首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The diversity and heavy metal (HM) tolerance of endophytic fungi (EF) associated with Dysphania ambrosioides, a hyperaccumulator from two Pb–Zn contaminated sites were investigated. A total of 237 culturable EF were isolated and identified to 43 taxa based on morphological characteristics and rDNA internal transcribed spacer analysis, of which 13 occurred as endophytes of both sites, while other taxa were only found in either site. The colonization rate, dominant genera, community structure of EF as well as the HM content in the plant from two sites were significantly different. We suggest that these differences may result from the difference in the soil HM content: lower HM content in the soil, more EF in the plant, which may enhance the plant HM accumulation and thus result higher HM in it. HM tolerance tests indicated that 50% of the isolates exhibited HM tolerance. Among them, two isolates exhibited better HM tolerance, of which FT2G59 could tolerate Pb, Zn, and Cd, and the minimum inhibitory concentration (MIC) of them were 30–50, >?680, 20–30?mmol/l, respectively. While, the isolate FT2G7 could tolerate Cd, and the MIC was 30–50?mmol/l. These isolates may have potential application in phytoremediation.  相似文献   

2.
Abstract

A pot experiment was conducted to investigate the potential influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae and Diversispora spurcum, on the growth and nutrient (P and S) and heavy metal (HMs) (Pb, Zn, and Cd) content of bermudagrass [Cynodon dactylon (L.) Pers.] in a lead-zinc mine wasteland. The D. spurcum inoculation significantly increased the bermudagrass growth, whereas the F. mosseae inoculation did not. The AMF inoculation significantly increased the soil pH and uptake of P, S, and HMs by bermudagrass, decreased the contents of available Pb and Zn in soils and Pb in shoots, reduced the translocation factor (TF) and translocation capacity factor (TF') of Pb and Cd in bermudagrass and increased the TF and TF' of Zn in bermudagrass. A significant negative correlation was found between pH and available HMs in soil, whereas a significant positive correlation was noted between the HMs content and nutrient content in bermudagrass shoots. Experiment results provide evidence of the potential role of AMF in improving bermudagrass performance for the vegetation restoration of metalliferous mine wastelands.  相似文献   

3.
Na  Xiaofan  Ma  Caixia  Ma  Shaolan  Ma  Xiaorong  Zhu  Xiaomei  Xu  Pengxin  Zhu  Haibin  Cao  Xiaoning  Liang  Wenyu 《Plant and Soil》2019,443(1-2):549-564
Plant and Soil - Whether Arbuscular mycorrhizal fungi (AMF) influence community composition by changing plant adaptation to resource limitation remains unclear. This study examined how AMF affect...  相似文献   

4.
The responses of Ri-TDNA-transformed roots and arbuscular mycorrhizal fungi established on Ri-TDNA-transformed roots to lead-amended media was investigated in vitro. At exposure to increasing concentrations of lead (2–10 mg/l[ppm]), three Ri-TDNA-transformed root clones viz., Swa, Swb and Swc, exhibited profuse growth. At exposure to increasing concentrations of lead (0.1–5 ppm), the dual cultures of Ri-TDNA-transformed roots and arbuscular mycorrhizal fungi., Glomus lamellosum/Swa, Glomus intraradices/Swb and Glomus proliferum/Swc, exhibited tolerance to 5 ppm of lead. When subjected to one physiological stress, either exposure to Pb or inoculation with AM fungi, Ri-TDNA-transformed root clones exuded more phenols in the growth medium than retained in the roots. When subjected to dual physiological stress, mycorrhizal Ri-TDNA-transformed roots growing on Pb-enriched medium, the total phenol content increased in the roots and exudation into the medium decreased.  相似文献   

5.
L. Zhang  K. Yan 《Plant biosystems》2013,147(6):1247-1254
The diurnal variations of photosynthesis of three dominant species, including Glycine soja, Phragmites australis, and Cynanchum chinensis, in the Yellow River Delta in China have been studied under the same natural conditions using a Li-6400 portable photosynthesis system. The results showed that the curves of diurnal variations of net photosynthetic rate (PN) of the three plants were different. The diurnal variation of PN on C. chinensis was a midday depression pattern and had two peaks. However, PN of G. soja and P. australis showed single-peak curves. The transpiration rate (E) of G. soja was significantly higher than that of P. australis and C. chinensis, both showed single-peak curves. In general, the diurnal course of stomatal conductance (gs) followed the same pattern of PN. A similar diurnal pattern of intercellular CO2 concentration (Ci), vapor pressure deficit (VPD), and water use efficiency (WUE) was observed among different species. VPD showed single-peak curves, while WUE was characterized by double-peak curves, which was contrary to Ci. Linear correlations among photosynthetic variables and key environmental factors indicate high positive correlations between PN and E, PN and photosynthetic active radiation, PN and leaf temperature (Tleaf), PN and VPD, and between PN and gs except C. chinensis. Negative correlations among PN and relative humidity, PN and Ci were found. The irradiance response curves derived from the leaves were substantially affected by different species. C. chinensis showed highest apparent quantum efficiency, followed by P. australis and G. soja, while apparent dark respiration (Rd), convexity (k), light saturation point, and maximum gross CO2 assimilation rate (Pmax) of G. soja were higher than those of P. australis and C. chinensis. The irradiance response curve of PN and WUE of different plant species followed the same order: G. soja>C. chinensis>P. australis. They were both higher than most of other species. It was concluded that plant species adapting to the saline–alkaline habitat showed higher photosynthesis. In addition, G. soja is also effective to improve saline–alkaline soil quality.  相似文献   

6.
The data on heavy metal (HM) accumulation and detoxification by plants and bacteria in plant–microbial systems (PMS) are reviewed. Bacteria are shown to be the labile component of the system, responsible for a considerable amelioration of HM stress impact on plants and for improved PMS adaptation to heavy metals. Simulation of plant–microbial interactions under conditions of soil contamination by HM revealed the protective role of bacterial migration from the rhizoplane to the rhizosphere.  相似文献   

7.
In bromeliads, nothing is known about the associations fungi form with seeds and seedling roots. We investigated whether fungal associations occur in the seeds and seedling roots of two epiphytic Aechmea species, and we explored whether substrate and fungal associations contribute to seed germination, and seedling survival and performance after the first month of growth. We found a total of 21 genera and 77 species of endophytic fungi in the seeds and seedlings for both Aechmea species by Illumina MiSeq sequencing. The fungal associations in seeds were found in the majority of corresponding seedlings, suggesting that fungi are transmitted vertically. Substrate quality modulated the germination and growth of seedlings, and beneficial endophytic fungi were not particularly crucial for germination but contributed positively to survival and growth. Overall, this study provides the first evidence of an endophytic fungal community in both the seeds and seedlings of two epiphytic bromeliads species that subsequently benefit plant growth.  相似文献   

8.
High-throughput 16S rRNA and 18S rRNA sequencing were performed to study the changes of soil microbial diversity and community structure under different heavy metal pollution levels in Chengxian lead–zinc mining area, Gansu Province. In this study, we characterized the main physicochemical properties, multiple heavy metal pollution, and microbial community structure of the soil in the tailings. The results show that the soil near the tailings pond was alkaline, barren and the heavy metals were seriously polluted. The microbial diversity and richness of S1 and S2 sites were significantly lower than that of CK2 site (P < 0·05), indicating that the heavy metal pollution could change the physicochemical properties and microbial community structure in soil. Among 97 identified core operating taxa of fungal communities, Ascomycota, Teguta and Basidiomycota were dominant at the phylum level, while among 1523 identified core operating taxa of bacterial communities, Actinomycota was dominant at the phylum level. In addition, the redundancy analysis and Spearman correlation analysis showed that the physicochemical properties and the heavy metal concentration had significant effects on the composition and distribution of soil microbial community. The basic characteristics of soil physicochemical properties, multiple heavy metal pollution and microbial community structure in the tailings were revealed, hoping to provide a basis for ecological rehabilitation of tailings by revealing the variance rule of microbial community diversity in the future.  相似文献   

9.
The length–weight relationships (LWRs) for six species were estimated. Fish were captured in the mangroves of Qinzhou Harbour, China, but also some specimens were purchased from fishermen. The sampling was undertaken monthly between May 2011 and April 2012 using seines (mesh size 5–10 mm; height 4 m; length 400 m) and traps (mesh size 8.5 mm; 35 cm2 × 10 m for one unit) at seven sampling sites. Standard length was measured (precision 0.1 cm) and weight determined (precision 0.01 g) after preservation in formaldehyde (10%). Besides the equation parameters a (intercept) and b (slope) we determined also the 95% confidence limits for both parameters as well as the coefficient of correlation.  相似文献   

10.
Biotic interactions play an important role in ecosystem function and structure in the face of global climate change. We tested how plant–plant interactions, namely competition and facilitation among grassland species, respond to extreme drought and heavy rainfall events. We also examined how the functional composition (grasses, forbs, legumes) of grassland communities influenced the competition intensity for grass species when facing extreme events. We exposed experimental grassland communities of different functional compositions to either an extreme single drought event or to a prolonged heavy rainfall event. Relative neighbour effect, relative crowding and interaction strength were calculated for five widespread European grassland species to quantify competition. Single climatic extremes caused species specific shifts in plant–plant interactions from facilitation to competition or vice versa but the nature of the shifts varied depending on the community composition. Facilitation by neighbouring plants was observed for Arrhenatherum elatius when subjected to drought. Contrarily, the facilitative effect of neighbours on Lotus corniculatus was transformed into competition. Heavy rainfall increased the competitive effect of neighbours on Holcus lanatus and Lotus corniculatus in communities composed of three functional groups. Competitive pressure on Geranium pratense and Plantago lanceolata was not affected by extreme weather events. Neither heavy rainfall nor extreme drought altered the overall productivity of the grassland communities. The complementary responses in competition intensity experienced by grassland species under drought suggest biotic interactions as one stabilizing mechanism for overall community performance. Understanding competitive dynamics under fluctuating resources is important for assessing plant community shifts and degree of stability of ecosystem functions.  相似文献   

11.
Duan  Yulong  Wu  Fasi  He  Dongpeng  Gu  Ji-Dong  Feng  Huyuan  Chen  Tuo  Liu  Guangxiu  Wang  Wanfu 《Aerobiologia》2021,37(4):681-694

The deposition of the airborne microorganisms onto cultural heritage is associated closely with the subsequent biodeterioration. In this study, a systematic investigation was carried out to detect the seasonal variation and diversity of airborne fungal concentration at the World Cultural Heritage Site Maijishan Grottoes in western China. A bio-aerosol sampler was deployed to collect samples over four seasons in 2016. The culturable airborne fungi were isolated, purified and then identified with the extraction of genomic DNA, PCR amplification of ITS rRNA region, sequencing, and phylogenetic analysis. The concentrations of culturable fungi ranged from 216 to 1389 CFU/m3, which varied seasonally with significant differences among the sampling sites. Fifteen different fungal genera were confirmed, among them, Cladosporium was the most predominant fungal genus, followed by Penicillium. The fungal community structure and their relationship with environmental factors were also delineated. The spatial–temporal differences of airborne fungi at Maijishan Grottoes were mainly due to height, rainfall, relative humidity, and temperature. The dominant genera Cladosporium and Penicillium may pose potential threats to the ancient painted sculptures and murals, and monitoring of the airborne fungi at such a heritage site could provide supporting data for the pre-warning and control of fungal outbreaks inside the caves for better management.

  相似文献   

12.
13.
Above-ground biomass (AGB) is an important indicator of grassland ecosystem performance. Easily measured plant functional traits (PFTs) may provide useful predictors of the response of plants to grazing. Understanding the response of PFTs to grazing and the relationship between PFTs and AGB is very important for effectively predicting the response of ecosystems to grazing and rangeland management. A grazing experiment was conducted in Gangcha County, Qinghai Province, in the northeastern part of the Qinghai–Tibet Plateau in 2012 and 2013. We investigated the response of PFTs in three dominant species (Elymus nutans, Kobresia humilis, and Stipa purpurea) to grazing, using six stocking rates. Plant height (PH), plant weight, leaf area, and leaf dry biomass of these three dominant species had significantly negative relationships with stocking rate. Leaf thickness (LT) of these three species usually showed a unimodal response to grazing. Specific leaf area generally showed a quadratic relationship with grazing intensity. No consistent effects of grazing were observed on nitrogen content per unit mass (N mass) and nitrogen content per unit area (N area). PH, leaf area, and leaf dry mass (LDM) were positively associated with AGB, but LT, N mass, and N area had no statistically significant association with AGB. We thus conclude that PH, leaf area, and LDM best predict the effects of grazing on AGB. Finally, 2.87 sheep/ha is recommended as the optimal stocking rate in this region to maintain the health of this grassland ecosystem and to allow for sustainable development.  相似文献   

14.
The morphological traits and tolerance to heavy metals (zinc, cadmium and lead) of two populations of Arabidopsis arenosa (Brassicaceae) were compared. One population was from a zinc–lead waste heap in Bolesław near Olkusz (southern Poland), the other one from the Kampinoski National Park (central Poland). Biometric measurements were done in the field and repeated after cultivation under controlled conditions (garden soil, phytotron chamber). Significant heritable morphological differences between the two populations were found. The plants from the waste-heap are smaller in comparison with the reference population, and their leaves are narrower, thicker with fewer trichomes, indicating. genetic adaptation to xerothermic conditions. The level of tolerance to heavy metals (zinc, cadmium, and lead) was compared by the root test. Very high tolerance to the three metals tested was found in the waste-heap population. Its tolerance exceeded that of four other predominant plant species populations growing on the same waste heap that had previously been tested in our laboratory. We consider the waste-heap population of A. arenosa to be a very suitable ecotype for the study of heavy metal tolerance mechanisms in plants. Responsible Editor: SE: Henk Schat.  相似文献   

15.

Background and Aims

Plants display a wide range of traits that allow them to use animals for vital tasks. To attract and reward aggressive ants that protect developing leaves and flowers from consumers, many plants bear extrafloral nectaries (EFNs). EFNs are exceptionally diverse in morphology and locations on a plant. In this study the evolution of EFN diversity is explored by focusing on the legume genus Senna, in which EFNs underwent remarkable morphological diversification and occur in over 80 % of the approx. 350 species.

Methods

EFN diversity in location, morphology and plant ontogeny was characterized in wild and cultivated plants, using scanning electron microscopy and microtome sectioning. From these data EFN evolution was reconstructed in a phylogenetic framework comprising 83 Senna species.

Key Results

Two distinct kinds of EFNs exist in two unrelated clades within Senna. ‘Individualized’ EFNs (iEFNs), located on the compound leaves and sometimes at the base of pedicels, display a conspicuous, gland-like nectary structure, are highly diverse in shape and characterize the species-rich EFN clade. Previously overlooked ‘non-individualized’ EFNs (non-iEFNs) embedded within stipules, bracts, and sepals are cryptic and may represent a new synapomorphy for clade II. Leaves bear EFNs consistently throughout plant ontogeny. In one species, however, early seedlings develop iEFNs between the first pair of leaflets, but later leaves produce them at the leaf base. This ontogenetic shift reflects our inferred diversification history of iEFN location: ancestral leaves bore EFNs between the first pair of leaflets, while leaves derived from them bore EFNs either between multiple pairs of leaflets or at the leaf base.

Conclusions

EFNs are more diverse than previously thought. EFN-bearing plant parts provide different opportunities for EFN presentation (i.e. location) and individualization (i.e. morphology), with implications for EFN morphological evolution, EFN–ant protective mutualisms and the evolutionary role of EFNs in plant diversification.  相似文献   

16.
Compartmentalization—the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)—has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant–pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that—rather than displacing native species from the network—plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant–pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes.  相似文献   

17.
Purpose

In the booming electric vehicle market, the demand for refined cobalt is showing a blowout growth. China is the largest cobalt-refiner and cobalt-importer in the world. However, the life cycle inventory and potential environmental impact from cobalt refining in China have not been clearly illustrated. This paper builds a comprehensive inventory to support the data needs of downstream users of cobalt sulfate. A “cradle-to-gate” life cycle assessment was conducted to provide theoretical support to stakeholders.

Methods

A life cycle assessment was performed based on ISO 14040 to evaluate the potential environmental impact and recognize the key processes. The system boundary of this study contains four stages of cobalt sulfate production: mining, beneficiation, primary extraction, and refining. Except for the experimental data used in the primary extraction stage, all relevant data are actual operating data. The normalization value was calculated based on the latest released global emission and extraction data.

Results and discussion

Normalization results show that the potential impacts of cobalt refining were mainly concentrated in the fossil depletion and freshwater ecotoxicity categories. The beneficiation stage and the refining stage account for 72% and 26% of the total normalization value, respectively. The beneficiation stage needs to consume a lot of chemicals and energy to increase the cobalt content, due to the low grade of cobalt ore in China. Compared with cobalt concentrate, the use of cobalt-containing waste (e.g., cobalt waste from EV batteries) can ease endpoint impact by up to 73%. With the application of the target electricity structure in 2050, the potential impact of China’s cobalt sulfate production on global warming, fossil depletion, and particulates formation can be reduced by 24%, 22%, and 26%, respectively.

Conclusion

Findings indicate that the chemical inputs and electricity consumption are primary sources of potential environmental impact in China’s cobalt sulfate production. Promoting the development of urban mines can reduce excessive consumption of chemicals and energy in the beneficiation stage. The environmental benefits of transforming the electricity structure and using more renewable energy to reduce dependence on coal-based power in the cobalt refining industry were revealed.

  相似文献   

18.
The Qinghai–Tibet Plateau (QTP) is the highest and largest plateau in the world. It covers correspondingly wide geological, topographical, and climatic gradients, and thus hosts greater biodiversity than surrounding lowlands and other high elevation regions. Due to its extreme environmental and biological diversity, the QTP is an ideal region for studying adaptations of plant species under harsh environmental conditions at multiple evolutionary levels. Many recent ecological studies have revealed functions of distinctive morphological features of various plants in the region that improve their reproductive success. Examples include large and showy bracts, hairy inflorescences, and drooping flowers. Numerous other investigations have examined QTP plants' sexual systems, patterns of biomass allocations, and biotic interactions. This paper summarizes recent advances in understanding of morphological adaptations, plant–plant interactions, plant–pollinator interactions, floral color patterns, pollination adaptations, and resource allocation patterns of alpine plants of the QTP. The overall aim is to synthesize current knowledge of the general mechanisms of plant survival and reproduction in this fascinating region.  相似文献   

19.
Spatial patterns and associations of plant species are important for revealing how species interact with each other and with the environment, and hence have important implications for the understanding of species interaction and underlying ecological processes with apparent patterns in temperate desert vegetation. In this paper, the function g (r) was used to characterize the spatial patterns and associations of four dominant woody species in three 1-ha desert plant plots in the desert–oasis ecotone of South Junggar Basin, NW China. The complete spatial randomness null model showed four species exhibited significant aggregations at small scales (<20 m). Anabasis aphylla and Nitraria roborowskii, Haloxylon ammodendron and Reaumuria songarica were spatially positive associations at small scales with the independent null model, while A. aphylla and H. ammodendron, A. aphylla and R. songarica, R. songarica and N. roborowskii species pairs exhibited negative associations at small or moderate scales (20–60 m) in our study. The random labeling null model showed that dead standing plants of A. aphylla were largely determined by the combined effects of intra- and interspecific competition. In addition, the results also indicated that the two main factors of habitat heterogeneity and sandy desertification play important roles in determining spatial distribution patterns and associations of woody species in the desert–oasis ecotone of South Junggar Basin. Thus, the differences of species features in spatial patterns and associations should be paid more attention when planning afforestation and developing conservation strategies.  相似文献   

20.
Acid mine drainage (AMD) represents a serious environmental problem related to sulfide minerals and coal mining. High content of toxic metals and high acidity in AMD adversely affects surface water, groundwater and soil. The abandoned mine of the Smolník deposit in Slovakia is a typical example in this respect. The quality of AMD needs to be monitored and suitable treatment methods need to be developed.The aim of this paper was to demonstrate the technical feasibility of heavy metals removal from AMD using physical–chemical and biological–chemical methods. The base of the physical–chemical method was electrowinning. The principle of the biological–chemical method was the selective sequential precipitation (SSP) of metals with the application of hydrogen sulfide produced by sulfate-reducing bacteria and sodium hydroxide solution. Both the electrowinning and SSP processes decrease the content of heavy metals in AMD. The pre-treatment of AMD by chemical iron–aluminum precipitation (in the case of electrowinning tests) and chemical iron precipitation (in the case of SSP tests) improved the selectivity of the processes. A further aim of the work was the improvement of the SSP.During the electrochemical experiments, 99% Zn removal – under metallic form – and 94% Mn removal – under MnO2 form – both with a high degree of purity, were achieved. The SSP process reached the selective precipitation of chosen metals with 99% efficiency – Fe, Al and Mn in the form of metal hydroxides, Cu and Zn as metal sulfides. The results achieved may be used for designing a process appropriate for the selective recovery of metals from the AMD discharged from the Smolník deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号