transfer dissociation (ETD) (22) or higher energy collisional dissociation (HCD) (23) have enabled accurate identification of peptides of purified proteins, e.g. allergens (21, 24), or complex biological samples (2527) with concurrent characterization of their PTMs. One advantage of bottom-up mass spectrometry is the ability to resolve modified peptides within a narrow chromatographic time frame thereby enabling in-depth characterization of site-specific features, e.g. glycoforms, on peptides. This peptide-level information is subsequently used to generate a protein-level view on the PTM status for a given protein. Importantly, the PTM connectivity of the protein (28) is lost upon proteolytic digestion, and alternative approaches are often required for comprehensive characterization of all proteoforms (29). Top-down mass spectrometry has emerged as an alternative approach to bottom-up proteomics, offering complementary MS and MS/MS information that may be used for protein identification and characterization (30, 31). With top-down MS, intact proteins are typically analyzed by high-resolution FTMS and characterized at the MS/MS level by CID, HCD, ECD, or ETD. This technique provides instant protein-level information on analytes, e.g. sequence variants, amino acid substitutions, PTMs, etc., which can be verified at the MS/MS level by different fragmentation modes. The combination of bottom-up and top-down mass spectrometry is therefore a powerful tool for the identification and characterization of proteins. Here, we combine top-down and bottom-up mass spectrometry for comprehensive characterization of seven major allergens as a first step toward unraveling the molecular mode of action of allergens with complex PTMs. By these methods, we demonstrate hitherto unknown PTMs of HDM allergens and identify more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens. The new findings implicate important roles for carbohydrates in allergen recognition and response by the immune system.  相似文献   

12.
Significant progress in instrumentation and sample preparation approaches have recently expanded the potential of MALDI imaging mass spectrometry to the analysis of phospholipids and other endogenous metabolites naturally occurring in tissue specimens. Here we explore some of the requirements necessary for the successful analysis and imaging of phospholipids from thin tissue sections of various dimensions by MALDI time-of-flight mass spectrometry. We address methodology issues relative to the imaging of whole-body sections such as those cut from model laboratory animals, sections of intermediate dimensions typically prepared from individual organs, as well as the requirements for imaging areas of interests from these sections at a cellular scale spatial resolution. We also review existing limitations of MALDI imaging MS technology relative to compound identification. Finally, we conclude with a perspective on important issues relative to data exploitation and management that need to be solved to maximize biological understanding of the tissue specimen investigated.Since its introduction in the late 90s (1), MALDI imaging mass spectrometry (MS) technology has witnessed a phenomenal expansion. Initially introduced for the mapping of intact proteins from fresh frozen tissue sections (2), imaging MS is now routinely applied to a wide range of different compounds including peptides, proteins, lipids, metabolites, and xenobiotics (37). Numerous compound-specific sample preparation protocols and analytical strategies have been developed. These include tissue sectioning and handling (814), automated matrix deposition approaches and data acquisition strategies (1521), and the emergence of in situ tissue chemistries (2225). Originally performed on sections cut from fresh frozen tissue specimens, methodologies incorporating an in situ enzymatic digestion step prior to matrix application have been optimized to access the proteome locked in formalin-fixed paraffin-embedded tissue biopsies (2529). The possibility to use tissues preserved using non-cross-linking approaches has also been demonstrated (3032). These methodologies are of high importance for the study of numerous diseases because they potentially allow the retrospective analysis for biomarker validation and discovery of the millions of tissue biopsies currently stored worldwide in tissue banks and repositories.In the past decade, instrumentation for imaging MS has also greatly evolved. Whereas the first MS images were collected with time-of-flight instruments (TOF) capable of repetition rates of a few hertz, modern systems are today capable of acquiring data in the kilohertz range and above with improved sensitivity, mass resolving power, and accuracy, significantly reducing acquisition time and improving image quality (33, 34). Beyond time-of-flight analyzers, other MALDI-based instruments have been used such as ion traps (3537), Qq TOF instruments (3840), and trap-TOF (16, 41). Ion mobility technology has also been used in conjunction with imaging MS (4244). More recently, MALDI FT/ICR and Orbitrap mass spectrometers have been demonstrated to be extremely valuable instruments for the performance of imaging MS at very high mass resolving power (4547). These non-TOF-based systems have proven to be extremely powerful for the imaging of lower molecular weight compounds such as lipids, drugs, and metabolites. Home-built instrumentation and analytical approaches to probe tissues at higher spatial resolution (1–10 μm) have also been described (4850). In parallel to instrumentation developments, automated data acquisition, image visualization, and processing software packages have now also been developed by most manufacturers.To date, a wide range of biological systems have been studied using imaging MS as a primary methodology. Of strong interest are the organization and identification of the molecular composition of diseased tissues in direct correlation with the underlying histology and how it differs from healthy tissues. Such an approach has been used for the study of cancers (5154), neurologic disorders (5557), and other diseases (58, 59). The clinical potential of the imaging MS technology is enormous (7, 60, 61). Results give insights into the onset and progression of diseases, identify novel sets of disease-specific markers, and can provide a molecular confirmation of diagnosis as well as aide in outcome prediction (6264). Imaging MS has also been extensively used to study the development, functioning, and aging of different organs such as the kidney, prostate, epididymis, and eye lens (6570). Beyond the study of isolated tissues or organs, whole-body sections from several model animals such as leeches, mice, and rats have been investigated (7174). For these analyses, specialized instrumentation and protocols are necessary for tissue sectioning and handling (72, 73). Whole-body imaging MS opens the door to the study of the localization and accumulation of administered pharmaceuticals and their known metabolites at the level of entire organisms as well as the monitoring of their efficacy or toxicity as a function of time or dose (72, 73, 75, 76).There is considerable interest in determining the identification and localization of small biomolecules such as lipids in tissues because they are involved in many essential biological functions including cell signaling, energy storage, and membrane structure and function. Defects in lipid metabolism play a role in many diseases such as muscular dystrophy and cardiovascular disease. Phospholipids in tissues have been intensively studied by several groups (37, 40, 7783). In this respect, for optimal recovery of signal, several variables such as the choice of matrix for both imaging and fragmentation, solvent system, and instrument polarity have been investigated (20, 84). Particularly, the use of lithium cation adducts to facilitate phospholipid identification by tandem MS directly from tissue has also been reported (85). Of significant interest is the recent emergence of two new solvent-free matrix deposition approaches that perform exceptionally well for phospholipid imaging analyses. The first approach, described by Hankin et al. (86), consists in depositing the matrix on the sections through a sublimation process. The described sublimation system consists of sublimation glassware, a heated sand or oil bath (100–200 °C), and a primary vacuum pump (∼5 × 10−2 torr). Within a few minutes of initiating the sublimation process, an exceptionally homogeneous film of matrix forms on the section. The thickness of the matrix may be controlled by regulating pressure, temperature, and sublimation time. The second approach, described by Puolitaival et al.(87), uses a fine mesh sieve (≤20 μm) to filter finely ground matrix on the tissue sections. Agitation of the sieve results in passage of the matrix through the mesh and the deposition of a fairly homogeneous layer of submicrometer matrix crystals of the surface of the sections. The matrix density on the sections is controlled by direct observation using a standard light microscope. This matrix deposition approach was also found to be ideal to image certain drug compounds (88, 89). Both strategies allow very rapid production of homogeneous matrix coatings on tissue sections with a fairly inexpensive setup. Signal recovery was found to be comparable with those obtained by conventional spray deposition. With the appropriate size sublimation device or sieve, larger sections with dimensions of several centimeters such as those cut from mouse or rat whole bodies can also be rapidly and homogeneously coated.Here we present several examples of MALDI imaging MS of phospholipids from tissue sections using TOF mass spectrometers over a wide range of dimensions from whole-body sections (several centimeters), to individual organs (several millimeters), down to high spatial resolution imaging of selected tissue areas (hundreds of micrometers) at 10-μm lateral resolution and below. For all of these dimension ranges, technological considerations and practical aspects are discussed. In light of the imaging MS results, we also address issues faced for compound identification by tandem MS analysis performed directly on the sections. Finally, we discuss under “Perspective” our vision of the future of the field as well as the technological improvements and analytical tools that need to be improved upon and developed.  相似文献   

13.
Mitochondria play a central role in energy metabolism and cellular survival, and consequently mitochondrial dysfunction is associated with a number of human pathologies. Reversible protein phosphorylation emerges as a central mechanism in the regulation of several mitochondrial processes. In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomics study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins. Combining an efficient mitochondrial isolation protocol with several different phosphopeptide enrichment techniques and LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, including 116 phosphoserine, 23 phosphothreonine, and 16 phosphotyrosine residues. The relatively high number of phosphotyrosine residues suggests an important role for tyrosine phosphorylation in mitochondrial signaling. Many of the mitochondrial phosphoproteins are involved in oxidative phosphorylation, tricarboxylic acid cycle, and lipid metabolism, i.e. processes proposed to be involved in insulin resistance. We also assigned phosphorylation sites in mitochondrial proteins involved in amino acid degradation, importers and transporters, calcium homeostasis, and apoptosis. Bioinformatics analysis of kinase motifs revealed that many of these mitochondrial phosphoproteins are substrates for protein kinase A, protein kinase C, casein kinase II, and DNA-dependent protein kinase. Our results demonstrate the feasibility of performing phosphoproteome analysis of organelles isolated from human tissue and provide novel targets for functional studies of reversible phosphorylation in mitochondria. Future comparative phosphoproteome analysis of mitochondria from healthy and diseased individuals will provide insights into the role of abnormal phosphorylation in pathologies, such as type 2 diabetes.Mitochondria are the primary energy-generating systems in eukaryotes. They play a crucial role in oxidative metabolism, including carbohydrate metabolism, fatty acid oxidation, and urea cycle, as well as in calcium signaling and apoptosis (1, 2). Mitochondrial dysfunction is centrally involved in a number of human pathologies, such as type 2 diabetes, Parkinson disease, and cancer (3). The most prevalent form of cellular protein post-translational modifications (PTMs),1 reversible phosphorylation (46), is emerging as a central mechanism in the regulation of mitochondrial functions (7, 8). The steadily increasing numbers of reported mitochondrial kinases, phosphatases, and phosphoproteins imply an important role of protein phosphorylation in different mitochondrial processes (911).Mass spectrometry (MS)-based proteome analysis is a powerful tool for global profiling of proteins and their PTMs, including protein phosphorylation (12, 13). A variety of proteomics techniques have been developed for specific enrichment of phosphorylated proteins and peptides and for phosphopeptide-specific data acquisition techniques at the MS level (14). Enrichment methods based on affinity chromatography, such as titanium dioxide (TiO2) (1517), zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) (18), immobilized metal affinity chromatography (IMAC) (19, 20), and ion exchange chromatography (strong anion exchange and strong cation exchange) (21, 22), have shown high efficiencies for enrichment of phosphopeptides (14). Recently, we demonstrated that calcium phosphate precipitation (CPP) is highly effective for enriching phosphopeptides (23). It is now generally accepted that no single method is comprehensive, but combinations of different enrichment methods produce distinct overlapping phosphopeptide data sets to enhance the overall results in phosphoproteome analysis (24, 25). Phosphopeptide sequencing by mass spectrometry has seen tremendous advances during the last decade (26). For example, MS/MS product ion scanning, multistage activation, and precursor ion scanning are effective methods for identifying serine (Ser), threonine (Thr), and tyrosine (Tyr) phosphorylated peptides (14, 26).A “complete” mammalian mitochondrial proteome was reported by Mootha and co-workers (27) and included 1098 proteins. The mitochondrial phosphoproteome has been characterized in a series of studies, including yeast, mouse and rat liver, porcine heart, and plants (19, 2831). To date, the largest data set by Deng et al. (30) identified 228 different phosphoproteins and 447 phosphorylation sites in rat liver mitochondria. However, the in vivo phosphoproteome of human mitochondria has not been determined. A comprehensive mitochondrial phosphoproteome is warranted for further elucidation of the largely unknown mechanisms by which protein phosphorylation modulates diverse mitochondrial functions.The percutaneous muscle biopsy technique is an important tool in the diagnosis and management of human muscle disorders and has been widely used to investigate metabolism and various cellular and molecular processes in normal and abnormal human muscle, in particular the molecular mechanism underlying insulin resistance in obesity and type 2 diabetes (32). Skeletal muscle is rich in mitochondria and hence a good source for a comprehensive proteomics and functional analysis of mitochondria (32, 33).The major aim of the present study was to obtain a comprehensive overview of site-specific phosphorylation of mitochondrial proteins in functionally intact mitochondria isolated from human skeletal muscle. Combining an efficient protocol for isolation of skeletal muscle mitochondria with several different state-of-the-art phosphopeptide enrichment methods and high performance LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, many of which have not been reported before. We characterized this mitochondrial phosphoproteome by using bioinformatics tools to classify functional groups and functions, including kinase substrate motifs.  相似文献   

14.
Based on conventional data-dependent acquisition strategy of shotgun proteomics, we present a new workflow DeMix, which significantly increases the efficiency of peptide identification for in-depth shotgun analysis of complex proteomes. Capitalizing on the high resolution and mass accuracy of Orbitrap-based tandem mass spectrometry, we developed a simple deconvolution method of “cloning” chimeric tandem spectra for cofragmented peptides. Additional to a database search, a simple rescoring scheme utilizes mass accuracy and converts the unwanted cofragmenting events into a surprising advantage of multiplexing. With the combination of cloning and rescoring, we obtained on average nine peptide-spectrum matches per second on a Q-Exactive workbench, whereas the actual MS/MS acquisition rate was close to seven spectra per second. This efficiency boost to 1.24 identified peptides per MS/MS spectrum enabled analysis of over 5000 human proteins in single-dimensional LC-MS/MS shotgun experiments with an only two-hour gradient. These findings suggest a change in the dominant “one MS/MS spectrum - one peptide” paradigm for data acquisition and analysis in shotgun data-dependent proteomics. DeMix also demonstrated higher robustness than conventional approaches in terms of lower variation among the results of consecutive LC-MS/MS runs.Shotgun proteomics analysis based on a combination of high performance liquid chromatography and tandem mass spectrometry (MS/MS) (1) has achieved remarkable speed and efficiency (27). In a single four-hour long high performance liquid chromatography-MS/MS run, over 40,000 peptides and 5000 proteins can be identified using a high-resolution Orbitrap mass spectrometer with data-dependent acquisition (DDA)1 (2, 3). However, in a typical LC-MS analysis of unfractionated human cell lysate, over 100,000 individual peptide isotopic patterns can be detected (4), which corresponds to simultaneous elution of hundreds of peptides. With this complexity, a mass spectrometer needs to achieve ≥25 Hz MS/MS acquisition rate to fully sample all the detectable peptides, and ≥17 Hz to cover reasonably abundant ones (4). Although this acquisition rate is reachable by modern time-of-flight (TOF) instruments, the reported DDA identification results do not encompass all expected peptides. Recently, the next-generation Orbitrap instrument, working at 20 Hz MS/MS acquisition rate, demonstrated nearly full profiling of yeast proteome using an 80 min gradient, which opened the way for comprehensive analysis of human proteome in a time efficient manner (5).During the high performance liquid chromatography-MS/MS DDA analysis of complex samples, high density of co-eluting peptides results in a high probability for two or more peptides to overlap within an MS/MS isolation window. With the commonly used ±1.0–2.0 Th isolation windows, most MS/MS spectra are chimeric (4, 810), with cofragmenting precursors being naturally multiplexed. However, as has been discussed previously (9, 10), the cofragmentation events are currently ignored in most of the conventional analysis workflows. According to the prevailing assumption of “one MS/MS spectrum–one peptide,” chimeric MS/MS spectra are generally unwelcome in DDA, because the product ions from different precursors may interfere with the assignment of MS/MS fragment identities, increasing the rate of false discoveries in database search (8, 9). In some studies, the precursor isolation width was set as narrow as ±0.35 Th to prevent unwanted ions from being coselected, fragmented or detected (4, 5).On the contrary, multiplexing by cofragmentation is considered to be one of the solid advantages in data-independent acquisition (DIA) (1013). In several commonly used DIA methods, the precursor ion selection windows are set much wider than in DDA: from 25 Th as in SWATH (12), to extremely broad range as in AIF (13). In order to use the benefit of MS/MS multiplexing in DDA, several approaches have been proposed to deconvolute chimeric MS/MS spectra. In “alternative peptide identification” method implemented in Percolator (14), a machine learning algorithm reranks and rescores peptide-spectrum matches (PSMs) obtained from one or more MS/MS search engines. But the deconvolution in Percolator is limited to cofragmented peptides with masses differing from the target peptide by the tolerance of the database search, which can be as narrow as a few ppm. The “active demultiplexing” method proposed by Ledvina et al. (15) actively separates MS/MS data from several precursors using masses of complementary fragments. However, higher-energy collisional dissociation often produces MS/MS spectra with too few complementary pairs for reliable peptide identification. The “MixDB” method introduces a sophisticated new search engine, also with a machine learning algorithm (9). And the “second peptide identification” method implemented in Andromeda/MaxQuant workflow (16) submits the same dataset to the search engine several times based on the list of chromatographic peptide features, subtracting assigned MS/MS peaks after each identification round. This approach is similar to the ProbIDTree search engine that also performed iterative identification while removing assigned peaks after each round of identification (17).One important factor for spectral deconvolution that has not been fully utilized in most conventional workflows is the excellent mass accuracy achievable with modern high-resolution mass spectrometry (18). An Orbitrap Fourier-transform mass spectrometer can provide mass accuracy in the range of hundreds of ppb (parts per billion) for mass peaks with high signal-to-noise (S/N) ratio (19). However, the mass error of peaks with lower S/N ratios can be significantly higher and exceed 1 ppm. Despite this dependence of the mass accuracy from the S/N level, most MS and MS/MS search engines only allow users to set hard cut-off values for the mass error tolerances. Moreover, some search engines do not provide the option of choosing a relative error tolerance for MS/MS fragments. Such negligent treatment of mass accuracy reduces the analytical power of high accuracy experiments (18).Identification results coming from different MS/MS search engines are sometimes not consistent because of different statistical assumptions used in scoring PSMs. Introduction of tools integrating the results of different search engines (14, 20, 21) makes the data interpretation even more complex and opaque for the user. The opposite trend—simplification of MS/MS data interpretation—is therefore a welcome development. For example, an extremely straightforward algorithm recently proposed by Wenger et al. (22) demonstrated a surprisingly high performance in peptide identification, even though it is only marginally more complex than simply counting the number of matches of theoretical fragment peaks in high resolution MS/MS, without any a priori statistical assumption.In order to take advantage of natural multiplexing of MS/MS spectra in DDA, as well as properly utilize high accuracy of Orbitrap-based mass spectrometry, we developed a simple and robust data analysis workflow DeMix. It is presented in Fig. 1 as an expansion of the conventional workflow. Principles of some of the processes used by the workflow are borrowed from other approaches, including the custom-made mass peak centroiding (20), chromatographic feature detection (19, 20), and two-pass database search with the first limited pass to provide a “software lock mass” for mass scale recalibration (23).Open in a separate windowFig. 1.An overview of the DeMix workflow that expands the conventional workflow, shown by the dashed line. Processes are colored in purple for TOPP, red for search engine (Morpheus/Mascot/MS-GF+), and blue for in-house programs.In DeMix workflow, the deconvolution of chimeric MS/MS spectra consists of simply “cloning” an MS/MS spectrum if a potential cofragmented peptide is detected. The list of candidate peptide precursors is generated from chromatographic feature detection, as in the MaxQuant/Andromeda workflow (16, 19), but using The OpenMS Proteomics Pipeline (TOPP) (20, 24). During the cloning, the precursor is replaced by the new candidate, but no changes in the MS/MS fragment list are made, and therefore the cloned MS/MS spectra remain chimeric. Processing such spectra requires a search engine tolerant to the presence of unassigned peaks, as such peaks are always expected when multiple precursors cofragment. Thus, we chose Morpheus (22) as a search engine. Based on the original search algorithm, we implement a reformed scoring scheme: Morpheus-AS (advanced scoring). It inherits all the basic principles from Morpheus but deeper utilizes the high mass accuracy of the data. This kind of database search removes the necessity of spectral processing for physical separation of MS/MS data into multiple subspectra (15), or consecutive subtraction of peaks (16, 17).Despite the fact that DeMix workflow is largely a combination of known approaches, it provides remarkable improvement compared with the state-of-the-art. On our Orbitrap Q-Exactive workbench, testing on a benchmark dataset of two-hour single-dimension LC-MS/MS experiments from HeLa cell lysate, we identified on average 1.24 peptide per MS/MS spectrum, breaking the “one MS/MS spectrum–one peptide” paradigm on the level of whole data set. At 1% false discovery rate (FDR), we obtained on average nine PSMs per second (at the actual acquisition rate of ca. seven MS/MS spectra per second), and detected 40 human proteins per minute.  相似文献   

15.
16.
17.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

18.
The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein–protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides.The study of protein–protein interactions is crucial to understanding how cellular systems function because proteins act in concert through a highly organized set of interactions. Most cellular processes are carried out by large macromolecular assemblies and regulated through complex cascades of transient protein–protein interactions (1). In the past several years numerous high-throughput studies have pioneered the systematic characterization of protein–protein interactions in model organisms (24). Such studies mainly utilize two techniques: the yeast two-hybrid system, which aims at identifying binary interactions (5), and affinity purification combined with tandem mass spectrometry analysis for the identification of multi-protein assemblies (68). Together these led to a rapid expansion of known protein–protein interactions in human and other model organisms. Patche and Aloy recently estimated that there are more than one million interactions catalogued to date (9).But despite rapid progress, most current techniques allow one to determine only whether proteins interact, which is only the first step toward understanding how proteins interact. A more complete picture comes from characterizing the three-dimensional structures of protein complexes, which provide mechanistic insights that govern how interactions occur and the high specificity observed inside the cell. Traditionally the gold-standard methods used to solve protein structures are x-ray crystallography and NMR, and there have been several efforts similar to structural genomics (10) aiming to comprehensively solve the structures of protein complexes (11, 12). Although there has been accelerated growth of structures for protein monomers in the Protein Data Bank in recent years (11), the growth of structures for protein complexes has remained relatively small (9). Many factors, including their large size, transient nature, and dynamics of interactions, have prevented many complexes from being solved via traditional approaches in structural biology. Thus, the development of complementary analytical techniques with which to probe the structure of large protein complexes continues to evolve (1318).Recent developments have advanced the analysis of protein structures and interaction by combining cross-linking and tandem mass spectrometry (17, 1924). The basic idea behind this technique is to capture and identify pairs of amino acid residues that are spatially close to each other. When these linked pairs of residues are from the same protein (intraprotein cross-links), they provide distance constraints that help one infer the possible conformations of protein structures. Conversely, when pairs of residues come from different proteins (interprotein cross-links), they provide information about how proteins interact with one another. Although cross-linking strategies date back almost a decade (25, 26), difficulty in analyzing the complex MS/MS spectrum generated from linked peptides made this approach challenging, and therefore it was not widely used. With recent advances in mass spectrometry instrumentation, there has been renewed interest in employing this strategy to determine protein structures and identify protein–protein interactions. However, most studies thus far have been focused on purified protein complexes. With today''s mass spectrometers being capable of analyzing tens of thousands of spectra in a single experiment, it is now potentially feasible to extend this approach to the analysis of complex biological samples. Researchers have tried to realize this goal using both experimental and computational approaches. Indeed, a plethora of chemical cross-linking reagents are now available for stabilizing these complexes, and some are designed to allow for easier peptide identification when employed in concert with MS analysis (20, 27, 28). There have also been several recent efforts to develop computational methods for the automatic identification of linked peptides from MS/MS spectra (2936). However, because of the lack of large annotated training data, most approaches to date either borrow fragmentation models learned from unlinked, linear peptides or learn the fragmentation statistics from training data of limited size (30, 37), which might not generalize well across different samples. In some cases it is possible to generate relatively large training data, but it is often very labor intensive and involves hundreds of separate LC-MS/MS runs (36). Here, employing disulfide-bridged peptides as an example, we propose a novel method that uses a combinatorial peptide library to (a) efficiently generate a large mass spectral reference dataset for linked peptides and (b) use these data to automatically train our new algorithm, MXDB, which can efficiently and accurately identify linked peptides from MS/MS spectra.  相似文献   

19.
20.
Database search programs are essential tools for identifying peptides via mass spectrometry (MS) in shotgun proteomics. Simultaneously achieving high sensitivity and high specificity during a database search is crucial for improving proteome coverage. Here we present JUMP, a new hybrid database search program that generates amino acid tags and ranks peptide spectrum matches (PSMs) by an integrated score from the tags and pattern matching. In a typical run of liquid chromatography coupled with high-resolution tandem MS, more than 95% of MS/MS spectra can generate at least one tag, whereas the remaining spectra are usually too poor to derive genuine PSMs. To enhance search sensitivity, the JUMP program enables the use of tags as short as one amino acid. Using a target-decoy strategy, we compared JUMP with other programs (e.g. SEQUEST, Mascot, PEAKS DB, and InsPecT) in the analysis of multiple datasets and found that JUMP outperformed these preexisting programs. JUMP also permitted the analysis of multiple co-fragmented peptides from “mixture spectra” to further increase PSMs. In addition, JUMP-derived tags allowed partial de novo sequencing and facilitated the unambiguous assignment of modified residues. In summary, JUMP is an effective database search algorithm complementary to current search programs.Peptide identification by tandem mass spectra is a critical step in mass spectrometry (MS)-based1 proteomics (1). Numerous computational algorithms and software tools have been developed for this purpose (26). These algorithms can be classified into three categories: (i) pattern-based database search, (ii) de novo sequencing, and (iii) hybrid search that combines database search and de novo sequencing. With the continuous development of high-performance liquid chromatography and high-resolution mass spectrometers, it is now possible to analyze almost all protein components in mammalian cells (7). In contrast to rapid data collection, it remains a challenge to extract accurate information from the raw data to identify peptides with low false positive rates (specificity) and minimal false negatives (sensitivity) (8).Database search methods usually assign peptide sequences by comparing MS/MS spectra to theoretical peptide spectra predicted from a protein database, as exemplified in SEQUEST (9), Mascot (10), OMSSA (11), X!Tandem (12), Spectrum Mill (13), ProteinProspector (14), MyriMatch (15), Crux (16), MS-GFDB (17), Andromeda (18), BaMS2 (19), and Morpheus (20). Some other programs, such as SpectraST (21) and Pepitome (22), utilize a spectral library composed of experimentally identified and validated MS/MS spectra. These methods use a variety of scoring algorithms to rank potential peptide spectrum matches (PSMs) and select the top hit as a putative PSM. However, not all PSMs are correctly assigned. For example, false peptides may be assigned to MS/MS spectra with numerous noisy peaks and poor fragmentation patterns. If the samples contain unknown protein modifications, mutations, and contaminants, the related MS/MS spectra also result in false positives, as their corresponding peptides are not in the database. Other false positives may be generated simply by random matches. Therefore, it is of importance to remove these false PSMs to improve dataset quality. One common approach is to filter putative PSMs to achieve a final list with a predefined false discovery rate (FDR) via a target-decoy strategy, in which decoy proteins are merged with target proteins in the same database for estimating false PSMs (2326). However, the true and false PSMs are not always distinguishable based on matching scores. It is a problem to set up an appropriate score threshold to achieve maximal sensitivity and high specificity (13, 27, 28).De novo methods, including Lutefisk (29), PEAKS (30), NovoHMM (31), PepNovo (32), pNovo (33), Vonovo (34), and UniNovo (35), identify peptide sequences directly from MS/MS spectra. These methods can be used to derive novel peptides and post-translational modifications without a database, which is useful, especially when the related genome is not sequenced. High-resolution MS/MS spectra greatly facilitate the generation of peptide sequences in these de novo methods. However, because MS/MS fragmentation cannot always produce all predicted product ions, only a portion of collected MS/MS spectra have sufficient quality to extract partial or full peptide sequences, leading to lower sensitivity than achieved with the database search methods.To improve the sensitivity of the de novo methods, a hybrid approach has been proposed to integrate peptide sequence tags into PSM scoring during database searches (36). Numerous software packages have been developed, such as GutenTag (37), InsPecT (38), Byonic (39), DirecTag (40), and PEAKS DB (41). These methods use peptide tag sequences to filter a protein database, followed by error-tolerant database searching. One restriction in most of these algorithms is the requirement of a minimum tag length of three amino acids for matching protein sequences in the database. This restriction reduces the sensitivity of the database search, because it filters out some high-quality spectra in which consecutive tags cannot be generated.In this paper, we describe JUMP, a novel tag-based hybrid algorithm for peptide identification. The program is optimized to balance sensitivity and specificity during tag derivation and MS/MS pattern matching. JUMP can use all potential sequence tags, including tags consisting of only one amino acid. When we compared its performance to that of two widely used search algorithms, SEQUEST and Mascot, JUMP identified ∼30% more PSMs at the same FDR threshold. In addition, the program provides two additional features: (i) using tag sequences to improve modification site assignment, and (ii) analyzing co-fragmented peptides from mixture MS/MS spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号