首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental canopy gap formation and additions of coarse woody debris (CWD) are techniques intended to mimic the disturbance regime and accelerate the development of northern hardwood forests. The effects of these techniques on biodiversity and ecosystem functioning were investigated by surveying the abundance and diversity of wood-inhabiting fungi in six treatments: (i) unharvested control, (ii) control + fenced to exclude deer, (iii) gap creation + fenced to exclude deer, (iv) gap creation, (v) gap creation + CWD addition, and (vi) CWD addition under closed-canopy. A total of 1,885 fungal occurrences (polyporoid and corticoid fruiting bodies) representing 130 species were recorded on 11 tree species, with eight fungal species accounting for 52 % of all observations. A linear mixed model demonstrated significant differences in the abundance and diversity of wood-inhabiting fungi by treatment, with the gap creation + CWD addition treatment supporting the highest abundance and richness of fungal species. Non-metric multidimensional scaling demonstrated that stumps, sugar maple substrates, medium (20 to <25 cm) and large-diameter (>40 cm) substrates most strongly influenced fungal species occurrences. Rarefaction curves indicated that smaller diameter substrates (<20 cm) supported a rich fungal community, yet substrates in the largest diameter class (>40 cm) supported nearly 25 % of all fungal species detected. Rarefaction curves also highlighted the importance of well-decayed substrates and minor host tree species. A subset of fungal species was significantly more abundant in gap treatments. The results indicate that wood-inhabiting fungi are responsive to forest management intended to promote the structural attributes of old-growth northern hardwood forests.  相似文献   

2.
The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood‐associated species. This is especially alarming given the important role wood‐inhabiting fungi have in the natural decay processes. In the boreal zone, natural broad‐leaved‐dominated, herb‐rich forests are threatened habitats which have high wood‐inhabiting fungal species richness. Fungal diversity in other broadleaved forest habitat types is poorly known. Traditional wood pastures and man‐made afforested fields are novel habitats that could potentially be important for wood‐inhabiting fungi. This study compares species richness and fungal community composition across the aforementioned habitat types, based on data collected for wood‐inhabiting fungi occupying all deadwood diameter fractions. Corticioid and polyporoid fungi were surveyed from 67 130 deadwood particles in four natural herb‐rich forests, four birch‐dominated wood pastures, and four birch‐dominated afforested field sites in central Finland. As predicted, natural herb‐rich forests were the most species‐rich habitat. However, afforested fields also had considerably higher overall species richness than wood pastures. Many rare or rarely collected species were detected in each forest type. Finally, fungal community composition showed some divergence not only among the different habitat types, but also among deadwood diameter fractions. Synthesis and applications: In order to maintain biodiversity at both local and regional scales, conserving threatened natural habitat types and managing traditional landscapes is essential. Man‐made secondary woody habitats could provide the necessary resources and serve as surrogate habitats for many broadleaved deadwood‐associated species, and thus complement the existing conservation network of natural forests.  相似文献   

3.
The effects of biodiversity of aboveground organisms have been widely investigated in a range of ecosystems, yet whether similar responses are also seen in belowground microbial communities, such as ectomycorrhizal (EM) fungi, are little understood. We investigated, in vitro, the effects of a gradient of 1–8 species of EM fungi interacting with substratum carbon:nitrogen (C:N) ratio on biomass production and CO2 efflux. The model experimental systems enabled us to recover and measure biomass of individuals within communities and calculate net selection and complementarity effects. Both biomass and CO2 efflux increased with species richness particularly under high N concentrations. Moreover, net biodiversity effects were largely positive, driven by both selection and complementarity effects. Our results reveal, in pure culture, the implications of EM species richness on community productivity and C cycling, particularly under high N conditions, and constitute the basis for future experiments under natural conditions.  相似文献   

4.
《Fungal biology》2021,125(10):826-833
Agaricus bisporus cultivation is based on a selective substrate prepared by a meticulous composting process where thermophilic and/or thermotolerant fungi might play an important role in straw biomass depolymerization. Since fungi have physiological limitations to survive and grow in high-temperature environments, we set out different pasteurization regimes (57 °C/6 h, 60 °C/2 h, and 68 °C/2 h) to evaluate the impact on the fungal community assembly. The fungal community profile generated by high-throughput sequencing showed shifts in community diversity and composition under different pasteurization regimes. Most of the recovered sequences belong to the Ascomycota phylum. Among 73 species detected, Mycothermus thermophilus, Talaromyces thermophilus, and Thermomyces lanuginosus were the most abundant. In the current study, we outlined that pasteurization regimes can reshape the fungal community in compost which can potentially impact the A. bisporus development.  相似文献   

5.
With a warming and drying climate, coniferous forests worldwide are increasingly threatened by wildfires. We examined how fire impacts ectomycorrhizal (EM) fungi associated with Pinus ponderosa, an important tree species in western North America. In the biodiverse Madrean Sky Islands, P. ponderosa forests exist on insular mountains separated by arid lands. How do EM fungi in these isolated ranges respond to fire, and can data from individual ranges predict community shifts after fire at a regional scale? By comparing areas in two ranges that experienced moderate fires 12–16 y earlier, and proximate areas in each range without recent fire, we reveal pervasive effects on diversity and composition of EM communities more than a decade after moderate fires occurred. Post-fire differences in EM communities in different ranges highlight the challenge of predicting fungal community shifts in these isolated forests, despite similarities of climate, plant communities, and fire severity.  相似文献   

6.
Soil fungi play a crucial role in ecosystem functioning and there is increasing evidence that exotic plants invading forests can affect soil fungal communities. We examined potential effects of the invasive plant Impatiens glandulifera on hyphal biomass of ectomycorrhizal fungi, their genetic diversity and the diversity of other soil fungi in deciduous forests in Switzerland. We compared invaded patches with patches where I. glandulifera had been removed, by establishing pairs of 3-m long transect lines at the edge of seven areas of either type. Along the transects we assessed the length of ectomycorrhizal fungal hyphae using the ‘ingrowth mesh bag method’, and used terminal restriction fragment length polymorphism (T-RFLP) analysis to examine fungal genetic diversity. The invasive plant reduced fungal hyphal biomass by 30–80%: the reduction was largest in the centre of the patch. I. glandulifera did not alter fungal richness, but affected the composition of fungal communities. This is probably the result of a decrease of mycorrhizal fungi, coupled with an increase of saprotrophic fungi. Our findings demonstrate the adverse impacts of an annual invasive plant species on both fungal hyphal biomass and the composition of soil fungal communities. This may negatively affect forest nutrient and carbon cycling, soil stability and the functionality of the fungal community, with major consequences for forest ecosystem functioning.  相似文献   

7.
Successful invaders must overcome biotic resistance, which is defined as the reduction in invasion success caused by the resident community. Soil microbes are an important source of community resistance to plant invasions, and understanding their role in this process requires urgent investigation. Therefore, three forest communities along successional stages and four exotic invasive plant species were selected to test the role of soil microbes of three forest communities in resisting the exotic invasive plant. Our results showed that soil microbes from a monsoon evergreen broadleaf forest (MEBF) (late-successional stage) had the greatest resistance to the invasive plants. Only the invasive species Ipomoea triloba was not sensitive to the three successional forest soils. Mycorrhizal fungi in early successional forest Pinus massonina forest (PMF) or mid-successional forest pine-broadleaf mixed forest (PBMF) soil promoted the growth of Mikania micrantha and Eupatorium catarium, but mycorrhizal fungi in MEBF soil had no significant effects on their growth. Pathogens plus other non-mycorrhizal microbes in MEBF soil inhibited the growth of M. micrantha and E. catarium significantly, and only inhibited root growth of E. catarium when compared with those with mycorrhizal fungi addition. The study suggest that soil mycorrhizal fungi of early-mid-successional forests benefit invasive species M. micrantha and E. catarium, while soil pathogens of late-successional forest may play an important role in resisting M. micrantha and E. catarium. The benefit and resistance of the soil microbes are dependent on invasive species and related to forest succession. The study gives a possible clue to control invasive plants by regulating soil microbes of forest community to resist plant invasion.  相似文献   

8.
《Mycoscience》2019,60(3):156-164
Many Agaricomycotina species are saprobes, playing a fundamental role in nutrient cycling in forest ecosystems by decomposing wood. Little is known about factors affecting diversity of wood-inhabiting fungi in the neotropical, warm temperate native forests of Uruguay. Most of these native forests are riparian harboring about 300 tree species. In this study, we assessed the diversity of wood-inhabiting fungi on wood of different size classes in riparian forests of Uruguay. We recovered 186 species of Agaricomycotina, including 113 corticioid and 58 polyporoid taxa. Eleven taxa accounted for 38% of the all the samples. The highest number of species was found on fine woody debris (FWD, 2–10 cm diam) than coarse woody debris (CWD, >10 cm diam) and very fine woody debris (VFWD, <2 cm diam). Species-accumulation curves did not reach an asymptote for any of the groups or wood diameter classes studied. Polyporoids were more frequently recorded on CWD (61% of collections) and corticioids on VFWD (77%). Species richness estimated by non-parametric estimators indicates an Agaricomycotina species richness between 450 and 700 taxa. Our results show that Uruguayan riparian forests, despite its limited area and fragmentation, support a wood-inhabiting Agaricomycotina diversity comparable to less fragmented forests with more plant diversity.  相似文献   

9.
The significance of arbuscular mycorrhizal fungi (AMF) in the process of plant invasion is still poorly understood. We hypothesize that invasive plants would change local AMF community structure in a way that would benefit themselves but confer less advantages to native plants, thus influencing the extent of plant interactions. An AMF spore community composed of five morphospecies of Glomus with equal density (initial AMF spore community, I-AMF) was constructed to test this hypothesis. The results showed that the invasive species, Solidago canadensis, significantly increased the relative abundance of G. geosperum and G. etunicatum (altered AMF spore community, A-AMF) compared to G. mosseae, which was a dominant morphospecies in the monoculture of native Kummerowia striata. The shift in AMF spore community composition driven by S. canadensis generated functional variation between I-AMF and A-AMF communities. For example, I-AMF increased biomass and nutrient uptake of K. striata in both monocultures and mixtures of K. striata and S. canadensis compared to A-AMF. In contrast, A-AMF significantly enhanced root nitrogen (N) acquisition of S. canadensis grown in mixture. Moreover, mycorrhizal-mediated 15N uptake provided direct evidence that I-AMF and A-AMF differed in their affinities with native and invading species. The non-significant effect of A-AMF on K. striata did not result from allelopathy as root exudates of S. canadensis exhibited positive effects on seed germination and biomass of K. striata under naturally occurring concentrations. When considered together, we found that A-AMF facilitated the invasion of S. canadensis through decreasing competitiveness of the native plant K. striata. The results supported our hypothesis and can be used to improve our understanding of an ecosystem-based perspective towards exotic plant invasion.  相似文献   

10.
Distribution patterns, ecology and habitats of Hericium erinaceus in Slovakia are presented, together with an indication of its population size and dynamics as driven by the type of substratum the fungus feeds on. Basidiomata have been recorded both on living and dead trees, predominantly on oaks (Quercus spp.) but also on European beech (Fagus sylvatica), and at altitudes ranging from 103 to 753 m, which in Slovakia corresponds to warm hilly and upland beech-oak forests. Standing trunks were a more common substratum than fallen trunks. Although the fungus tends to occur in old-growth forests, nearly half of the observations were from managed forests. Given the observed distribution, we conclude that H. erinaceus is not a strict indicator of intact old-growth forests in Slovakia.  相似文献   

11.
The temperate forests of Australia support a high diversity of hypogeous fungi and a wide variety of mycophagous mammals, yet many mammal-fungal relationships are still poorly understood. We studied the seasonal fungal diets of eight sympatric mammals (seven marsupials and one rodent) in a remnant montane eucalypt forest. Fifty-five different fungal taxa were identified from 305 scat samples. Swamp wallabies (Wallabia bicolor), yellow-footed antechinus (Antechinus flavipes) and brown antechinus (A. stuartii) were the primary mycophagists in this community, but all mammals consumed fungi, including three species not previously recorded as mycophagous (eastern grey kangaroo, Macropus giganteus;common wallaroo, Osphranter robustus; and common dunnart, Sminthopsis murina). Winter was the peak season for fungal consumption and dietary diversity of fungi, however, the diversity of taxa ingested varied between species and season. Our work supports the idea that a diverse mycophagous mammal community is important for maintaining natural variation in fungal community composition.  相似文献   

12.
Polypores play a major role in wood decomposition. Based on presence/absence of basidiocarps, it has been shown that richness of polypores in forests is strongly affected by the size of logs. However, no study has addressed the relationship between the log size and basidiocarp production. Here, we examined the relationship between log diameter and number of basidiocarps and volume of the fructification (as surrogate of biomass) of the polypore community in Andean Alder forests from Northwest Argentina. We found a positive relationship between log diameter and basidiocarp production in the whole community analysis (fructifications of all species). This pattern was also followed by dominant species (Bjerkandera adusta, Trametes cubensis and T. versicolor) analyzed individually. The relationship was generally higher for volume of fructification than for number of basidiocarps. Through these effects on basidiocarp production, higher log diameter could promote higher sexual spore production and dispersal hence a higher genetic variability and viable populations of wood-decay species.  相似文献   

13.
Bacteria and fungi drive the cycling of plant litter in forests, but little is known about their role in tropical rain forest nutrient cycling, despite the high rates of litter decay observed in these ecosystems. However, litter decay rates are not uniform across tropical rain forests. For example, decomposition can differ dramatically over small spatial scales between low-diversity, monodominant rain forests, and species-rich, mixed forests. Because the climatic patterns and soil parent material are identical in co-occurring mixed and monodominant forests, differences in forest floor accumulation, litter production, and decomposition between these forests may be biotically mediated. To test this hypothesis, we conducted field and laboratory studies in a monodominant rain forest in which the ectomycorrhizal tree Dicymbe corymbosa forms >80% of the canopy, and a diverse, mixed forest dominated by arbuscular mycorrhizal trees. After 2 years, decomposition was significantly slower in the monodominant forest (P < 0.001), but litter production was significantly greater in the mixed forest (P < 0.001). In the laboratory, we found microbial community biomass was greater in the mixed forest (P = 0.02), and the composition of fungal communities was distinct between the two rain forest types (P = 0.001). Sequencing of fungal rDNA revealed a significantly lower richness of saprotrophic fungi in the monodominant forest (19 species) relative to the species-rich forest (84 species); moreover, only 4% percent of fungal sequences occurred in both forests. These results show that nutrient cycling patterns in tropical forests can vary dramatically over small spatial scales, and that changes in microbial community structure likely drive the observed differences in decomposition.  相似文献   

14.
15.
The structure, function, and ecosystem services of tropical forest depend on its species richness, diversity, dominance, and the patterns of changes in the assemblages of tree populations over time. Long-term data from permanent vegetation plots have yielded a wealth of data on the species diversity and dynamics of tree populations, but such studies have only rarely been undertaken in tropical forest landscapes that support large human populations. Thus, anthropogenic drivers and their impacts on species diversity and community structure of tropical forests are not well understood. Here we present data on species diversity, community composition, and regeneration status of tropical forests in a human-dominated landscape in the Western Ghats of southern India. Enumeration of 40 plots (50 m × 20 m) results a total of 106 species of trees, 76 species of saplings and 79 species of seedlings. Detrended Correspondence Analysis ordination of the tree populations yielded five dominant groups, along disturbance and altitudinal gradients on the first and second axes respectively. Abundant species of the area such as Albizia amara, Nothopegia racemosa and Pleiospermum alatum had relatively few individuals in recruiting size classes. Our data indicate probable replacement of rare, localized, and old-growth ‘specialists’ by disturbance-adapted generalists, if the degradation is continuing at the present scale.  相似文献   

16.
《农业工程》2021,41(5):442-450
The taxonomic richness, population structure, biomass assessment, and geographic distribution of macroalgae were studied between May 2017 and July 2018 from the Moroccan strait of Gibraltar. The study was based on the economic, ecological and environmental interests of macroalgae on a national scale. Samples were harvested by Scuba diving. Sixty-seven species, including one recently introduced in the Strait, have been identified. They were distributed over four classes: Bangiophyceae (2 species), Florideophyceae (36 species), Phaeophyceae (17 species), and Ulvophyceae (12 species). The distribution map of the most abundant agarophytes, Gelidium attenuatum and Pterocladia capillacea, was constructed from GPS and field data using System Information Geographic software. G. attenuatum stands extended from 1 to 7 m depth, with maximum biomass at 1 m. The population analysis revealed thalli up to 15.8 cm long, with the length class 11–13 cm mostly represented. As for the population of P. capillacea, it was located from 0 to 1.50 m depth, with highest biomass at 0–0.50 m depth. Unlike Gelidium, P. capillacea stands were distributed from 5 to 12 cm, with 85% measuring between 7 and 11 cm long. The estimated total biomass of G. attenuatum and P. capillacea was 7.77 ± 3.57 t of fresh weight and distributed on two sectors: Mrisat (66.66%) and Oued-Alian (33.34%). This Finding indicates a relatively low biomass in the strait.  相似文献   

17.
We examined whether sporocarp carbon and nitrogen isotope ratios (δ13C and δ15N values) reflected different functional strategies in 15 species of wood decay fungi. In Finnish Picea abies forests, we compared sporocarp δ13C and δ15N against log diameter, proximity to ground, and three wood decay types, specifically brown rot, nonselective white rot, and selective white rot (targeting hemicellulose and lignin preferentially). In regression analysis (adjusted r2 = 0.576), species accounted for 31% of variability in δ13C, with factors influencing wood δ13C accounting for the remainder. Brown rot fungi and three white rot fungi that selectively attacked hemicellulose (Heterobasidion parviporum, Phellopilus nigrolimitatus, and Trichaptum abietinum) were higher in δ13C than nonselective white rot fungi. This was attributed to greater assimilation of 13C-enriched pentoses from hemicellulose by these fungi. The pathogenic white rot fungus Heterobasidion parviporum had higher δ15N with proximity to ground and increasing log diameter. This suggested that 15N-enriched soil N contributed to decomposing logs and that Heterobasidion growing from a bigger resource base had increased access to soil N. These isotopic patterns accordingly reflected both functional diversity of wood decay fungi and site-specific factors.  相似文献   

18.
《Acta Oecologica》2001,22(2):87-98
In this study, we compared the soil seed bank and current vegetation under coniferous plantations and adjacent native deciduous forests. The objective was to assess how much of the initial plant diversity is retained in such plantations, and the potential to restore this initial plant community from seed bank in case of reversion to broadleave stands. Four stands growing side by side and with different dominant species were selected at two locations (site of Haye: Quercus petraea, Pseudotsuga menziesii, Pinus sylvestris and Picea abies; site of La Petite-Pierre: Quercus petraea, Fagus sylvatica, Pinus sylvestris and Picea abies). In each stand, ground vegetation was surveyed and soil seed bank was sampled. Composition of ground flora and seed bank of stands were quite different: only 11 to 30 % of the species were in both the ground flora and the seed bank. Composition of the seed bank was mainly influenced by site location and sylvicultural practices such as the type of afforestation or the tree cover. Species richness of seed banks and vegetation were higher in the site of Haye than in the site of La Petite-Pierre. Seedling density strongly decreased with stand age. Whereas between 65 and 86 % of species found in the ground vegetation of native deciduous stand were also present in the understory or the seed bank of mature coniferous stands, this was only about 50 % in young coniferous stands. Species of deciduous stands which were absent from coniferous stands were typical of old forests. In contrast, species mainly found in the coniferous stands were often ruderal. In the studied areas, it would be possible to restore up to 86 % of the native deciduous forest vegetation, but some plant species typical of ancient forests may have disappeared during the coniferous stage.  相似文献   

19.
We examined the potential of dendrochronology to assess biomass productivity of individual savanna species from a semi-arid ecosystem in southern Senegal. The 9 tree species examined in this dendrochronologial study included: Acacia macrostachya, Acacia seyal, Balanites aegyptiaca, Combretum glutinosum, Cordyla pinnata, Pterocarpus erinaceus, Terminalia macroptera, Daniellia oliveri, and Combretum nigricans. Dendrochronologial analyses were applied on cross-sectional disks obtained from the tree stem to reconstruct past tree growth (diameter and biomass) histories. Despite challenges with discerning annual tree rings in these savanna species (associated with ring suppression, wedging, indistinct ring boundaries, and fires), tree species (A. macrostachya, A. seyal, and T. macroptera) with the highest dendrochronology potential produced a clear thin band of marginal parenchyma. A. macrostachya had rapid annual diameter and biomass growth increments in the juvenile years (ages 1–10), compared to T. macroptera which showed greater growth past this early juvenile period. Given the same species, generally wetter forests had lower annual and cumulative growth rates that were likely due to increased inter-tree and tree-grass competition for soil moisture in the wetter forests. We concluded that dendrochronology is well suited for retrospective annual biomass assessment in savanna trees of Senegal, West Africa.  相似文献   

20.
《农业工程》2014,34(4):232-238
Coarse woody debris (CWD) characteristics are expected to reflect forest stand features. Few studies evaluated logging-induced stand characteristics of secondary coniferous forests by quantifying the quality and quantity in CWD. After selective logging, the form of secondary forest of Pinus tabulaeformis in the Qinling Mountains is inferior and the regeneration is poor. We measured the CWD characteristics of the forest which had an average CWD biomass amount of 12.56 t hm−2, and was predominated by abundant logs (65.68%), followed by snags (33.13%). The CWD biomass of P. tabulaeformis and Toxicodendron vernicifluum was significantly higher than that of other species, which took up 85.51% of the total. Although there was no significant difference among different diameter sizes (P > 0.05), the CWD biomass of diameter 30–40 cm occupied 46.26% of the total (5.81 t hm−2). Similarly, the CWD biomass of decay class I and II accounted for 39.89% (5.01 t hm−2) and 33.04% (4.15 t hm−2) of the total CWD biomass respectively, despite no significant difference among those 5 decay classes (P > 0.05). The results indicated that the combination of young forest developmental stage caused by past selective logging and natural and anthropogenic disturbances such as strong wind, tapping lacquer, firewood collection, and illegal tree felling played a crucial role in distribution characteristics of CWD in this secondary forest of P. tabulaeformis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号