共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(8):1078-1089
Autophagy, an intracellular system for delivering portions of cytoplasm and damaged organelles to lysosomes for degradation/recycling, plays a role in many physiological processes and is disturbed in many diseases. We recently provided evidence for the role of autophagy in Pompe disease, a lysosomal storage disorder in which acid alphaglucosidase, the enzyme involved in the breakdown of glycogen, is deficient or absent. Clinically the disease manifests as a cardiac and skeletal muscle myopathy. The current enzyme replacement therapy (ERT) clears lysosomal glycogen effectively from the heart but less so from skeletal muscle. In our Pompe model, the poor muscle response to therapy is associated with the presence of pools of autophagic debris. To clear the fibers of the autophagic debris, we have generated a Pompe model in which an autophagy gene, Atg7, is inactivated in muscle. Suppression of autophagy alone reduced the glycogen level by 50–60%. Following ERT, muscle glycogen was reduced to normal levels, an outcome not observed in Pompe mice with genetically intact autophagy. The suppression of autophagy, which has proven successful in the Pompe model, is a novel therapeutic approach that may be useful in other diseases with disturbed autophagy. 相似文献
2.
3.
4.
To better understand the role of lysosomes in apoptosis, we compared the responses to apoptotic stimuli of normal fibroblasts with those of inclusion cells (I-cells), i.e., fibroblasts with impaired function of lysosomal enzymes due to their missorting and ensuing nonlysosomal localization. Although both cell types did undergo apoptosis when exposed to the lysosomotropic detergent MSDH, the redox-cycling quinone naphthazarin, or the protein kinase inhibitor staurosporine, I-cells exerted a markedly decreased response to these agonists than did normal fibroblasts. Furthermore, leupeptin and pepstatin A (inhibitors of cysteine and aspartic proteases, respectively) suppressed staurosporine-induced apoptosis of normal fibroblasts, whereas survival of I-cells was unaffected. These findings give further support for the involvement of lysosomal enzymes in apoptosis and suggest I-cells as a suitable model for studying the role of lysosomes in programmed cell death. 相似文献
5.
A disease of Angus cattle previously known as pseudolipidosis has been shown to be an inherited lysosomal storage disease, in which an oligosaccharide containing mannose and glucosamine is the storage substance. Diseased animals have a near-absolute deficiency of the lysosomal enzyme, alpha-mannosidase, whereas heterozygotes have a partial deficiency of this enzyme. The condition is analogous to the human disease known as mannosidosis. 相似文献
6.
Macroautophagy (henceforth referred to simply as autophagy) is a bulk degradation process involved in the clearance of long-lived proteins, protein complexes and organelles. A portion of the cytosol, with its contents to be degraded, is enclosed by double-membrane structures called autophagosomes/autophagic vacuoles, which ultimately fuse with lysosomes where their contents are degraded. In this review, we will describe how induction of autophagy is protective against toxic intracytosolic aggregate-prone proteins that cause a range of neurodegenerative diseases. Autophagy is a key clearance pathway involved in the removal of such proteins, including mutant huntingtin (that causes Huntington’s disease), mutant ataxin-3 (that causes spinocerebellar ataxia type 3), forms of tau that cause tauopathies, and forms of alpha-synuclein that cause familial Parkinson’s disease. Induction of autophagy enhances the clearance of both soluble and aggregated forms of such proteins, and protects against toxicity of a range of these mutations in cell and animal models. Interestingly, the aggregates formed by mutant huntingtin sequester and inactivate the mammalian target of rapamycin (mTOR), a key negative regulator of autophagy. This results in induction of autophagy in cells with these aggregates. 相似文献
7.
Juan M. Mucci Florencia Suqueli García Pablo N. de Francesco Romina Ceci S. Di Genaro Carlos A. Fossati M. Victoria Delpino Paula A. Rozenfeld 《Gene》2013
Gaucher disease (GD) is caused by mutations in the GBA gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to accumulation of the glycolipid glucocerebroside in the lysosomes of cells of monocyte/macrophage system. Type I GD is the mildest form and is characterized by the absence of neuronopathic affection. Bone compromise in Gaucher disease patients is the most disabling aspect of the disease. However, pathophysiological aspects of skeletal alterations are still poorly understood. 相似文献
8.
Gaëlle Douillard-Guilloux Vincent Mouly Emmanuel Richard 《Biochemical and biophysical research communications》2009,388(2):333-338
Glycogen storage disease type II (GSDII) is an autosomal recessive disorder caused by defects in the acid α-glucosidase (GAA) gene leading to lysosomal glycogen accumulation, mainly in cardiac and muscle tissues. In order to facilitate biological investigation on this disease and to avoid time-consuming direct cell isolation and culture, we have established murine myogenic GSDII cell lines. Lentiviral/retroviral expression of SV40 T antigen, Bmi-1 or cyclin-dependent kinase 4 (CDK4) genes was used to induce the immortalization of primary satellite cells from GSDII mice. The resulting immortalized myoblasts exhibit phenotypic characteristics of their parental cells, including profound GAA deficiency, glycogen accumulation and the ability to fully differentiate into myotubes when placed in proper culture conditions. These cell lines will constitute a powerful tool for both basic and applied studies focused on a better understanding of the pathophysiological mechanisms involved in GSDII and for assessing putative therapeutic strategies. 相似文献
9.
Victor Matheu Alexandra Treschow Ingrid Teige Vaidrius Navikas Shohreh Issazadeh-Navikas 《Respiratory research》2005,6(1):25
Background
CpG oligodeoxynucleotides (CpG-ODN) are capable of inducing high amounts of type I IFNs with many immunomodulatory properties. Furthermore, type-I IFNs have been proposed to play a key role in mediating effects of CpG-ODN. The precise role of IFN-β in the immunomodulatory effects of CpG-ODN is not known.Objective
Here, we aimed to elucidate the role of IFN-β in the anti-allergic effect of CpG motifs.Methods
We assessed the immune response in OVA-primed/OVA-challenged IFN-β knockout (-/-) mice compared to wild type (WT) control, after intranasal and systemic treatment with synthetic CpG motifs.Results
Vaccination with CpG-ODN reduced the number of cells in airways of OVA-sensitized WT but not IFN-β-/- mice. Although airway eosinophilia was reduced in both treated groups, they were significantly higher in IFN-β-/- mice. Other inflammatory cells, such as lymphocytes and macrophages were enhanced in airways by CpG treatment in IFN-β-/- mice. The ratio of IFN-γ/IL-4 cytokines in airways was significantly skewed to a Th1 response in WT compared to IFN-β-/- group. In contrast, IL-4 and IgE were reduced with no differences between groups. Ag-specific T-cell proliferation, Th1-cytokines such as IFN-γ, IL-2 and also IL-12 were significantly lower in IFN-β-/- mice. Surprisingly, we discovered that intranasal treatment of mice with CpG-ODN results in mild synovitis particularly in IFN-β-/- mice.Conclusion
Our results indicate that induction of Th1 response by therapy with CpG-ODN is only slightly and partially dependent on IFN-β, while IFN-β is not an absolute requirement for suppression of airway eosinophilia and IgE. Furthermore, our finding of mild synovitis is a warning for possible negative effects of CpG-ODN vaccination. 相似文献10.
Shimada Y Nishida H Nishiyama Y Kobayashi H Higuchi T Eto Y Ida H Ohashi T 《Biochemical and biophysical research communications》2011,(2):274-278
Pompe disease (glycogen storage disease type II) is an autosomal recessive myopathic disorder arising from the deficiency of lysosomal acid α-glucosidase (GAA). Recently, we found that mutant GAA in patient fibroblasts carrying c.546G>T mutation is stabilized by treatment with proteasome inhibitor as well as pharmacological chaperon N-butyl-deoxynojirimycin. In this study, we characterized the effect of two proteasome inhibitors, bortezomib and MG132, on maturation, subcellular localization and residual activity of mutant GAA in the patient fibroblasts carrying c.546G>T mutation. Each proteasome inhibitor promoted the stabilization of patient GAA and processing of them to mature forms without cytotoxic effect. Immunocytochemical analysis showed increased colocalization of GAA with the lysosomal marker LAMP2 in patient fibroblasts treated with proteasome inhibitors. Furthermore, bortezomib and MG132 also increased enzyme activity in the patient fibroblasts (about 4-fold and 2-fold, respectively). These findings indicate that proteasome inhibitor may be a novel drug as potential pharmacological chaperone therapy for Pompe disease patient carrying chaperon-responsive mutation. 相似文献
11.
《Autophagy》2013,9(2):224-227
In the past twenty years, evidence has accumulated to show that ubiquitinated proteins are a consistent feature of the intraneuronal protein aggregates (inclusions) that characterize chronic neurodegenerative disease. These findings may indicate that age-related dysfunction of the 26S proteasome may be central to disease pathogenesis. The aggregate-prone proteins can also be eliminated by autophagy. We have used the Cre-recombinase/loxP genetic approach to ablate the proteasomal psmc1 ATPase gene and deplete 26S proteasomes in neurons in different regions of the brain to mimic neurodegeneration. Deletion of the gene in dopaminergic neurons in the substantia nigra generates a new model of Parkinson’s disease. Ablation of the gene in the forebrain creates the first model of dementia with Lewy bodies. In both neuroanatomical regions, gene ablation causes the formation of Lewy-like inclusions together with extensive neurodegeneration. There is some evidence for neuronal autophagy in areas adjacent to inclusions. The models indicate that neuronal loss in neurodegenerative diseases can be attributed to proteasomal malfunction accompanied by Lewy-like inclusions as seen in dementia with Lewy bodies and Parkinson’s disease. 相似文献
12.
Valentina Cecarini Laura Bonfili Massimiliano Cuccioloni Matteo Mozzicafreddo Giacomo Rossi Laura Buizza Daniela Uberti Mauro Angeletti Anna Maria Eleuteri 《生物化学与生物物理学报:疾病的分子基础》2012,1822(11):1741-1751
Alzheimer's disease is the most common progressive neurodegenerative disorder characterized by the abnormal deposition of amyloid plaques, likely as a consequence of an incorrect processing of the amyloid-β precursor protein (AβPP). Dysfunctions in both the ubiquitin–proteasome system and autophagy have also been observed. Recently, an extensive cross-talk between these two degradation pathways has emerged, but the exact implicated processes are yet to be clarified. In this work, we gained insight into such interplay by analyzing human SH-SY5Y neuroblastoma cells stably transfected either with wild-type AβPP gene or 717 valine-to-glycine AβPP-mutated gene. The over-expression of the AβPP mutant isoform correlates with an increase in oxidative stress and a remodeled pattern of protein degradation, with both marked inhibition of proteasome activities and impairment in the autophagic flux. To compensate for this altered scenario, cells try to promote the autophagy activation in a HDAC6-dependent manner. The treatment with amyloid-β42 oligomers further compromises proteasome activity and also contributes to the inhibition of cathepsin-mediated proteolysis, finally favoring the neuronal degeneration and suggesting the existence of an Aβ42 threshold level beyond which proteasome-dependent proteolysis becomes definitely dysfunctional. 相似文献
13.
Alzheimer's disease (AD) is a neurodegenerative disorder that leads to progressive cognitive decline. Recent studies from our group and others have suggested that certain G-protein coupled receptors (GPCRs) can influence the processing of the amyloid precursor protein (APP). Earlier, we demonstrated that stimulation of a chemokine receptor, CXCR2, results in enhanced γ-secretase activity and in increased amyloid-beta (Aβ) production. Taken together, results obtained from in vitro studies indicate that therapeutic targeting of CXCR2 might aid in lowering Aβ levels in the AD brain. To better understand the precise function and to predict the consequences of CXCR2 depletion in the AD brain, we have crossed CXCR2 knockout mice with mice expressing presenilin (PS1 M146L) and APPsw mutations (PSAPP). Our present study confirms that CXCR2 depletion results in reduction of Aβ with concurrent increases of γ-secretase substrates. At the mechanistic level, the effect of CXCR2 on γ-secretase was not found to occur via their direct interaction. Furthermore, we provide evidence that Aβ promotes endocytosis of CXCR2 via increasing levels of CXCR2 ligands. In conclusion, our current study confirms the regulatory role of CXCR2 in APP processing, and poses it as a potential target for developing novel therapeutics for intervention in AD. 相似文献
14.
15.
When cells are induced to undergo apoptosis in the presence of general caspase inhibitors and then returned to their normal growth environment, there follows an extended period of life during which the entire cohort of mitochondria (including mitochondrial DNA) disappears from the cells. This phenomenon is widespread; it occurs in NGF-deprived sympathetic neurons, in NGF-maintained neurons treated with cytosine arabinoside, and in diverse cell lines treated with staurosporine, including HeLa, CHO, 3T3 and Rat 1 cells. Mitochondrial removal is highly selective since the structure of all other organelles remains unperturbed. Since Bcl2 overexpression blocks the removal of mitochondria without preventing death-inducing signals, it appears that the mitochondria are responsible for initiating their own demise. Degradation of mitochondria is not in itself a rare event. It occurs in large part by autophagy during normal cell house-keeping, during ecdysis in insects, as well as after induction of apoptosis. However, the complete and selective removal of an entire cohort of mitochondria in otherwise living mammalian cells has not been described previously. These findings raise several questions. What are the mechanisms which remove mitochondria in such a 'clean' fashion? What are the signals that target mitochondria for such selective degradation? How are cells that have lost their mitochondria different from rho0 cells (which retain mitochondria but lack mitochondrial DNA, and cannot carry out oxidative phosphorylation)? Are the cells which have lost mitochondria absolutely committed to die or might they be repaired by mitochondrial therapy? The answers will be especially relevant when considering treatment of diseases affecting long-lived and non-renewable organs such as the nervous system. 相似文献
16.
R Khanna JJ Flanagan J Feng R Soska M Frascella LJ Pellegrino Y Lun D Guillen DJ Lockhart KJ Valenzano 《PloS one》2012,7(7):e40776
Pompe disease is an inherited lysosomal storage disease that results from a deficiency in the enzyme acid α-glucosidase (GAA), and is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. Recombinant human GAA (rhGAA) is the only approved enzyme replacement therapy (ERT) available for the treatment of Pompe disease. Although rhGAA has been shown to slow disease progression and improve some of the pathophysiogical manifestations, the infused enzyme tends to be unstable at neutral pH and body temperature, shows low uptake into some key target tissues, and may elicit immune responses that adversely affect tolerability and efficacy. We hypothesized that co-administration of the orally-available, small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) may improve the pharmacological properties of rhGAA via binding and stabilization. AT2220 co-incubation prevented rhGAA denaturation and loss of activity in vitro at neutral pH and 37°C in both buffer and blood. In addition, oral pre-administration of AT2220 to rats led to a greater than two-fold increase in the circulating half-life of intravenous rhGAA. Importantly, co-administration of AT2220 and rhGAA to GAA knock-out (KO) mice resulted in significantly greater rhGAA levels in plasma, and greater uptake and glycogen reduction in heart and skeletal muscles, compared to administration of rhGAA alone. Collectively, these preclinical data highlight the potentially beneficial effects of AT2220 on rhGAA in vitro and in vivo. As such, a Phase 2 clinical study has been initiated to investigate the effects of co-administered AT2220 on rhGAA in Pompe patients. 相似文献
17.
D Ciavardelli E Silvestri A Del Viscovo M Bomba D De Gregorio M Moreno C Di Ilio F Goglia L M T Canzoniero S L Sensi 《Cell death & disease》2010,1(10):e90
The triple-transgenic Alzheimer (3 × Tg-AD) mouse expresses mutant PS1M146V, APPswe, and tauP301L transgenes and progressively develops plaques and neurofibrillary tangles with a temporal- and region-specific profile that resembles the neuropathological progression of Alzheimer''s disease (AD). In this study, we used proteomic approaches such as two-dimensional gel electrophoresis and mass spectrometry to investigate the alterations in protein expression occurring in the brain and cerebellum of 3 × Tg-AD and presenilin-1 (PS1) knock-in mice (animals that do not develop Aβ- or tau-dependent pathology nor cognitive decline and were used as control). Finally, using the Ingenuity Pathway Analysis we evaluated novel networks and molecular pathways involved in this AD model. We identified several differentially expressed spots and analysis of 3 × Tg-AD brains showed a significant downregulation of synaptic proteins that are involved in neurotransmitter synthesis, storage and release, as well as a set of proteins that are associated with cytoskeleton assembly and energy metabolism. Interestingly, in the cerebellum, a structure not affected by AD, we found an upregulation of proteins involved in carbohydrate metabolism and protein catabolism. Our findings help to unravel the pathogenic brain mechanisms set in motion by mutant amyloid precursor protein (APP) and hyperphosphorylated tau. These data also reveal cerebellar pathways that may be important to counteract the pathogenic actions of Aβ and tau, and ultimately offer novel targets for therapeutic intervention. 相似文献
18.
Yang Yuqian Liao Yuexia Ma Yan Gong Weijuan Zhu Guoqiang 《Applied microbiology and biotechnology》2017,101(21):7781-7787
Applied Microbiology and Biotechnology - Adherent-invasive Escherichia coli (AIEC) has recently attracted more attention because it is closely related to the pathogenicity of human inflammatory... 相似文献
19.
André Lindner 《Ecological Engineering》2010,36(12):1769-1773
This study represents a small-scale approach to forest structure and biomass in the Atlantic Rainforest in Brazil and provides information on an ecosystem in which there still is a lack of data in this regard.The project was carried out in the National Park “Serra dos Orgãos” in the state of Rio de Janeiro, which is one of the largest remnants of continuous forest in this area. This forest is marked by a mosaic of forest types differing in tree composition and structure. Within this heterogeneous habitat the stand structure in three investigation plots was assessed to estimate the above-ground dry biomass (AGB) for all trees with a dbh ≥ 5 cm.This study indicates the structural diversity of the Atlantic Rainforest. Trees with a dbh > 30 cm were represented by 6% of all sampled individuals (18 out of 318 trees), but contributed 72% of total estimated AGB. The results suggest that big trees in the Atlantic Rainforest may contribute more into total AGB as reported for other tropical rainforests. Small-scale structural approaches like this study are able to form an initiating framework of more detailed results and help to improve estimates on biomass amounts and therefore on carbon storage capacity. 相似文献
20.
Goff JP Koszewski NJ Haynes JS Horst RL 《American journal of physiology. Gastrointestinal and liver physiology》2012,302(4):G460-G469
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D] has been shown to inhibit development of dextran sodium sulfate (DSS)-induced colitis in mice but can also cause hypercalcemia. The aim of this study was to evaluate whether β-glucuronides of vitamin D could deliver 1,25(OH)(2)D to the colon to ameliorate colitis while reducing the risk of hypercalcemia. Initial studies demonstrated that bacteria residing in the lower intestinal tract were capable of liberating 1,25(OH)(2)D from 1,25-dihydroxyvitamin D(3)-25-β-glucuronide [β-gluc-1,25(OH)(2)D]. We also determined that a much greater upregulation of the vitamin D-dependent 24-hydroxylase gene (Cyp24) was induced in the colon by treatment of mice with an oral dose of β-gluc-1,25(OH)(2)D than 1,25(OH)(2)D, demonstrating targeted delivery of 1,25(OH)(2)D to the colon. We then tested β-glucuronides of vitamin D in the mouse DSS colitis model in two studies. In mice receiving DSS dissolved in distilled water and treated with 1,25(OH)(2)D or β-gluc-1,25(OH)(2)D, severity of colitis was reduced. Combination of β-gluc-1,25(OH)(2)D with 25-hydroxyvitamin D(3)-25-β-glucuronide [β-gluc-25(OH)D] resulted in the greatest reduction of colitis lesions and symptoms in DSS-treated mice. Plasma calcium concentrations were lower in mice treated with β-gluc-1,25(OH)(2)D alone or in combination with β-gluc-25(OH)D than in mice treated with 1,25(OH)(2)D, which were hypercalcemic at the time of death. β-Glucuronides of vitamin D compounds can deliver 1,25(OH)(2)D to the lower intestine and can reduce symptoms and lesions of acute colitis in this model. 相似文献