首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The process of epithelial lumenogenesis requires coordination of a network of signaling machinery communicated to each cell through subsequent cell divisions. Formation of a single hollow lumen has previously been shown to require Tuba, a Cdc42 GEF, for Cdc42 activation and correct spindle orientation. Using a Caco-2 model of lumenogenesis, we show that knockdown (KD) of the actin regulator N-WASP, causes a multilumen phenotype similar to Tuba KD. Defects in lumenogenesis in Tuba KD and N-WASP KD cells are observed at the two-cell stage with inappropriate marking of the pre-apical patch (PAP )—the precursor to lumen formation. Strikingly, both Tuba and N-WASP depend on each other for localization to the PAP. We conclude that N-WASP functions cooperatively with Tuba to facilitate lumenogenesis and this requires the polyproline region of N-WASP.Key words: lumen, N-WASP, tuba, E-cadherin, pre-apical patchMany epithelial tissues are organized as hollow tubes whose open lumina connect the body with its external environment.1,2 These tubes consist of a monolayer of polarized cells that envelope the central lumen. Lumen formation is thus a key process in epithelial morphogenesis that depends upon cell polarity to establish three cell surface domains: a basal surface adherent to the extracellular matrix, a lateral surface between cells, and an apical surface that is exposed to the luminal fluids. Of note, the apical membrane is biochemically and morphologically distinct from the baso-lateral surfaces and effectively defines the luminal surface.3,4For a lumen to form, cells must first mark the site at which apical membrane is to be inserted, something that is achieved at the first cell division.5 Targeted trafficking of apical membrane constituents defines a pre-apical patch (PAP), the precursor to the definitive lumen.5 Such insertion of apical membrane must presumably be coordinated with the assembly of apical junctions to segregate nascent apical from lateral membrane domains.2 Subsequent cell divisions direct apical membrane and protein constituents to this point of initial apical membrane placement.6 Coordinated luminal positioning enables the initial formation of a single hollow lumen that subsequently expands through polarized fluid secretion to separate apical membranes, such as occurs in the embryonic gastrointestinal tract,7 or by apoptosis or autophagy of the central cells as is observed in mammary gland development.8,9 Failure to establish initial luminal positioning causes defective lumenogenesis, often resulting in multiple, morphologically abnormal lumina.5,6Crucial to lumenal morphogenesis is then the mechanism(s) that mark the site where the PAP will form. Cdc42 signaling is increasingly implicated in this process,2,10 with downstream consequences that include control of mitotic spindle orientation,5 which itself influences PAP placement5 and potentially regulation of cell-cell junctions. Like other Rho family GTPases, the subcellular location of Cdc42 signaling is determined by the action of upstream proteins, notably guanine nucleotide exchange factors (GEFs).11,12 Of these, Tuba, a Cdc42-specific GEF,13 has emerged as a regulator of lumenal morphogenesis that controls PAP placement through mitotic spindle orientation.10Tuba is also a scaffolding protein13 capable of linking the actin assembly machinery with trafficking pathways. Not only is Tuba required for Cdc42 activation to direct spindle orientation,5 it also has the potential to interact with phosphoinositides that define the PAP.14 Additionally, Tuba binds directly to the actin regulator N-WASP, a key molecule in the organization of actin and itself a Cdc42 effector.15 Further, Tuba and N-WASP cooperate in various forms of actin-driven cellular motility, such as vesicle propulsion and cell invasive behavior.16 Interestingly, in epithelial cells N-WASP is also found at cadherin-based cell-cell junctions.17 In fact it has been proposed that N-WASP functions downstream of Tuba in the maintenance of epithelial junctional homeostasis as N-WASP overexpression was capable of rescuing a Tuba KD phenotype.18 Therefore, Tuba has the potential to play a central role in coordinating the molecular complexes required for productive polarization of epithelial cells and placement of the PAP during lumenogenesis. However, whether other protein interactions contribute to the morphogenetic impact of Tuba remain to be assessed.Three-dimensional cell culture systems are being utilized to identify critical components in lumen formation. In particular, Madin-Darby canine kidney cells (MDCK) and Caco-2 gastrointestinal cells are commonly used to study cyst and/or tubule formation. MDCK cells undergo both cyst and tubule growth, apoptosis being primarily responsible for the final step in lumen formation,19 while Caco-2 cells primarily utilize fluid influx to expand cysts.5 Cyst culture systems replicate aspects of in vivo organogenesis20 providing tangible, powerful models to analyze and dissect the coordinated cellular mechanisms and processes that occur during epithelial morphogenesis.In this study we examined the relationship between Tuba and N-WASP in early epithelial lumenogenesis using Caco-2 three dimensional cyst cultures. Both Tuba and N-WASP RNAi cell lines result in mature cysts with multiple lumina, and at the two-cell stage, formed multiple PAPs. Interestingly, N-WASP KD perturbed Tuba localization at the PAP, however, N-WASP localization to the PAP was not affected to the same extent by Tuba KD. Taken together, these results suggest a complex interrelationship between Tuba and N-WASP for the coordinated formation of a single hollow lumen.  相似文献   

3.
Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influencing autoimmunity and tolerance to transplants. Further understanding of the ability of fetal cells to cross both the placental and blood-brain barriers, to migrate into diverse tissues, and to differentiate into multiple cell types may also advance strategies for intravenous transplantation of stem cells for cytotherapeutic repair. Here we discuss hypotheses for how fetal cells cross the placental and blood-brain barriers and the persistence and distribution of fetal cells in the mother.Key Words: fetomaternal microchimerism, stem cells, progenitor cells, placental barrier, blood-brain barrier, adhesion, migrationMicrochimerism is the presence of a small population of genetically distinct and separately derived cells within an individual. This commonly occurs following transfusion or transplantation.13 Microchimerism can also occur between mother and fetus. Small numbers of cells traffic across the placenta during pregnancy. This exchange occurs both from the fetus to the mother (fetomaternal)47 and from the mother to the fetus.810 Similar exchange may also occur between monochorionic twins in utero.1113 There is increasing evidence that fetomaternal microchimerism persists lifelong in many child-bearing women.7,14 The significance of fetomaternal microchimerism remains unclear. It could be that fetomaternal microchimerism is an epiphenomenon of pregnancy. Alternatively, it could be a mechanism by which the fetus ensures maternal fitness in order to enhance its own chances of survival. In either case, the occurrence of pregnancy-acquired microchimerism in women may have implications for graft survival and autoimmunity. More detailed understanding of the biology of microchimeric fetal cells may also advance progress towards cytotherapeutic repair via intravenous transplantation of stem or progenitor cells.Trophoblasts were the first zygote-derived cell type found to cross into the mother. In 1893, Schmorl reported the appearance of trophoblasts in the maternal pulmonary vasculature.15 Later, trophoblasts were also observed in the maternal circulation.1620 Subsequently various other fetal cell types derived from fetal blood were also found in the maternal circulation.21,22 These fetal cell types included lymphocytes,23 erythroblasts or nucleated red blood cells,24,25 haematopoietic progenitors7,26,27 and putative mesenchymal progenitors.14,28 While it has been suggested that small numbers of fetal cells traffic across the placenta in every human pregnancy,2931 trophoblast release does not appear to occur in all pregnancies.32 Likewise, in mice, fetal cells have also been reported in maternal blood.33,34 In the mouse, fetomaternal transfer also appears to occur during all pregnancies.35  相似文献   

4.
Clathrin-mediated endocytosis (CME) is the best-characterized type of endocytosis in eukaryotic cells. Plants appear to possess all of the molecular components necessary to carry out CME; however, functional characterization of the components is still in its infancy. A yeast two-hybrid screen identified μ2 as a putative interaction partner of CELLULOSE SYNTHASE6 (CESA6). Arabidopsis (Arabidopsis thaliana) μ2 is homologous to the medium subunit 2 of the mammalian ADAPTOR PROTEIN COMPLEX2 (AP2). In mammals, the AP2 complex acts as the central hub of CME by docking to the plasma membrane while concomitantly recruiting cargo proteins, clathrin triskelia, and accessory proteins to the sites of endocytosis. We confirmed that μ2 interacts with multiple CESA proteins through the μ-homology domain of μ2, which is involved in specific interactions with endocytic cargo proteins in mammals. Consistent with its role in mediating the endocytosis of cargos at the plasma membrane, μ2-YELLOW FLUORESCENT PROTEIN localized to transient foci at the plasma membrane, and loss of μ2 resulted in defects in bulk endocytosis. Furthermore, loss of μ2 led to increased accumulation of YELLOW FLUORESCENT PROTEIN-CESA6 particles at the plasma membrane. Our results suggest that CESA represents a new class of CME cargo proteins and that plant cells might regulate cellulose synthesis by controlling the abundance of active CESA complexes at the plasma membrane through CME.Cellulose microfibrils, as the major load-bearing polymers in plant cell walls, are the predominant component that enforces asymmetric cell expansion (Green, 1962). In higher plants, cellulose is synthesized by multimeric rosettes, which are also referred to as cellulose synthase complexes (CSCs; Kimura et al., 1999). Genetic and coimmunoprecipitation studies have indicated that CELLULOSE SYNTHASE1 (CESA1), CESA3, and CESA6-like (CESA6, CESA2, CESA5, and CESA9) isoforms are constituents of CSCs during primary cell wall synthesis (Persson et al., 2005; Desprez et al., 2007; Persson et al., 2007; Wang et al., 2008), whereas CESA4, CESA7, and CESA8 are implicated in the cellulose synthesis of secondary cell walls (Taylor et al., 1999, 2003; Brown et al., 2005). Knowledge about cellulose synthesis has recently been enhanced by the development of a system whereby the dynamics of CESA can be imaged in living cells (Paredez et al., 2006; Desprez et al., 2007). In agreement with earlier transmission electron microscopy studies in which rosettes were visualized in Golgi cisternae, vesicles, and at the plasma membrane (Haigler and Brown, 1986), fluorescent protein tagging of CESA has identified CESA localization at the plasma membrane, in Golgi bodies, and in small intracellular compartments (Paredez et al., 2006; Desprez et al., 2007; Crowell et al., 2009; Gutierrez et al., 2009; Gu et al., 2010; Lei et al., 2012; Li et al., 2012b).Assuming that cellulose synthesis occurs solely at the plasma membrane, the trafficking of CSCs to and from the plasma membrane may act as a significant regulatory mechanism. Although the mechanistic details of CESA trafficking are lacking, live cell imaging has shown that CESA localizes to various subcellular compartments. A subset of CESAs colocalize with markers of the trans-Golgi network (TGN)/early endosome (EE), an organelle that is part of both the secretory and endocytic pathways in Arabidopsis (Arabidopsis thaliana; Dettmer et al., 2006; Lam et al., 2007; Crowell et al., 2009, 2010; Viotti et al., 2010). CESAs also localize to microtubule-associated cellulose synthase compartments (MASCs) and small CESA-containing compartments (SmaCCs). The exact function of SmaCCs/MASCs is unknown, but it has been proposed that SmaCCs/MASCs might result from the internalization of CSCs or might act in the delivery of CSCs to the plasma membrane (Crowell et al., 2009, 2010; Gutierrez et al., 2009).Clathrin-mediated endocytosis (CME) has been shown to be a major endocytic pathway in Arabidopsis (Holstein, 2002; Samaj et al., 2005; Dhonukshe et al., 2007; Kleine-Vehn and Friml, 2008; Chen et al., 2011; Beck et al., 2012; Wang et al., 2013), although there is also evidence of clathrin-independent endocytosis mechanisms (Bandmann and Homann, 2012). The function of many CME proteins has been extensively characterized in mammals (McMahon and Boucrot, 2011), and homologs of many CME components are encoded by the Arabidopsis genome, including multiple copies of clathrin H chain and clathrin light chain (CLC), all four subunits of the heterotetrameric ADAPTOR PROTEIN COMPLEX2 (AP2) complex, dynamin-related proteins, and accessory proteins such as AP180 (Holstein, 2002; Chen et al., 2011); however, many CME components have yet to be characterized in plants.It has been suggested that CME might also function in controlling cell wall metabolism. For example, dividing and growing cells internalize cross-linked cell wall pectins, which might allow for cell wall remodeling (Baluska et al., 2002, 2005; Samaj et al., 2004). Moreover, the importance of endocytosis for cell wall morphogenesis is apparent from the functional characterization of proteins involved in CME. A dynamin-related protein, DRP1A, plays a significant role in endocytosis and colocalizes with CLC (Collings et al., 2008; Konopka and Bednarek, 2008). Defective endocytosis in RADIAL SWELLING9 (rsw9) plants, which contain a mutation in DRP1A, results in cellulose deficiency and defects in cell elongation (Collings et al., 2008). A mutation in rice, brittle culm3 (bc3), was mapped to the dynamin-related gene OsDRP2A, which has been proposed to function in CME. The brittle-culm phenotype in this mutant was attributed to cellulose deficiency (Xiong et al., 2010). Although the abundance of OsCESA4 was also altered in bc3, it remains unclear whether the cellulose deficiency of either bc3 or rsw9 results directly from perturbations in CESA trafficking.To identify proteins involved in the regulation of cellulose biosynthesis, a yeast two-hybrid (Y2H) screen was performed in which the central domain of CESA6 (CESA6CD) was used as bait to screen an Arabidopsis complementary DNA library for potential interaction partners of CESA6 (Gu et al., 2010; Gu and Somerville, 2010). The Y2H screen identified μ2 as a putative interaction partner of CESA6CD. The mammalian homolog of μ2 is the medium subunit of the tetrameric AP2, which acts as the core of the CME machinery by docking to the plasma membrane while concomitantly recruiting cargo proteins, clathrin triskelia, and accessory proteins to the sites of endocytosis (Jackson et al., 2010; McMahon and Boucrot, 2011; Cocucci et al., 2012). In this study, we provide evidence that μ2 plays a role in CME in Arabidopsis, that CESAs are a new set of CME cargo proteins, and that plant cells might regulate cellulose synthesis by controlling the abundance of CSCs at the plasma membrane through CME. To our knowledge, this study is the first to show the affect of an AP2 complex component on endocytosis in plants and the first to visualize an AP2 complex component in living plant cells. Furthermore, our data suggest that the role of AP2 in plants may differ from what has been shown in animals.  相似文献   

5.
6.
A role for SR proteins in plant stress responses   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
Light plays pivotal roles as an important environmental signal in plant growth and development. In Arabidopsis, phototropin 1 (phot1) and 2 (phot2) are the photoreceptors that mediate phototropism, chloroplast relocation, stomatal opening and leaf flattening, in response to blue light. However, little is known about how phototropins transduce the signals after the light is perceived. Changes induced by blue light in terms of intracellular localization patterns of phot2 in Arabidopsis were examined. Phot2 distributed uniformly in the plasma membrane under dark conditions. Upon irradiation with blue light, some of the phot2 associated with the Golgi apparatus. It was also shown that the kinase domain, but not the photosensory domain, is required for a plasma membrane and Golgi localization. Furthermore a kinase fragment, lacking the photosensory domain, constitutively triggered physiological responses in planta. Thus, the plasma membrane and the Golgi apparatus appear to be the most likely sites for the initial step of phot2 signal transduction. The Golgi apparatus facilitates vesicle trafficking and delivery of membrane proteins to the required locations in the cell. Therefore, this study implicates the regulation of vesicle trafficking by the Golgi apparatus as a mechanism by which phot2 elicits its cellular responses.Key words: Golgi apparatus, kinase, light signal transduction, photoreceptor, phototropin, vesicle traffickingA range of physiological responses in plants is brought about by blue (390–500 nm) and ultraviolet-A (320–390 nm) light. Phototropin, one of major classes of blue light photoreceptors in plants, mediates responses such as phototropism, chloroplast relocation, light-induced stomatal opening and leaf flattening.16 The dicotyledon Arabidopsis, possesses two phototropins, termed phot1 and phot2, which have both overlapping and distinct functions.5,7 Phototropins consist of two functional domains, a N-terminal photosensory domain, containing two LOV (Light, Oxygen, Voltage) domains (LOV1 and LOV2) and a flavin-mononucleotide (FMN) chromophore and a regulatory serine/threonine kinase domain at the C-terminus.8To understand the mechanism of phototropin signal transduction, we expressed phot2 derivatives with translationally-fused green fluorescent protein (GFP) in a phot1phot2 double mutant in a wild type background in Arabidopsis.9,10 Phototropin is a membrane- associated protein lacking a membrane spanning domain.8 Phot1 fused to GFP (P1G) is mainly localized to the plasma membrane, regardless of the light conditions.6 This property was retained when phot2 was fused to GFP (P2G).9 A part of P2G associates with punctate structures in the cytoplasm in response to blue light. The punctate P2G colocalized with KAM1ΔC:mRFP, a Golgi marker, we therefore conclude that phot2 associated with the Golgi apparatus in a blue light-dependent manner.9 This association was observed even in the presence of brefeldin A (BFA), an inhibitor of the vesicle trafficking.9To determine which domain of phot2 is responsible for the Golgi association, fragments of phot2 were fused to GFP and expressed in protoplasts.9 The N-terminal fragment fused to GFP (P2NG) was distributed uniformly in the cytoplasm. By contrast, the C-terminal fragment fused to GFP (P2CG) localized to both plasma membrane and punctate structures. The latter was shown to be the Golgi apparatus with the aid of the Golgi marker, KAM1ΔC:mRFP.9 These observations were corroborated from data using transgenic plants.10 Hence the C-terminal kinase domain, but not the N-terminal photo-sensory domain, is essential for the association of phot2 with the plasma membrane and the Golgi apparatus.The Golgi network is a key player in vesicle trafficking, to and from ER, vacuoles, trans-Golgi network, endosome and the plasma membrane.11 Membrane spanning proteins are delivered and recycled through the Golgi apparatus. Among the membrane spanning proteins that are especially interesting, with respect to phototropin function, are auxin carriers such as PIN proteins. Phototropic curvature, which is under the control of phototropin, is believed to be caused by an uneven distribution of auxin.12 The intracellular distribution of PIN proteins is maintained and regulated by vesicle trafficking.13 Indeed, factors such as ADP-ribosylation factor1 (ARF1) and guanine-nucleotide exchange factors (GEFs), which are involved in vesicle trafficking, are indispensable for the proper distribution of PIN proteins.1417 It is intriguing that a light stimulus alters the distribution pattern of PIN proteins.18 Hence, a fascinating possibility arises that phot2 alters the intracellular distribution of PIN proteins by regulating vesicle trafficking at the level of the Golgi apparatus.Phototropins are members of the subfamily VIII of AGC kinases.19 Interestingly, PINOID, another member of the subfamily, is localized at the cell periphery and regulates the apical-basal polar distribution of PIN proteins.2022 Accordingly, overexpression of PINOID disturbs the auxin distribution in transgenic plants.23,24 The kinase fragment of phototropin exhibits constitutive kinase activity in vitro.25 Interestingly, the auxin distribution is disturbed in plants expressing P2CG, as is the case with PINOID.10 Hence, both PINOID and phot2 might alter the PIN protein distribution in the cell through a common mechanism, in response to distinct stimuli.To date, no authentic substrate has been described for any of the AGC VIII kinases.19 Considering the localization pattern of phototropins, the substrates are most likely to reside in the plasma membrane and/or the Golgi apparatus. NPH3, RPT2 and PKS1 are downstream factors for phototropic responses,2628 all associating with the plasma membrane. Although they interact preferentially with the N-terminal rather than the C-terminal domain of phot1,26,29 it is also possible that the C-terminal kinase domain interacts transiently with these factors leading to their phosphorylation. However, at present the molecular functions of NPH3, RPT2 and PKS1 remain unclear and await future investigation.Although both phot1 and phot2 are localized to the plasma membrane, punctate structures are yet to be described for P1G. Instead, a part of phot1-GFP is released from the plasma membrane to the cytosol in response to a light stimulus.6 We recently reexamined the intracellular localization of P1G. A specific network-like structure in the cytoplasm in addition to intense plasma membrane staining was observed (Fig. 1). A similar pattern was observed for P2G although it is less clear.9 Hence, both phot1 and phot2 might be associating with a structure in the cytoplasm that has yet to be described, and which might be another site of phototropin signaling in the cell.Open in a separate windowFigure 1A light-induced network-like distribution pattern of P1G in the cytoplasm. The P1G seedlings grown under dark conditions6 were incubated in MS solution (diluted 50%) without (upper panels) or with (lower panels) 100 µM BFA. The cells were inspected with a confocal laser scanning microscope. Images taken before (left) or after (right) blue light illumination at 48 µmol m−2 sec−1 are shown. Bar = 10 µm.P2CG elicits some phototropin responses without a light stimulus.10 That is, chloroplasts were in the avoidance position and stomata opened without a blue light stimulus in the P2CG overexpressing plants. It is a fascinating possibility that phototropin elicits those responses through the regulation of vesicle trafficking, although other possibilities exist. Stomata open as the result of phosphorylation of the plasma membrane H+-ATPase30 and it is unlikely that the vesicle trafficking is directly involved in this regulatory process. It is possible to conjecture that vesicle trafficking affects chloroplast positioning but how this would work remains to be determined. Overall how a single photoreceptor such as phototoropin might regulate diverse physiological responses awaits future study.  相似文献   

9.
Cell migration is an integrated process that involves cell adhesion, protrusion and contraction. We recently used CAS (Crk-associated substrate, 130CAS)-deficient mouse embryo fibroblasts (MEFs) to examined contribution made to v-Crk to that process via its interaction with Rac1. v-Crk, the oncogene product of avian sarcoma virus CT10, directly affects membrane ruffle formation and is associated with Rac1 activation, even in the absence of CAS, a major substrate for Crk. In CAS-deficient MEFs, cell spreading and lamellipodium dynamics are delayed; moreover, Rac activation is significantly reduced and it is no longer targeted to the membrane. However, expression of v-Crk by CAS-deficient MEFs increased cell spreading and active lamellipodium protrusion and retraction. v-Crk expression appears to induce Rac1 activation and its targeting to the membrane, which directly affects membrane dynamics and, in turn, cell migration. It thus appears that v-Crk/Rac1 signaling contributes to the regulation of membrane dynamics and cell migration, and that v-Crk is an effector molecule for Rac1 activation that regulates cell motility.Key words: v-Crk, Rac, lamellipodia dynamics, cell migration, p130CASCell migration is a central event in a wide array of biological and pathological processes, including embryonic development, inflammatory responses, angiogenesis, tissue repair and regeneration, cancer invasion and metastasis, osteoporosis and immune responses.1,2 Although the molecular basis of cell migration has been studied extensively, the underlying mechanisms are still not fully understood. It is known that cell migration is an integrated process that involves formation of cell adhesions and/or cell polarization, membrane protrusion in the direction of migration (e.g., filopodium formation and lamellipodium extension), cell body contraction and tail detachment.13 Formation of cell adhesions, including focal adhesions, fibrillar adhesions and podosomes are the first step in cell migration. Cell adhesions are stabilized by attachment to the extracellular matrix (ECM) mediated by integrin transmembrane receptors, which are also linked to various cytoplasmic proteins and the actin cytoskeleton, which provide the mechanical force necessary for migration.2,4 The next steps in the process of cell migration are filopodium formation and lamellipodium extension. These are accompanied by actin polymerization and microtubule dynamics, which also contribute to the control of cell adhesion and migration.5Focal adhesions are highly dynamic structures that form at sites of membrane contact with the ECM and involve the activities of several cellular proteins, including vinculin, focal adhesion kinase (FAK), Src family kinase, paxillin, CAS (Crk-associated substrate, p130CAS) and Crk.6 A deficiency in focal adhesion protein is associated with the severe defects in cell motility and results in embryonic death. For example, FAK deficiency disrupts mesoderm development in mice and delays cell migration in vitro,7 which reflects impaired assembly and disassembly the focal adhesions.8 In addition, mouse embryonic fibroblasts (MEFs) lacking Src kinase showed a reduced rate of cell spreading that resulted in embryonic death.9 Taken together, these findings strongly support the idea that cell adhesion complexes play crucial roles in cell migration.CAS is a hyperphosphorylated protein known to be a major component of focal adhesion complexes and to be involved in the transformation of cells expressing v-Src or v-Crk.10 CAS-deficient mouse embryos die in utero and show marked systematic congestion and growth retardation,4 while MEFs lacking CAS show severely impaired formation and bundling of actin stress fibers and delayed cell motility.4,11,12 Conversely, transient expression of CAS in COS7 cells increases cell migration.11 Crk-null mice also exhibit lethal defects in embryonic development,13 which is consistent with the fact that CAS is a major substrate for v-Crk, and both CAS and v-Crk are necessary for induction of cell migration.14 v-Crk consists of a viral gag sequence fused to cellular Crk sequences, which contain Src homology 2 (SH2) and SH3 domains but no kinase domain, and both CAS and paxillin bind to SH2 domains.12,15,16 Despite the absence of a kinase domain, cell expressing v-Crk show upregulation of tyrosine phosphorylation of CAS, FAK and paxillin, which is consistent with v-Crk functioning as an adaptor protein.17 Moreover, this upregulation of tyrosine phosphorylation correlates well with the transforming activity of v-Crk.17 By contrast, tyrosine phosphorylation of FAK and CAS is diminished in Src kinase-deficient cells expressing v-Crk, and they are not targeted to the membrane, suggesting v-Crk signaling is Src kinase-dependent. After formation of the CAS/v-Crk complex, v-Crk likely transduces cellular signaling to Src kinase and FAK.12 Notably, tyrosine phosphorylation of FAK and cell migration and spreading are all enhanced when v-Crk is introduced into CAS-deficient MEFs.12 We therefore suggest that v-Crk activity, but not cellular Crk activity, during cell migration and spreading is CAS-independent.Membrane dynamics such as lamellipodium protrusion and membrane ruffling reportedly involve Rac1,18 α4β1 integrin,19 Arp2/3,6 and N-WASP,20 and are enhanced in v-Crk-expressing CAS-deficient MEFs.21 Moreover, expression in those cells of N17Rac1, a dominant defective Rac1 mutant, abolished membrane dynamics at early times and delayed cell migration.21 v-Crk-expressing, CAS-deficient MEFs transfected with N17Rac1 did not begin spreading until one hour after being plated on fibronectin, and blocking Rac activity suppressed both membrane dynamics and cell migration. We therefore suggest that v-Crk is involved in cell attachment and spreading, and that this process is mediated by Rac1 activation. In addition, v-Crk expression apparently restores lamellipodium formation and ruffle retraction in CAS-deficient MEFs. Thus v-Crk appears to participate in a variety cellular signaling pathways leading to cell spreading, Rac1 activation, membrane ruffling and cell migration, even in the absence of CAS, its major substrate protein.In fibroblasts, the Rho family of small GTP-binding proteins (e.g., Cdc42, Rac and Rho) functions to control actin cytoskeleton turnover, including filopodium extension, lamellipodium formation and generation of actin stress fibers and focal adhesions.22 These GTPases function in a cascade, such that activation of Cdc42 leads to activation of Rac1, which in turn activates Rho.22 Once activated, Rho controls cell migration. Cell adhesion to ECM leads to the translocation of Rac1 and Cdc42 from the cytosol to the plasma membrane,23 where they regulate actin polymerization at the leading edge.19,24 Dominant negative Rac and Cdc42 mutants inhibit the signaling to cell spreading initiated by the interaction of integrin with ECM.24 The fact that cellular levels of activated Rac are higher in cells adhering to ECM than in suspended cells further suggests that activation of Rac and Cdc42 is a critical step leading to membrane protrusion and ruffle formation. It is noteworthy in this regard that v-Crk is able to induce Rac activation and its translocation to plasma membrane.21Overall, the findings summarized in this article demonstrate that v-Crk participates in several steps leading to cell adhesion and spreading (Fig. 1), and the targeting of v-Crk to focal adhesion sites appears to be a prerequisite for regulation of cell migration and spreading via Rac activation. To fully understand its function, however, it will be necessary to clarify the role of v-Crk in Rac1 and Cdc42 activation initiated by integrin-ECM interactions.Open in a separate windowFigure 1Schematic diagram of v-Crk signaling in MEFs. Cell adhesion signaling initiated by the integrin-ECM interaction triggers v-Crk signaling mediated by Src kinase, after which focal adhesion proteins are tyrosine phosphorylated. These events lead to translocation of Rac from the cytosol to the membrane, where it promotes membrane protrusion and ruffle formation. Under basal conditions, Rac is bound with GDP and is inactive. Upon stimulation, Rac activation is mediated by guanine nucleotide exchange factors (GEFs) that stimulate the release of bound GDP and the binding of GTP. Activation of Rac is transient, however, as it is inactivated by GTPase activating protein (GAP).  相似文献   

10.
11.
Peptide signaling regulates a variety of developmental processes and environmental responses in plants.16 For example, the peptide systemin induces the systemic defense response in tomato7 and defensins are small cysteine-rich proteins that are involved in the innate immune system of plants.8,9 The CLAVATA3 peptide regulates meristem size10 and the SCR peptide is the pollen self-incompatibility recognition factor in the Brassicaceae.11,12 LURE peptides produced by synergid cells attract pollen tubes to the embryo sac.9 RALFs are a recently discovered family of plant peptides that play a role in plant cell growth.Key words: peptide, growth factor, alkalinization  相似文献   

12.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

13.
14.
Non-CG methylation is well characterized in plants where it appears to play a role in gene silencing and genomic imprinting. Although strong evidence for the presence of non-CG methylation in mammals has been available for some time, both its origin and function remain elusive. In this review we discuss available evidence on non-CG methylation in mammals in light of evidence suggesting that the human stem cell methylome contains significant levels of methylation outside the CG site.Key words: non-CG methylation, stem cells, Dnmt1, Dnmt3a, human methylomeIn plant cells non-CG sites are methylated de novo by Chromomethylase 3, DRM1 and DRM2. Chromomethylase 3, along with DRM1 and DRM2 combine in the maintenance of methylation at symmetric CpHpG as well as asymmetric DNA sites where they appear to prevent reactivation of transposons.1 DRM1 and DRM2 modify DNA de novo primarily at asymmetric CpH and CpHpH sequences targeted by siRNA.2Much less information is available on non-CG methylation in mammals. In fact, studies on mammalian non-CG methylation form a tiny fraction of those on CG methylation, even though data for cytosine methylation in other dinucleotides, CA, CT and CC, have been available since the late 1980s.3 Strong evidence for non-CG methylation was found by examining either exogenous DNA sequences, such as plasmid and viral integrants in mouse and human cell lines,4,5 or transposons and repetitive sequences such as the human L1 retrotransposon6 in a human embryonic fibroblast cell line. In the latter study, non-CG methylation observed in L1 was found to be consistent with the capacity of Dnmt1 to methylate slippage intermediates de novo.6Non-CG methylation has also been reported at origins of replication7,8 and a region of the human myogenic gene Myf3.9 The Myf3 gene is silenced in non-muscle cell lines but it is not methylated at CGs. Instead, it carries several methylated cytosines within the sequence CCTGG. Gene-specific non-CG methylation was also reported in a study of lymphoma and myeloma cell lines not expressing many B lineage-specific genes.10 The study focused on one specific gene, B29 and found heavy CG promoter methylation of that gene in most cell lines not expressing it. However, in two other cell lines where the gene was silenced, cytosine methylation was found almost exclusively at CCWGG sites. The authors provided evidence suggesting that CCWGG methylation was sufficient for silencing the B29 promoter and that methylated probes based on B29 sequences had unique gel shift patterns compared to non-methylated but otherwise identical sequences.10 The latter finding suggests that the presence of the non-CG methylation causes changes in the proteins able to bind the promoter, which could be mechanistically related to the silencing seen with this alternate methylation.Non-CG methylation is rarely seen in DNA isolated from cancer patients. However, the p16 promoter region was reported to contain both CG and non-CG methylation in breast tumor specimens but lacked methylation at these sites in normal breast tissue obtained at mammoplasty.11 Moreover, CWG methylation at the CCWGG sites in the calcitonin gene is not found in normal or leukemic lymphocyte DNA obtained from patients.12 Further, in DNA obtained from breast cancer patients, MspI sites that are refractory to digestion by MspI and thus candidates for CHG methylation were found to carry CpG methylation.13 Their resistance to MspI restriction was found to be caused by an unusual secondary structure in the DNA spanning the MspI site that prevents restriction.13 This latter observation suggests caution in interpreting EcoRII/BstNI or EcoRII/BstOI restriction differences as due to CWG methylation, since in contrast to the 37°C incubation temperature required for full EcoRII activity, BstNI and BstOI require incubation at 60°C for full activity where many secondary structures are unstable.The recent report by Lister et al.14 confirmed a much earlier report by Ramsahoye et al.15 suggesting that non-CG methylation is prevalent in mammalian stem cell lines. Nearest neighbor analysis was used to detect non-CG methylation in the earlier study on the mouse embryonic stem (ES) cell line,15 thus global methylation patterning was assessed. Lister et al.14 extend these findings to human stem cell lines at single-base resolution with whole-genome bisulfite sequencing. They report14 that the methylome of the human H1 stem cell line and the methylome of the induced pluripotent IMR90 (iPS) cell line are stippled with non-CG methylation while that of the human IMR90 fetal fibroblast cell line is not. While the results of the two studies are complementary, the human methylome study addresses locus specific non-CG methylation. Based on that data,14 one must conclude that non-CG methylation is not carefully maintained at a given site in the human H1 cell line. The average non-CG site is picked up as methylated in about 25% of the reads whereas the average CG methylation site is picked up in 92% of the reads. Moreover, non-CG methylation is not generally present on both strands and is concentrated in the body of actively transcribed genes.14Even so, the consistent finding that non-CG methylation appears to be confined to stem cell lines,14,15 raises the possibility that cancer stem cells16 carry non-CG methylation while their nonstem progeny in the tumor carry only CG methylation. Given the expected paucity of cancer stem cells in a tumor cell population, it is unlikely that bisulfite sequencing would detect non-CG methylation in DNA isolated from tumor cells since the stem cell population is expected to be only a very minor component of tumor DNA. Published sequences obtained by bisulfite sequencing generally report only CG methylation, and to the best of our knowledge bisulfite sequenced tumor DNA specimens have not reported non-CG methylation. On the other hand, when sequences from cell lines have been reported, bisulfite-mediated genomic sequencing8 or ligation mediated PCR17 methylcytosine signals outside the CG site have been observed. In a more recent study plasmid DNAs carrying the Bcl2-major breakpoint cluster18 or human breast cancer DNA13 treated with bisulfite under non-denaturing conditions, cytosines outside the CG side were only partially converted on only one strand18 or at a symmetrical CWG site.13 In the breast cancer DNA study the apparent CWG methylation was not detected when the DNA was fully denatured before bisulfite treatment.13In both stem cell studies, non-CG methylation was attributed to the Dnmt3a,14,15 a DNA methyltransferase with similarities to the plant DRM methyltransferase family19 and having the capacity to methylate non-CG sites when expressed in Drosophila melanogaster.15 DRM proteins however, possess a unique permuted domain structure found exclusively in plants19 and the associated RNA-directed non-CG DNA methylation has not been reproducibly observed in mammals despite considerable published2023 and unpublished efforts in that area. Moreover, reports where methylation was studied often infer methylation changes from 5AzaC reactivation studies24 or find that CG methylation seen in plants but not non-CG methylation is detected.21,22,25,26 In this regard, it is of interest that the level of non-CG methylation reported in stem cells corresponds to background non-CG methylation observed in vitro with human DNA methyltransferase I,27 and is consistent with the recent report that cultured stem cells are epigenetically unstable.28The function of non-CG methylation remains elusive. A role in gene expression has not been ruled out, as the studies above on Myf3 and B29 suggest.9,10 However, transgene expression of the bacterial methyltransferase M.EcoRII in a human cell line (HK293), did not affect the CG methylation state at the APC and SerpinB5 genes29 even though the promoters were symmetrically de novo methylated at mCWGs within each CCWGG sequence in each promoter. This demonstrated that CG and non-CG methylation are not mutually exclusive as had been suggested by earlier reports.9,10 That observation is now extended to the human stem cell line methylome where CG and non-CG methylation co-exist.14 Gene expression at the APC locus was likewise unaffected by transgene expression of M.EcoRII. In those experiments genome wide methylation of the CCWGG site was detected by restriction analysis and bisulfite sequencing,29 however stem cell characteristics were not studied.Many alternative functions can be envisioned for non-CG methylation, but the existing data now constrains them to functions that involve low levels of methylation that are primarily asymmetric. Moreover, inheritance of such methylation patterns requires low fidelity methylation. If methylation were maintained with high fidelity at particular CHG sites one would expect that the spontaneous deamination of 5-methylcytosine would diminish the number of such sites, so as to confine the remaining sites to those positions performing an essential function, as is seen in CG methylation.3033 However, depletion of CWG sites is not observed in the human genome.34 Since CWG sites account for only about 50% of the non-CG methylation observed in the stem cell methylome14 where methylated non-CG sites carry only about 25% methylation, the probability of deamination would be about 13% of that for CWG sites that are subject to maintenance methylation in the germ line. Since mutational depletion of methylated cytosines has to have its primary effect on the germ line, if the maintenance of non-CG methylation were more accurate and more widespread, one would have had to argue that stem cells in the human germ lines lack CWG methylation. As it is the data suggests that whatever function non-CG methylation may have in stem cells, it does not involve accurate somatic inheritance in the germ line.The extensive detail on non-CG methylation in the H1 methylome14 raises interesting questions about the nature of this form of methylation in human cell lines. A key finding in this report is the contrast between the presence of non-CG methylation in the H1 stem cell line and its absence in the IMR90 human fetal lung fibroblast cell line.14 This suggests that it may have a role in the origin and maintenance of the pluripotent lineage.14By analogy with the well known methylated DNA binding proteins specific for CG methylation,35 methylated DNA binding proteins that selectively bind sites of non-CG methylation are expected to exist in stem cells. Currently the only protein reported to have this binding specificity is human Dnmt1.3638 While Dnmt1 has been proposed to function stoichiometrically39 and could serve a non-CG binding role in stem cells, this possibility and the possibility that other stem-cell specific non-CG binding proteins might exist remain to be been explored.Finally, the nature of the non-CG methylation patterns in human stem cell lines present potentially difficult technical problems in methylation analysis. First, based on the data in the H1 stem cell methylome,40 a standard MS-qPCR for non-CG methylation would be impractical because non-CG sites are infrequent, rarely clustered and are generally characterized by partial asymmetric methylation. This means that a PCR primer that senses the 3 adjacent methylation sites usually recommended for MS-qPCR primer design41,42 cannot be reliably found. For example in the region near Oct4 (Chr6:31,246,431), a potential MS-qPCR site exists with a suboptimal set of two adjacent CHG sites both methylated on the + strand at Chr6:31,252,225 and 31,252,237.14,40 However these sites were methylated only in 13/45 and 30/52 reads. Thus the probability that they would both be methylated on the same strand is about 17%. Moreover, reverse primer locations containing non-CG methylation sites are generally too far away for practical bisulfite mediated PCR. Considering the losses associated with bisulfite mediated PCR43 the likelihood that such an MS-qPCR system would detect non-CG methylation in the H1 cell line or stem cells present in a cancer stem cell niche44,45 is very low.The second difficulty is that methods based on the specificity of MeCP2 and similar methylated DNA binding proteins for enriching methylated DNA (e.g., MIRA,46 COMPARE-MS47) will discard sequences containing non-CG methylation since they require cooperative binding afforded by runs of adjacent methylated CG sites for DNA capture. This latter property of the methylated cytosine capture techniques makes it also unlikely that methods based on 5-methylcytosine antibodies (e.g., meDIP48) will capture non-CG methylation patterns accurately since the stem cell methylome shows that adjacent methylated non-CG sites are rare in comparison to methylated CG sites.14In summary, whether or not mammalian stem cells in general or human stem cells in particular possess functional plant-like methylation patterns is likely to continue to be an interesting and challenging question. At this point we can conclude that the non-CG patterns reported in human cells appear to differ significantly from the non-CG patterns seen in plants, suggesting that they do not have a common origin or function.  相似文献   

15.
Cell migration during wound healing is a complex process that involves the expression of a number of growth factors and cytokines. One of these factors, transforming growth factor-beta (TGFβ) controls many aspects of normal and pathological cell behavior. It induces migration of keratinocytes in wounded skin and of epithelial cells in damaged cornea. Furthermore, this TGFβ-induced cell migration is correlated with the production of components of the extracellular matrix (ECM) proteins and expression of integrins and matrix metalloproteinases (MMPs). MMP digests ECMs and integrins during cell migration, but the mechanisms regulating their expression and the consequences of their induction remain unclear. It has been suggested that MMP-14 activates cellular signaling processes involved in the expression of MMPs and other molecules associated with cell migration. Because of the manifold effects of MMP-14, it is important to understand the roles of MMP-14 not only the cleavage of ECM but also in the activation of signaling pathways.Key words: wound healing, migration, matrix metalloproteinase, transforming growth factor, skin, corneaWound healing is a well-ordered but complex process involving many cellular activities including inflammation, growth factor or cytokine secretion, cell migration and proliferation. Migration of skin keratinocytes and corneal epithelial cells requires the coordinated expression of various growth factors such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), transforming growth factor (TGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), small GTPases, and macrophage stimulating protein (reviewed in refs. 1 and 2). The epithelial cells in turn regulate the expression of matrix metalloproteinases (MMPs), extracellular matrix (ECM) proteins and integrins during cell migration.1,3,4 TGF-β is a well-known cytokine involved in processes such as cell growth inhibition, embryogenesis, morphogenesis, tumorigenesis, differentiation, wound healing, senescence and apoptosis (reviewed in refs. 5 and 6). It is also one of the most important cytokines responsible for promoting the migration of skin keratinocytes and corneal epithelial cells.3,6,7TGFβ has two quite different effects on skin keratinocytes: it suppresses their multiplication and promotes their migration. The TGFβ-induced cell growth inhibition is usually mediated by Smad signaling, which upregulates expression of the cell cycle inhibitor p21WAF1/Cip1 or p12CDK2-AP1 in HaCaT skin keratinocyte cells and human primary foreskin keratinocytes.8,9 Keratinocyte migration in wounded skin is associated with strong expression of TGFβ and MMPs,1 and TGFβ stimulates the migration of manually scratched wounded HaCaT cells.10 TGFβ also induces cell migration and inhibits proliferation of injured corneal epithelial cells, whereas it stimulates proliferation of normal corneal epithelial cells via effects on the MAPK family and Smad signaling.2,7 Indeed, skin keratinocytes and corneal epithelial cells display the same two physiological responses to TGFβ during wound healing; cell migration and growth inhibition. However as mentioned above, TGFβ has a different effect on normal cells. For example, it induces the epithelial to mesenchymal transition (EMT) of normal mammary cells and lens epithelial cells.11,12 It also promotes the differentiation of corneal epithelial cells, and induces the fibrosis of various tissues.2,6The MMPs are a family of structurally related zinc-dependent endopeptidases that are secreted into the extracellular environment.13 Members of the MMP family have been classified into gelatinases, stromelysins, collagenases and membrane type-MMPs (MT-MMPs) depending on their substrate specificity and structural properties. Like TGFβ, MMPs influence normal physiological processes including wound healing, tissue remodeling, angiogenesis and embryonic development, as well as pathological conditions such as rheumatoid arthritis, atherosclerosis and tumor invasion.13,14The expression patterns of MMPs during skin and cornea wound healing are well studied. In rats, MMP-2, -3, -9, -11, -13 and -14 are expressed,15 and in mice, MMP-1, -2, -3, -9, -10 and -14 are expressed during skin wound healing.1 MMP-1, -3, -7 and -12 are increased in corneal epithelial cells during Wnt 7a-induced rat cornea wound healing.16 Wound repair after excimer laser keratectomy is characterized by increased expression of MMP-1, -2, -3 and -9 in the rabbit cornea, and MMP-2, -9 in the rat cornea.17,18 The expression of MMP-2 and -9 during skin keratinocyte and corneal epithelial cell migration has been the most thoroughly investigated, and it has been shown that their expression generally depends on the activity of MMP-14. MMP-14 (MT1-MMP) is constitutively anchored to the cell membrane; it activates other MMPs such as MMP-2, and also cleaves various types of ECM molecules including collagens, laminins, fibronectin as well as its ligands, the integrins.13 The latent forms of some cytokines are also cleaved and activated by MMP-14.19 Overexpression of MMP-14 protein was found to stimulate HT1080 human fibrosarcoma cell migration.20 In contrast, the attenuation of MMP-14 expression using siRNA method decreased fibroblast invasiveness,21 angiogenesis of human microvascular endothelial cells,22 and human skin keratinocyte migration.10 The latter effect was shown to result from lowering MMP-9 expression. Other studies have shown that EGF has a critical role in MMP-9 expression during keratinocyte tumorigenesis and migration.23,24 On the other hand, TGFβ modulates MMP-9 production through the Ras/MAPK pathway in transformed mouse keratinocytes and NFκB induces cell migration by binding to the MMP-9 promoter in human skin primary cultures.25,26 Enhanced levels of pro-MMP-9 and active MMP-9 have also been noted in scratched corneal epithelia of diabetic rats.27There is evidence that MMP-14 activates a number of intracellular signaling pathways including the MAPK family pathway, focal adhesion kinase (FAK), Src family, Rac and CD44, during cell migration and tumor invasion.19,20,28 In COS-7 cells, ERK activation is stimulated by overexpression of MMP-14 and is essential for cell migration.29 These observations all indicate that MMP-14 plays an important role in cell migration, not only by regulating the activity or expression of downstream MMPs but also by processing and activating migration-associated molecules such as integrins, ECMs and a variety of intracellular signaling pathays.30Cell migration during wound healing is a remarkably complex phenomenon. TGFβ is just one small component of the overall process of wound healing and yet it triggers a multitude of reactions needed for cell migration. It is important to know what kinds of molecules are expressed when cell migration is initiated, but it is equally important to investigate the roles of these molecules and how their expression is regulated. Despite the availability of some information about how MMPs and signaling molecules can influence each other, much remains to be discovered in this area. It will be especially important to clarify how MMP-14 influences other signaling pathways since its role in cell migration is not restricted to digesting ECM molecules but also includes direct or indirect activation of cellular signaling pathways.  相似文献   

16.
17.
Multivesicular bodies (MVBs) are spherical endosomal organelles containing small vesicles formed by inward budding of the limiting membrane into the endosomal lumen. In mammalian red cells and cells of immune system, MVBs fuse with the plasma membrane in an exocytic manner, leading to release their contents including internal vesicles into the extracellular space. These released vesicles are termed exosomes. Transmission electron microscopy studies have shown that paramural vesicles situated between the plasma membrane and the cell wall occur in various cell wall-associated processes and are similar to exosomes both in location and in morphology. Our recent studies have revealed that MVBs and paramural vesicles proliferate when cell wall appositions are rapidly deposited beneath fungal penetration attempts or during plugging of plasmodesmata between hypersensitive cells and their intact neighboring cells. This indicates a potential secretion of exosome-like vesicles into the extracellular space by fusion of MVBs with the plasma membrane. This MVB-mediated secretion pathway was proposed on the basis of pioneer studies of MVBs and paramural vesicles in plants some forty years ago. Here, we recall the attention to the occurrence of MVB-mediated secretion of exosomes in plants.Key Words: cell wall, endocytosis, endosome, exocytosis, exosome, multivesicular body, paramural bodyMultivesicular bodies (MVBs) are spherical endosomal organelles containing a number of small vesicles formed by inward budding of the limiting membrane into the endosomal lumen.1 MVBs contain endocytosed cargoes and deliver them into lysosomal/vacuolar compartments for degradation. They also incorporate newly synthesized proteins destined for lysosomal/vacuolar compartments.2 In mammalian cells of hematopoietic origin, endosomal MVBs function in removal of endocytosed surface proteins in an exocytic manner. They are redirected to the plasma membrane, where they release their contents including internal vesicles into the extracellular space by membrane fusion. The released vesicles are termed exosomes.3 During reticulocyte maturation to erythrocyte, a group of surface proteins, such as the transferrin receptor, become obsolete and are discarded via MVB-mediated secretion.3 Time-course transmission electron microscopy (TEM) first revealed that colloidal gold-transferrin was internalized into MVBs via receptor-mediated endocytosis and then transferrin together with its receptor were delivered into the extracellular space via the fusion of MVBs with the plasma membrane of reticulocytes.4 Some other cell types of hematopoietic origin, such as activated platelets, cytotoxic T cells and antigen-presenting cells, also secrete exosomes. Exosomes thus may play a role in various physiological processes other than discarding obsolete proteins.3Our recent TEM studies provided ultrastructural evidence on the enhanced vesicle trafficking in barley leaf cells attacked by the biotrophic powdery mildew fungus. Multivesicular compartments including MVBs, intravacuolar MVBs, and paramural bodies turned out to proliferate in intact host cells during formation of cell wall appositions (papilla response), in the hypersensitive response, and during accommodation of haustoria.5,6 MVBs proliferated in the cytoplasm of haustorium-containing epidermal cells during compatible interactions and near sites of cell wall-associated oxidative microburst either during the papilla response or during the hypersensitive response. Because MVBs in plant cells have been demonstrated to be endosomal compartments,79 they may participate in internalization of nutrients from the apoplast of intact haustorium-containing epidermal cells and sequestration of damaged membranes and deleterious materials originating from the oxidative microburst.5,6 The presence of intravacuolar MVBs with double limiting membranes (Fig. 1A) indicates an engulfment of MVBs by the tonoplast and a vacuole-mediated autophagy of MVBs.5,6 MVBs, as prevacuolar compartments in plant cells,9 thus probably deliver their contents into the central vacuole via both the fusion with the tonoplast and the engulfment by the tonoplast (Fig. 2A and B). On the other hand, paramural bodies, in which small vesicles are situated between the cell wall and the plasma membrane, were associated with cell wall appositions deposited beneath fungal penetration attempts (Fig. 1B) or around hypersensitive cells including sites of plugged plasmodesmata (Fig. 1C and D).5,6 Because paramural vesicles are similar to exosomes both in location and in morphology, we speculated that MVBs fuse with the plasma membrane in an exocytic manner to form paramural bodies.5,6 Endocytosed cell surface materials in endosomal MVBs may be reused and delivered together with newly synthesized materials in Golgi apparatus-derived vesicles to cell wall appositions, which are deposited rapidly to prevent fungal penetration (Fig. 2A) or to contain hypersensitive cell death (Fig. 2B). MVBs thus may be driven along two distinct pathways to deliver their contents into either central vacuole or extracellular space.Open in a separate windowFigure 1Multivesicular compartments in intact cells in barley leaves attacked by the barley powdery mildew fungus. (A) An intravacuolar multivesicular body (MVB) with double limiting membranes in an intact epidermal cell (EC) adjacent to a hypersensitive epidermal cell (EC*). The arrows point to the outer limiting membrane, which is seemingly derived from the tonoplast. Note that neighboring intravacuolar vesicles (in between two arrowheads) may result from degradation of double limiting membranes of intravacuolar MVBs or may be delivered into the vacuole by MVB-fusion with the tonoplast. (B) Paramural vesicles (arrowheads) in a paramural body associated with cell wall appositions (asterisk) deposited by an intact epidermal cell. (C) A multivesicular body (MVB) in contact with a paramural body (PMB) (a nonmedian section) associated with cell wall appositions (asterisk) deposited by an intact mesophyll cell adjacent to a hypersensitive mesophyll cell. Note that cell wall appositions deposit beside an intercellular space (IS). The arrows point to the tonoplast. (D) A paramural body (PMB) associated with cell wall appositions (asterisks) blocking plasmodesmata (in between two arrowheads) at the side of an intact mesophyll cell (MC) underlying a hypersensitive epidermal cell (EC*). The arrows point to the tonoplast. CV, central vacuole; CW, cell wall; MB, microbody. Bars, 1µm.Open in a separate windowFigure 2Hypothetical diagram of delivery of endocytosed cell surface materials via MVBs into the central vacuole or the extracellular space where intact barley cells deposit cell wall appositions. (A) Deposition of cell wall appositions (asterisk) beneath powdery mildew penetration attempts. AGT, appressorial germ tube; PP, penetration peg. (B) Deposition of cell wall appositions (asterisks) against constricted plasmodesmata (PD) between a hypersensitive epidermal cell (EC) penetrated by the powdery mildew fungus and an underlying mesophyll cell (MC). H, haustorium. Arrows and numbers show pathways of vesicle trafficking. 1, Secretion of Golgi-derived vesicles containing newly synthesized materials; G, Golgi body; TGN, trans-Golgi network; 2, Endocytosis of cell surface materials from coated pits (coated open circles) via coated vesicles (coated circles) to multivesicular bodies (MVB); 3, Delivery of endocytosed materials for degradation inside the central vacuole (CV) via membrane fusion between MVBs and the tonoplast (T); small broken circles, vesicles in degradation; 4, Delivery of endocytosed materials for degradation inside the central vacuole via engulfment of MVBs by the tonoplast; large broken circles; MVB limiting membranes in degradation; 5, delivery of endocytosed materials into the extracellular space for deposition of cell wall appositions (asterisks) via membrane fusion between MVBs and the plasma membrane (PM). CW, cell wall; PMB, paramural body. PD0, 1, 2, 3 and 4 represent stages of plugging plasmodesmata. PD0, open plasmodesmata between two intact mesophyll cells (MC) subjacent to the hypersensitive epidermal cell (EC); PD1, constriction of plasmodesmata by callose (grey dots) deposition at plasmodesmal neck region; PD2, constricted plasmodesmata associated with plasmodesma-targeted secretion; PD3, further blocking of plasmodesmata by deposition of cell wall appositions; PD4, completely blocked plasmodesmata.Earlier than the discovery in animal cell systems,4 it was proposed in two independent papers in 1967 that the fusion of MVBs with the plasma membrane might result in the release of small vesicles into the extracellular space in fungi and in higher plants.10,11 Several lines of evidence support the occurrence of MVB-mediated secretion of exosome-like vesicles in plants. First, vesicles of the same morphology as MVB internal vesicles have been observed in extracellular spaces or paramural spaces in various types of plant cells in various plant species by TEM.12 An early study on endocytosis by soybean protoplasts also showed small extracellular vesicles attaching on the plasma membrane.8 Second, cooccurrence of MVBs and paramural vesicles has been observed in processes of cell proliferation, cell differentiation, and cell response to abiotic and biotic stress. Examples are cell plate formation,13,14 secondary wall thickening,15,16 cold hardness,17,18 and deposition of cell wall appositions upon pathogen attack.5,6,1921 Third, identical molecular components, such as arabinogalactan proteins22,23 and peroxidases,6 have been immunolocalized in both MVBs and paramural bodies. Despite these pieces of evidence, a conclusive demonstration of MVB-mediated secretion of exosomes in plants requires further exploration.The presently available experimental systems, approaches, and membrane markers may allow future demonstration of MVB-mediated secretion of exosomes in plants. Recent in vivo real-time observation and colocalization of cell surface and endosomal markers have already revealed that endosomes filled with endocytosed preexisting cell wall and plasma membrane materials are rapidly delivered to cytokinetic spaces to form cell plates in dividing tobacco, Arabidopsis, and maize cells.24 Because TEM observed paramural bodies attaching to cell plates13 and MVBs in the vicinity of cell plates during all stages of cell plate formation,14,25,26 MVBs and paramural bodies may participate in delivery of endocytosed building blocks to cell plates. Jiang''s and Robinson''s labs together developed a transgenic tobacco BY-2 cell line stably expressing a YFP-labeled vacuolar sorting receptor protein and antibodies against the vacuolar sorting receptor protein localized to the limiting membrane of MVBs.9 These tools together with live cell imaging and immunoelectron microscopy may allow visualization of MVB-fusion to the new plasma membrane, of vacuolar sorting receptors in both the limiting membrane of MVBs and the new plasma membrane, and of identical cell plate components in both internal vesicles of MVBs and paramural vesicles.In spite of obvious differences in plant and animal cytokinesis, the generation of cell plates by cell-plate-directed fusion of endosomes resembles the plugging of midbody canals by midbody-directed endosomes to separate daughter cells at the terminal phase of animal cytokinesis.27 Likely, functional similarities of the fusion between endosomal MVBs and the plasma membrane to eliminate unwanted cell contents may also exist in maturation of mammalian red blood cells and plant sieve elements in the sense that the fusion of MVBs with the plasma membrane may occur during maturation of the latter.28 On the other hand, although plant cells may secrete MVB-derived exosomes in defense response upon pathogen attack,5,6 plant cell walls rule out the direct intercellular communication during the immune response mediated by exosomes in the circulation of mammals.3 In contrast, plasmodesma-directed secretion of exosomes would block the cell-to-cell communication between hypersensitive cells and their neighboring cells during hypersensitive response.5 Further exploration will lead us to a better understanding of similarities and differences of exosome secretion between plants and animals.  相似文献   

18.
19.
20.
Cell motility is a highly coordinated multistep process. Uncovering the mechanism of myosin II (MYO2) activation responsible for the contractility underlying cell protrusion and retraction provides clues on how these complementary activities are coordinated. Several protein kinases have been shown to activate MYO2 by phosphorylating the associated myosin light chain (MLC). Recent work suggests that these MLC kinases are strategically localized to various cellular regions during cell migration in a polarized manner. This localization of the kinases together with their specificity in MLC phosphorylation, their distinct enzymatic properties and the distribution of the myosin isoforms generate the specific contractile activities that separately promote the cell protrusion or retraction essential for cell motility.Key words: myosin, MLCK, ROK, MRCK, phosphorylation, cell migrationCell movement is a fundamental activity underlying many important biological events ranging from embryological development to immunological responses in the adult. A typical cell movement cycle entails polarization, membrane protrusion, formation of new adhesions, cell body translocation and finally rear retraction.1 A precise temporal and spatial coordination of these separate steps that take place in different parts of the cell is important for rapid and efficient movement.2One major event during eukaryotic cell migration is the myosin II (MYO2)-mediated contraction that underlies cell protrusion, traction and retraction.1,3 An emerging theme from collective findings is that there are distinct myosin contractile modules responsible for the different functions which are separately regulated by local myosin regulatory light chain (MLC) kinases. These kinases contribute to contractile forces that connect adhesion, protrusion and actin organization.2 Unraveling the regulation of these contractile modules is therefore pivotal to a better understanding of the coordination mechanism.At the lamellipodium, the conventional calcium/calmodulin-dependent myosin light chain kinase (MLCK) has been shown to play an essential role in a Rac-dependent lamellipodial extension.4 Inhibition of calmodulin or MLCK activity by specific photoactivatable peptides in motile eosinophils effectively blocks lamellipodia extension and net movement.5 Furthermore, there is a strong correlation between activated MLCK and phosphorylated MLC within the lamellipodia of Ptk-2 cells as revealed by fluorescence resonance energy transfer (FRET) analysis.6 More recent studies showed MLCK to regulate the formation of focal complexes during lamellipodia extension.7,8 Functionally, MLCK is thought to play a critical role in the environment-sensing mechanism that serves to guide membrane protrusion. It mediates contraction that exerts tension on integrin-extracellular matrix (ECM) interaction, which, depending on the rigidity of the substratum, will lead to either stabilization of adhesion resulting in protrusion or destabilization of attachment seen as membrane ruffling on non-permissive surfaces.8,9As a Rho effector, Rho-associated kinase (ROK/ROCK/Rho-kinase) has been shown to regulate stress fibers and focal adhesion formation by activating myosin, an effect that can be blocked by the specific ROK inhibitor Y-27632.10,11 Myosin activation by ROK is the effect of two phosphorylation events: the direct phosphorylation on MLC and the inhibition of myosin phosphatase through phosphorylation of its associated myosin-binding subunit (MBS).11 Consistent with this notion of a localization-function relationship, ROK and MBS, which can interact simultaneously with activated RhoA,11 have been shown to colocalize on stress fibers.12,13 In migrating cells, Rho and ROK activities have been mostly associated with the regulation of tail retraction, as inhibition of their activities often results in trailing tails due to the loss of contractility specifically confined to the cell rear.14,15 Tail retraction requires high contractile forces to overcome the strong integrin-mediated adhesion established at the rear end, an event which coincides with the strategic accumulation of highly stable and contractile stress fibers that assemble at the posterior region of migrating cells.MRCK was previously shown to phosphorylate MLC and promote Cdc42-mediated cell protrusion.16 More recently, it was found to colocalize extensively with and regulate the dynamics of a specific actomyosin network located in the lamella and cell center, in a Cdc42-dependent manner but independent of MLCK and ROK.17 The lamellar actomyosin network physically overlaps with, but is biochemically distinct from the lamellipodial actin meshwork.9,18 The former network consists of an array of filaments assembled in an arrangement parallel to the leading edge, undergoing continuous retrograde flow across the lamella, with their disassembly occurring at the border of the cell body zone sitting in a deeper region.1719 Retrograde flow of the lamellar network plays a significant role in cell migration as it is responsible for generating contractile forces that support sustained membrane protrusion and cell body advancement.1719It is therefore conceivable that these three known MLC kinases are regulated by different signaling mechanisms at different locations and on different actomyosin contractile modules. The coordination of the various modules will ensure persistent directional migration (Figure 1). Phosphorylation of MLC by PAK and ZIP kinase has also been reported, but their exact roles in this event have yet to be determined.20,21 It is also noteworthy that individual kinases can work independently of each other, as amply shown by evidence from inhibitor treatments. This is particularly true for MRCK in the lamella, whose activity on lamellar actomyosin flow is not affected by ML7 and Y-27632, the inhibitors of MLCK and ROK respectively.17 These findings further indicate that although both ROK and MRCK have been shown to upregulate phosphorylated MLC levels by inhibiting the myosins phosphatases,11,22 they are likely to act as genuine MLC kinases themselves, without the need of MLCK as previously suggested.11Open in a separate windowFigure 1Upper panel depicts a model for the specific activation of the different MLC kinases at various locations in the cell. In response to upstream signals, MLC kinases MLCK, MRCK and ROK are activated and localized to different regions. In the case of MRCK and ROK, the interaction of the GTP-bound Rho GTPase binding domain will determine the specific action of the downstream kinase, resulting in actomyosin contractility at different locations. The coordination of these signalling events is crucial for directional cell migration. Lower panel shows a typical front-rear location for Myosin 2A and 2B in a migrating U2OS cell.In conjunction with their differences in localization, the three MLC kinases show apparent individual preferences and specificity towards the MYO2 isoforms that they associate with. The two major MYO2 isoforms MYO2A and 2B are known to have distinct intracellular distributions that are linked to their individual functions (Figure 1).23,24 In motile cells, MYO2A localization that is skewed towards the protruding cell front is consistent with it being the major myosin 2 component of the lamellar filaments regulated by MRCK as well as its regulation by MLCK in lamellipodial contraction.8,17,19 In contrast, the enrichment of MYO2B at retracting cell rear conforms well with the requirement of thick and stable stress fibers capable of causing tail contraction and prevention of protrusion under the control of Rho/ROK signaling.23,25 The selection for MYO2B filaments in the cell rear stems from their more contractile and stable nature compared with MYO2A, a consequence of their higher time-averaged association with actin.26,27 Conversely, the lower tension property of MYO2A filaments suggests that they are more dynamic in nature,26,27 a characteristic which fits well with the dynamic actomyosin activities at the leading edge and lamella that regulate protrusion.It deserves special mention that the three MLC kinases display subtle differences in their specificity towards MLC. While MLCK and MRCK phosphorylate only a single Ser19 site (monophosphorylation),18,28 ROK is able to act on both Thr18 and Ser19 residues causing diphosphorylation of MLC,29 MLCK only causes diphosphorylation when present at higher concentrations.30 By further increasing its actin-activated ATPase activity, diphosphorylation of MLC has been shown to induce a higher myosin activation and filament stability.3032 The use of specific antibodies that can differentiate between the two populations of phosphorylated MLC has been instrumental in revealing their localization and correlation with the activity of the MLC kinases. The emerging picture from these experiments is that mono and diphosphorylated MLC exhibit distinct distributions in migrating cells, with the monophosphorylated MLC localized more towards the protrusive region, while the diphosphorylated form is more enriched at the posterior end.21,33 Taking into account their biochemical properties, the polarized distributions of these differentially phosphorylated MLC coincide functionally with the segregation of the MYO2 isoforms and their corresponding regulators. These findings provide further support for the existence of segregated contractile modules in migrating cell and their distinctive regulation.The mechanisms that determine the specific segregation of the contractile modules and their regulation are unclear. However, some clues have emerged from recent studies. It has been shown that the C-terminal coiled-coil region of MYO2B is important for determining its localization in cell rear25 and which requires Rho/ROK activity as their inhibition resulted in the loss of this specific localization.23 Correspondingly, the inhibition of MRCK activity resulted in the loss of lamella-localized MYO2A.17 These findings suggest that activation of MYO2 filaments by their upstream regulators is important for their functional segregation and maintenance. It is noteworthy that both ROK and MRCK have distinct regulatory domains including the pleckstrin homology domains which have been shown to be essential for their localization, a process which may involve myosin interaction and lipid-dependent targeting as has been respectively shown for ROK and MRCK.11,13,16 Further, the specificity of MRCK for lamellar actomyosin is believed to be largely determined by the two proteins it forms a complex with: the adaptor LRAP35a, and the MYO2-related MYO18A. Activation of MYO18A by MRCK, a process bridged by LRAP35a, is a crucial step which facilitates MRCK regulation on lamellar MYO2A.17The mechanisms responsible for segregating the contractile modules and their regulators may also comprise a pathway that parallels the microtubule-modulatory Par6/aPKC/GSK3β signalling pathway which regulates cellular polarization. This notion is supported by both Cdc42 and Rho being common upstream regulators of these two pathways.34 GTPase activation may determine the localized activities of the separate contractile modules and create an actomyosin-based asymmetry across the cell body, which together with the microtubule-based activities, result in the formation of a front-back axis important for directional movement. The involvement of MRCK in MTOC reorientation and nuclear translocation events,35 and our unpublished observation that LRAP35a has a GSK3β-dependent microtubule stabilizing function are supportive of a possible cross-talk between these two pathways.In conclusion, the complex regulation of contractility in cell migration emphasizes the importance of the localization, specificity and enzymatic properties of the different MLC kinases and myosin isoforms involved. The initial excitement and confusion caused by the emergence of the different MLC kinases are fading, being now overtaken by the curiosity about how they cooperate and are coordinated while promoting cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号