首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DAP1, a Novel Substrate of mTOR,Negatively Regulates Autophagy   总被引:1,自引:0,他引:1  
  相似文献   

2.
Pathogenic bacteria of the genus Yersinia employ a type III secretion system to inject effector proteins (Yops) into host cells. The Yops down-regulate host cell functions through unique biochemical activities. YopO, a serine/threonine kinase required for Yersinia virulence, is activated by host cell actin via an unknown process. Here we show that YopO kinase is activated by formation of a 1:1 complex with monomeric (G) actin but is unresponsive to filamentous (F) actin. Two separate G-actin binding sites, one in the N-terminal kinase region (amino acids 89-440) and one in the C-terminal guanine nucleotide dissociation inhibitor-like region (amino acids 441-729) of YopO, were identified. Actin binding to both of these sites was necessary for effective autophosphorylation of YopO on amino acids Ser-90 and Ser-95. A S90A/S95A YopO mutant was strongly reduced in substrate phosphorylation, suggesting that autophosphorylation activates YopO kinase activity. In cells the kinase activity of YopO regulated rounding/arborization and was specifically required for inhibition of Yersinia YadA-dependent phagocytosis. Thus, YopO kinase is activated by a novel G-actin binding process, and this appears to be crucial for its anti-host cell functions.  相似文献   

3.
The local anaesthetics (LAs) are widely used for peripheral nerve blocks, epidural anaesthesia, spinal anaesthesia and pain management. However, exposure to LAs for long duration or at high dosage can provoke potential neuronal damages. Autophagy is an intracellular bulk degradation process for proteins and organelles. However, both the effects of LAs on autophagy in neuronal cells and the effects of autophagy on LAs neurotoxicity are not clear. To answer these questions, both lipid LAs (procaine and tetracaine) and amide LAs (bupivacaine, lidocaine and ropivacaine) were administrated to human neuroblastoma SH‐SY5Y cells. Neurotoxicity was evaluated by MTT assay, morphological alterations and median death dosage. Autophagic flux was estimated by autolysosome formation (dual fluorescence LC3 assay), LC3‐II generation and p62 protein degradation (immunoblotting). Signalling alterations were examined by immunoblotting analysis. Inhibition of autophagy was achieved by transfection with beclin‐1 siRNA. We observed that LAs decreased cell viability in a dose‐dependent manner. The neurotoxicity of LAs was tetracaine > bupivacaine > ropivacaine > procaine > lidocaine. LAs increased autophagic flux, as reflected by increases in autolysosome formation and LC3‐II generation, and decrease in p62 levels. Moreover, LAs inhibited tuberin/mTOR/p70S6K signalling, a negative regulator of autophagy activation. Most importantly, autophagy inhibition by beclin‐1 knockdown exacerbated the LAs‐provoked cell damage. Our data suggest that autophagic flux was up‐regulated by LAs through inhibition of tuberin/mTOR/p70S6K signalling, and autophagy activation served as a protective mechanism against LAs neurotoxicity. Therefore, autophagy manipulation could be an alternative therapeutic intervention to prevent LAs‐induced neuronal damage.  相似文献   

4.
Members of the Nogo66 receptor family (NgR) are closely associated with nerve growth inhibition and plasticity in the CNS. All three members, NgR1, NgR2 and NgR3, are GPI anchored and highly glycosylated proteins. The binding and signaling properties of NgR1 are well described, but largely unknown for NgR2. At present the only known ligands are myelin associated glycoprotein (MAG) and amyloid beta precursor protein (APP). Despite the requirement of co-receptors for signaling no other binding partner has been uncovered. To learn more about the interactome of NgR2 we performed pull down experiments and were able to identify F-box protein that recognizes sugar chain 1 (Fbs1) as binding partner. We confirmed this finding with co-immunoprecipitations and in vitro binding assays and showed that the binding is mediated by the substrate recognition domain of Fbs1. As a substrate recognition protein of the SCF complex, Fbs1 binding leads to polyubiquitination and finally degradation of its substrates. This is the first time a member of the Nogo receptor family has been connected with an intracellular degradation pathway, which has not only implications for its production, but also for amyloid deposition in Alzheimer's disease.  相似文献   

5.
6.
《Autophagy》2013,9(9):993-1010
(Macro)autophagy encompasses both an unselective, bulk degradation of cytoplasmic contents as well as selective autophagy of damaged organelles, intracellular microbes, protein aggregates, cellular structures and specific soluble proteins. Selective autophagy is mediated by autophagic adapters, like p62/SQSTM1 and NBR1. p62 and NBR1 are themselves selective autophagy substrates, but they also act as cargo receptors for degradation of other substrates. Surprisingly, we found that homologs of NBR1 are distributed throughout the eukaryotic kingdom, while p62 is confined to the metazoans. As a representative of all organisms having only an NBR1 homolog we studied Arabidopsis thaliana NBR1 (AtNBR1) in more detail. AtNBR1 is more similar to mammalian NBR1 than to p62 in domain architecture and amino acid sequence. However, similar to p62, AtNBR1 homo-polymerizes via the PB1 domain. Hence, AtNBR1 has hybrid properties of mammalian NBR1 and p62. AtNBR1 has 2 UBA domains, but only the C-terminal UBA domain bound ubiquitin. AtNBR1 bound AtATG8 through a conserved LIR (LC3-interacting region) motif and required co-expression of AtATG8 or human GABARAPL2 to be recognized as an autophagic substrate in HeLa cells. To monitor the autophagic sequestration of AtNBR1 in Arabidopsis we made transgenic plants expressing AtNBR1 fused to a pH-sensitive fluorescent tag, a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive yellow fluorescent proteins. This strategy allowed us to show that AtNBR1 is an autophagy substrate degraded in the vacuole dependent on the polymerization property of the PB1 domain and of expression of AtATG7. A functional LIR was required for vacuolar import.  相似文献   

7.
(Macro)autophagy encompasses both an unselective, bulk degradation of cytoplasmic contents as well as selective autophagy of damaged organelles, intracellular microbes, protein aggregates, cellular structures and specific soluble proteins. Selective autophagy is mediated by autophagic adapters, like p62/SQSTM1 and NBR1. p62 and NBR1 are themselves selective autophagy substrates, but they also act as cargo receptors for degradation of other substrates. Surprisingly, we found that homologs of NBR1 are distributed throughout the eukaryotic kingdom, while p62 is confined to the metazoans. As a representative of all organisms having only an NBR1 homolog we studied Arabidopsis thaliana NBR1 (AtNBR1) in more detail. AtNBR1 is more similar to mammalian NBR1 than to p62 in domain architecture and amino acid sequence. However, similar to p62, AtNBR1 homo-polymerizes via the PB1 domain. Hence, AtNBR1 has hybrid properties of mammalian NBR1 and p62. AtNBR1 has 2 UBA domains, but only the C-terminal UBA domain bound ubiquitin. AtNBR1 bound AtATG8 through a conserved LIR (LC3-interacting region) motif and required co-expression of AtATG8 or human GABARAPL2 to be recognized as an autophagic substrate in HeLa cells. To monitor the autophagic sequestration of AtNBR1 in Arabidopsis we made transgenic plants expressing AtNBR1 fused to a pH-sensitive fluorescent tag, a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive yellow fluorescent proteins. This strategy allowed us to show that AtNBR1 is an autophagy substrate degraded in the vacuole dependent on the polymerization property of the PB1 domain and of expression of AtATG7. A functional LIR was required for vacuolar import.  相似文献   

8.
TRAF family proteins are signal-transducing adapter proteins that interact with the cytosolic domains of tumor necrosis factor (TNF) family receptors. Here we show that TRAF1 (but not TRAF2-6) is cleaved by certain caspases in vitro and during TNF-alpha- and Fas-induced apoptosis in vivo. (160)LEVD(163) was identified as the caspase cleavage site within TRAF1, generating two distinct fragments. Significant enhancement of TNF receptor-1 (CD120a)- and, to a lesser extent, Fas (CD95)-mediated apoptosis was observed when overexpressing the C-terminal TRAF1 fragment in HEK293T and HT1080 cells. The same fragment was capable of potently suppressing TNF receptor-1- and TRAF2-mediated nuclear factor-kappaB activation in reporter gene assays, providing a potential mechanism for the enhancement of TNF-mediated apoptosis. Cell death induced by other death receptor-independent stimuli such as cisplatin, staurosporine, and UV irradiation did not result in cleavage of TRAF1, and overexpression of the C-terminal TRAF1 fragment did not enhance cell death in these cases. TRAF1 cleavage was markedly reduced in cells that contain little procaspase-8 protein, suggesting that this apical protease in the TNF/Fas death receptor pathway is largely responsible. These data identify TRAF1 as a specific target of caspases activated during TNF- and Fas-induced apoptosis and illustrate differences in the repertoire of protease substrates cleaved during activation of different apoptotic pathways.  相似文献   

9.
The tumour suppressor RASSF1A is a novel substrate of PKC   总被引:1,自引:0,他引:1  
Verma SK  Ganesan TS  Parker PJ 《FEBS letters》2008,582(15):2270-2276
Ras association domain family 1A (RASSF1A) is a tumour suppressor that contains an amino-terminal cysteine-rich region, similar to the diacylglycerol (DAG)-binding domain (C1 domain) found in the protein kinase C (PKC) family of proteins, and a carboxy-terminal Ras-association (RA) domain. In the present study, RASSF1A was identified as a substrate for PKC. Using classical biochemical approaches, it was established that S197 and S203 within the RA domain of RASSF1A are phosphorylated by PKC in vitro and in vivo. Unlike the WT protein, the S197, 203D double mutant of RASSF1A failed to modulate microtubule organization and perinuclear vimentin collapse. By contrast, the equivalent AA mutant of RASSF1A phenocopied the WT protein. These findings indicate that PKC phosphorylation of RASSF1A regulates its ability to reorganize the microtubule network.  相似文献   

10.
11.
Protein kinases play pivotal roles in numerous cellular functions; however, the specific substrates of each protein kinase have not been fully elucidated. We have developed a novel method called kinase-interacting substrate screening (KISS). Using this method, 356 phosphorylation sites of 140 proteins were identified as candidate substrates for Rho-associated kinase (Rho-kinase/ROCK2), including known substrates. The KISS method was also applied to additional kinases, including PKA, MAPK1, CDK5, CaMK1, PAK7, PKN, LYN, and FYN, and a lot of candidate substrates and their phosphorylation sites were determined, most of which have not been reported previously. Among the candidate substrates for Rho-kinase, several functional clusters were identified, including the polarity-associated proteins, such as Scrib. We found that Scrib plays a crucial role in the regulation of subcellular contractility by assembling into a ternary complex with Rho-kinase and Shroom2 in a phosphorylation-dependent manner. We propose that the KISS method is a comprehensive and useful substrate screen for various kinases.  相似文献   

12.
The inactivation of S6 kinases mimics several aspects of caloric restriction, including small body size, increased insulin sensitivity and longevity. However, the impact of S6 kinase activity on cellular senescence remains to be established. Here, we show that the constitutive activation of mammalian target of rapamycin complex 1 (mTORC1) by tuberous sclerosis complex (TSC) mutations induces a premature senescence programme in fibroblasts that relies on S6 kinases. To determine novel molecular targets linking S6 kinase activation to the control of senescence, we set up a chemical genetic screen, leading to the identification of the nuclear epigenetic factor ZRF1 (also known as DNAJC2, MIDA1, Mpp11). S6 kinases phosphorylate ZRF1 on Ser47 in cultured cells and in mammalian tissues in vivo. Knock-down of ZRF1 or expression of a phosphorylation mutant is sufficient to blunt the S6 kinase-dependent senescence programme. This is traced by a sharp alteration in p16 levels, the cell cycle inhibitor and a master regulator of senescence. Our findings reveal a mechanism by which nutrient sensing pathways impact on cell senescence through the activation of mTORC1-S6 kinases and the phosphorylation of ZRF1.  相似文献   

13.
Reef S  Kimchi A 《Autophagy》2006,2(4):328-330
We recently revealed a novel mechanism by which p19ARF can induce cell death. We found that the p19ARF mRNA encodes an additional shorter isoform from the same open reading frame, named smARF. smARF is a short lived protein, which is rapidly degraded by the proteasome, but accumulates after inappropriate proliferative signals generated by oncogenes. Surprisingly, smARF translocates to the mitochondria, impairs the structure of the mitochondria, and dissipates the mitochondrial membrane potential in a p53 and Bcl-2 family independent manner, ultimately inducing type II caspase-independent autophagic cell death.  相似文献   

14.
15.
16.
Autophagy is a homeostatic process by which misfolded proteins, organelles and cytoplasmic material are engulfed in autophagosomal vesicles and degraded through a lisosomal pathway. FKBP8 is a member of the FK506-binding proteins family (FKBP) usually found in mitochondria and the endoplasmic reticulum. This protein plays a critical role in cell functions such as protein trafficking and folding. In the present report we demonstrate that the depletion of FKBP8 abrogated autophagy activation induced by starvation, whereas the overexpression of this protein triggered the autophagy cascade. We found that FKBP8 co-localizes with ATG14L and BECN1, both members of the VPS34 lipid kinase complex, which regulates the initial steps in the autophagosome formation process. We have also demonstrated that FKBP8 is necessary for VPS34 activity. Our findings indicate that the regulatory function of FKBP8 in the autophagy process depends of its transmembrane domain. Surprisingly, this protein was not found in autophagosomal vesicles, which reinforces the notion that the FKBP8 only participates in the initial steps of the autophagosome formation process. Taken together, our data provide evidence that FKBP8 modulates the early steps of the autophagosome formation event by interacting with the VPS34 lipid kinase complex.SummaryIn this article, the protein FKBP38 is reported to be a novel modulator of the initial steps of the autophagic pathway, specifically in starvation-induced autophagy. FKBP38 interacts with the VPS34 lipid kinase complex, with the transmembrane domain of FKBP38 being critical for its biological function.  相似文献   

17.
The two-component regulatory system Nod-VW of Bradyrhizobium japonicum is essential for the nodulation of the legume host plants Vigna radiata, V. unguiculata and Macroptilium atropurpureum. The NodV protein shares homology with the sensor-kinases, whereas the NodW protein is a member of the response-regulator class. We report here the identification of a new B. japonicum DNA region that is able to suppress the phenotypic defect of a nodW mutant, provided that this region is expressed from a foreign promoter. The minimal complementing region, which itself is not essential for nodulation in a nodW + background, consists of one gene designated nwsB (nodW-suppressor). The deduced amino acid sequence of the nwsB gene product shows a high degree of homology to NodW. The nwsB gene is preceded by a long open reading frame, nwsA, whose putative product appears to be a sensor-kinase. Downstream of nwsB, an open reading frame encoding a second putative response-regulator was identified. Interspecies hybridization revealed the presence of nwsAB-like DNA also in other Bradyrhizobium strains. Using nwsB′-′lacZ fusions, the nwsB gene was found to be expressed rather weakly in B. japonicum. This low level of expression is obviously not sufficient to compensate for a nodW ? defect, whereas strong overexpression of nwsB is a condition that leads to suppression of the nodW ? mutation.  相似文献   

18.
Protein kinase CK2 is a pleiotropic serine/threonine kinase responsible for the generation of a substantial proportion of the human phosphoproteome. CK2 is generally found as a tetramer with two catalytic, α and α′ and two non catalytic β subunits. CK2α C-terminal tail phosphorylation is regulated during the mitotic events and the absence of these phosphosites in α′ suggests an isoform specialization. We used a proteomic approach to identify proteins specifically phosphorylated by a CK2α phosphomimetic mutant, CK2αT344ET360ES362ES370E (CK2α4E), in human neuroblastoma SKNBE cellular extract. One of these proteins is lysine-specific demethylase 1 (LSD1 or KDM1A), an important player of the epigenetic machinery. LSD1 is a FAD-dependent amine oxidase and promotes demethylation of lysine 4 and lysine 9 of mono- and di-methylated histone H3. We found that LSD1 is a new substrate and an interacting partner of protein kinase CK2. Three CK2 phosphosites, (Ser131, Ser137 and Ser166) in the N-terminal region of LSD1 have been identified. This domain is found in all chordates but not in more ancient organisms and it is not essential for LSD1 catalytic event while it could modulate the interaction with CK2 and with other partners in gene repressing and activating complexes. Our data support the view that the phosphorylation of the N-terminal domain by CK2 may represent a mechanism for regulating histone methylation, disclosing a new role for protein kinase CK2 in epigenetics.  相似文献   

19.
Cytoskeletal adaptor proteins serve vital functions in linking the internal cytoskeleton of cells to the cell membrane, particularly at sites of cell-cell and cell-matrix interactions. The importance of these adaptors to the structural integrity of the cell is evident from the number of clinical disease states attributable to defects in these networks. In the heart, defects in the cytoskeletal support system that surrounds and supports the myofibril result in dilated cardiomyopathy and congestive heart failure. In this study, we report the cloning and characterization of a novel cytoskeletal adaptor, obscurin-like 1 (OBSL1), which is closely related to obscurin, a giant structural protein required for sarcomere assembly. Multiple isoforms arise from alternative splicing, ranging in predicted molecular mass from 130 to 230 kDa. OBSL1 is located on human chromosome 2q35 within 100 kb of SPEG, another gene related to obscurin. It is expressed in a broad range of tissues and localizes to the intercalated discs, to the perinuclear region, and overlying the Z lines and M bands of adult rat cardiac myocytes. Further characterization of this novel cytoskeletal linker will have important implications for understanding the physical interactions that stabilize and support cell-matrix, cell-cell, and intracellular cytoskeletal connections.  相似文献   

20.
Cell cycle arrest in G0 and autophagy have features in common, but the inter-relationship between the two processes is not well defined. The anti-apoptosis molecules BCL-2 and BCL-xL promote G0 arrest through upregulation of p27 protein, which can also induce autophagy. We tested the hypothesis that autophagy was involved in the cell cycle arrest function of BCL-2 and BCL-xL. We found that in IL-3-dependent FL5.12 cells, NIH3T3 cells, and mouse embryo fibroblasts induced to arrest, treatment with 3-methyladenine did not affect the expected decrease in cell size and ribosomal RNA synthesis, or upregulation of p27 levels. Using the m5-7 ATG5-/- MEF cell line with doxycycline-regulated ATG5 expression, we demonstrated that autophagy was activated during serum withdrawal and contact inhibition, but inhibition of autophagy had no measurable effect on G0 arrest in parental or BCL-xL-expressing cells. Thus, our data indicate that, in cell culture models, autophagy occurs but is not required for entrance into quiescence or for the G0 function of BCL-2 or BCL-xL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号