首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many plant species can be induced to flower by responding to stress factors. The short-day plants Pharbitis nil and Perilla frutescens var. crispa flower under long days in response to the stress of poor nutrition or low-intensity light. Grafting experiments using two varieties of P. nil revealed that a transmissible flowering stimulus is involved in stress-induced flowering. The P. nil and P. frutescens plants that were induced to flower by stress reached anthesis, fruited and produced seeds. These seeds germinated, and the progeny of the stressed plants developed normally. Phenylalanine ammonialyase inhibitors inhibited this stress-induced flowering, and the inhibition was overcome by salicylic acid (SA), suggesting that there is an involvement of SA in stress-induced flowering. PnFT2, a P. nil ortholog of the flowering gene FLOWERING LOCUS T (FT) of Arabidopsis thaliana, was expressed when the P. nil plants were induced to flower under poor-nutrition stress conditions, but expression of PnFT1, another ortholog of FT, was not induced, suggesting that PnFT2 is involved in stress-induced flowering.Key words: flowering, stress, phenylalanine ammonia-lyase, salicylic acid, FLOWERING LOCUS T, Pharbitis nil, Perilla frutescensFlowering in many plant species is regulated by environmental factors, such as night-length in photoperiodic flowering and temperature in vernalization. On the other hand, a short-day (SD) plant such as Pharbitis nil (synonym Ipomoea nil) can be induced to flower under long days (LD) when grown under poor-nutrition, low-temperature or high-intensity light conditions.19 The flowering induced by these conditions is accompanied by an increase in phenylalanine ammonia-lyase (PAL) activity.10 Taken together, these facts suggest that the flowering induced by these conditions might be regulated by a common mechanism. Poor nutrition, low temperature and high-intensity light can be regarded as stress factors, and PAL activity increases under these stress conditions.11 Accordingly, we assumed that such LD flowering in P. nil might be induced by stress. Non-photoperiodic flowering has also been sporadically reported in several plant species other than P. nil, and a review of these studies suggested that most of the factors responsible for flowering could be regarded as stress. Some examples of these factors are summarized in 1214

Table 1

Some cases of stress-induced flowering
Stress factorSpeciesFlowering responseReference
high-intensity lightPharbitis nilinduction5
low-intensity lightLemna paucicostatainduction29
Perilla frutescens var. crispainduction14
ultraviolet CArabidopsis thalianainduction23
droughtDouglas-firinduction30
tropical pasture Legumesinduction31
lemoninduction3235
Ipomoea batataspromotion36
poor nutritionPharbitis nilinduction3, 4, 13
Macroptilium atropurpureumpromotion37
Cyclamen persicumpromotion38
Ipomoea batataspromotion36
Arabidopsis thalianainduction39
poor nitrogenLemna paucicostatainduction40
poor oxygenPharbitis nilinduction41
low temperaturePharbitis nilinduction9, 12
high conc. GA4/7Douglas-firpromotion42
girdlingDouglas-firinduction43
root pruningCitrus sp.induction44
Pharbitis nilinduction45
mechanical stimulationAnanas comosusinduction46
suppression of root elongationPharbitis nilinduction7
Open in a separate window  相似文献   

2.
3.
4.
5.
6.
Brassinosteroids (BRs) are perceived by Brassinosteroid Insensitive 1 (BRI1), that encodes a leucine-rich repeat receptor kinase. Tomato BRI1 has previously been implicated in both systemin and BR signalling. The role of tomato BRI1 in BR signalling was confirmed, however it was found not to be essential for systemin/wound signalling. Tomato roots were shown to respond to systemin but this response varied according to the species and growth conditions. Overall the data indicates that mutants defective in tomato BRI1 are not defective in systemin-induced wound signalling and that systemin perception can occur via a non-BRI1 mechanism.Key words: tomato BRI1, brassinosteroids, systemin, wound signallingBrassinosteroids (BRs) are steroid hormones that are essential for normal plant growth. The most important BR receptor in Arabidopsis is BRASSINOSTERIOD INSENSITIVE 1 (BRI1), a serine/threonine kinase with a predicted extracellular domain of ∼24 leucine-rich repeats (LRRs).1,2 BRs bind to BRI1 via a steroid-binding domain that includes LRR 21 and a so-called “island” domain.2,3 In tomato a BRI1 orthologue has been identified that when mutated, as in the curl3 (cu3) mutation, results in BR-insensitive dwarf plants.4 Tomato BRI1 has also been purified as a systemin-binding protein.5 Systemin is an eighteen amino acid peptide, which is produced by post-translational cleavage of prosystemin. Systemin has been implicated in wound signalling and is able to induce the production of jasmonate, protease inhibitors (PIN) and rapid alkalinization of cell suspensions (reviewed in ref. 6).To clarify whether tomato BRI1 was indeed a dual receptor it was important to first confirm its role in BR signalling. Initially this was carried out by genetic complementation of the cu3 mutant phenotype.7 Overexpression of tomato BRI1 restored the dwarf phenotype and BR sensitivity and normalized BR levels (
35S:TomatoBRI1 complemented lineWt*cu3*
6-deoxocathasterone566964676
6-deoxoteasteronend4748
3-dehydro-6-deoxoteasterone876269
6-deoxotyphasterolnd588422
6-deoxocastasterone1,7556,24726,210
castasterone25563717,428
brassinolidendndnd
Open in a separate windowBR content ng/kg fw.*Montoya et al.4 nd, not detected.To show the role of tomato BRI1 in systemin signalling tomato BR mutants and the complemented line were tested for their systemin response. Tomato cu3 mutants were shown not to be defective in systemin-induced proteinase inhibitor (PIN) gene induction, nor were they defective in PIN gene induction in response to wounding. Cell suspensions made from cu3 mutant tissue exhibited an alkalinization of culture medium similar to wild-type cell suspension. These data taken together indicated that BRI1 was not essential for systemin signalling. However, Scheer et al.8 demonstrated that the overexpression of tomato BRI1 in tobacco suspension cultures results in an alkalinization in response to systemin, which was not observed in untransformed cultures. This suggests that BRI1 is capable of eliciting systemin responsiveness and that in tomato BRI1 mutants another mechanism is functioning to enable systemin signalling.Root elongation is a sensitive bioassay for BR action with BRs inhibiting root growth. Solanum pimpinellifolium roots elongate in response to systemin, in a BRI1-dependent fashion. In Solanum lycopersicum root length was reduced in response to systemin and BR and jasmonate synthesis mutants indicated that the inhibition did not require jasmonates or BRs. Normal ethylene signalling was required for the root response to systemin. When a tobacco, Nicotiana benthamiana, BRI1 orthologue was transformed into cu3 both the dwarfism and systemin-induced root elongation was restored to that of wild type. Tobacco plants however do not respond to systemin. This is puzzling as the introduction of tomato BRI1 into tobacco enabled systemin responsiveness.8 Further investigation as to how tomato BRI1 elicits this response is therefore required.Systemin has been demonstrated to bind to two tomato proteins BRI1/SR1605 and SBP50.9 The data presented by Holton et al.7 indicates that tomato BRI1 is not essential for systemin-induced wound responses and that a non-BRI1 pathway is present that is able to facilitate a systemin response. Whether this is via a related LRR receptor kinase or by another protein remains to be elucidated.  相似文献   

7.
Lessons from investigation of regulation of APS reductase by salt stress     
Anna Koprivova  Stanislav Kopriva 《Plant signaling & behavior》2008,3(8):567-569
  相似文献   

8.
Indirect effects of tending ants on holm oak volatiles and acorn quality     
Carolina I Paris  Joan Llusia  Josep Pe?uelas 《Plant signaling & behavior》2011,6(4):547-550
The indirect effect of ants on plants through their mutualism with honeydew-producing insects has been extensively investigated. Honeydew-producing insects that are tended by ants impose a cost on plant fitness and health by reducing seed production and/or plant growth. This cost is associated with sap intake and virus transmissions but may be overcompesated by tending ants if they deter or prey on hebivorous insects. The balance between cost and benefits depends on the tending ant species. In this study we report other indirect effects on plants of the mutualism between aphids and ants. We have found that two Lasius ant species, one native and the other invasive, may change the composition of volatile organic compounds (VOCs) of the holm oak (Quercus ilex) blend when they tend the aphid Lachnus roboris. The aphid regulation of its feeding and honeydew production according to the ant demands was proposed as a plausible mechanism that triggers changes in VOCs. Additionally, we now report here that aphid feeding, which is located most of the time on acorns cap or petiole, significantly increased the relative content of linolenic acid in acorns from holm oak colonized by the invasive ant. This acid is involved in the response of plants to insect herbivory as a precursor or jasmonic acid. No effect was found on acorn production, germination or seedlings quality. These results suggest that tending-ants may trigger the physiological response of holm oaks involved in plant resistance toward aphid herbivory and this response is ant species-dependent.Key words: tended aphid, invasive ants, linolenic acid, jasmonic acid, monoterpene emissionsTo achieve an indirect effect it is necessary to have a minimun of three species, two focal species that interact directly and an associate species whose presence promotes an indirect effect on one or both focal species. In general, indirect effects of a third species are defined by how and to what degree a pairwise species interaction is influenced by the presence and density of this third species.1 There are several examples of interactions presenting indirect effects: apparent competition,1 facilitation,2 tri-trophic level interactions,3 cascading effects4 and exploitative competition. 5 But, indirect effects have been studied most extensively in the context of trophic cascades when top predators are removed6 or added7 and in the context of mutualisms.810 Usually, indirect effects are investigated as changes in abundance of the focal species occur. However, indirect effects may result in biologically significant changes in a species that are not reflected only to its abundance.11 There are many examples of changes in physiology, behavior, morphology and/or genotypic composition of the focal species.11,12 These changes on density and/or morphological, physiological and behavioral traits of the focal species are not mutually exclusive, and all can act at the same time.13 The magnitude and direction of both direct and indirect effects should influence the relative resilience of communities to perturbation, which in turn will affect species coexistence and community evolution.14 In this regard, indirect effects had been postulated as one of the main forces structuring communities2 and shaping the evolution of communities.14In terrestrial communities ants interact with plants both directly and indirectly. They can disperse or consume seeds, feed from specialized plant structures such as food bodies and extrafloral nectaries, act as or deter pollinitators, prey on herbivorous insects and/or develop mutualisms with honeydew-producing insects indirectly modifying plant fitness.1517 Additionally, through their nesting activities in soil, ants increase soil nutrient content available to plants, may change water infiltration and soil holding-capacity and modify biodiversity and abundance of soil organisms related to the decomposition process.18,19 As a consequence of their activities, ants may thus change behavior, density, physiology or fitness of other species.12,22,23 In the case of ants that tend honeydew-producing insects, evidence shows that their attention may change some traits of insect life history, 22 their abundance or physiology.18 For the plant, the net outcome of the mutualism between ants and honeydew-producing insects will depend on the balance between the costs for plant fitness via consumption of plant sap and transmission of plant pathogens and the benefit of ants deterring herbivorous insects.18,23 As a consequence, plant seed production, pod production or even plant growth may decrease when the cost of honeydew-producing insects exceed the benefit provided by tending ants.18,23Recently, we have described the changes that two tending ant species may exert indirectly on monoterpene emissions of holm oak (Quercus ilex) saplings through its mutualism with Lachnus roboris aphids.24 One of these tending ant species was Lasius neglectus, an invasive ant species that displaces the local ant Lasius grandis. We found that aphids feeding on holm oak increased the emission of total volatile organic carbon (VOCs) by 31%. In particular, aphids feeding elicited the emission of a new monoterpene, Δ3-carene, and increased the emission of myrcene (mean ± SE; sapling alone: 0.105 ± 0.011 µg g−1 h−1; sapling plus not tended aphid: 0.443 ± 0.057 µg g1 h1) and γ-terpinene (sapling alone: 0.0013 ± 0.0001; sapling plus not tended aphid: 0.0122 ± 0.0022 µg g1 h1) (Mann-Whitney, sapling alone vs. sapling plus not tended aphids, U4,4 = 0, p < 0.05 for both compounds). Changes of VOC emission in response to aphid infestation were noticed also in boreal trees.24 When the aphids became tended by the invasive ant, L. neglectus, VOCs emissions increased only 19% because myrcene, the main compound of the blend, decreased significantly (25 When our data was recalculated on leaf area basis (nmol m−2 s−1), the general pattern was the same independently of the units, but the differences among treatments were not statistically significant (26 These slight differences in the statitiscal significance of the differences of VOC emissions depending on the reference unit may be due to differences in leaf morphology, i.e., changes of leaf area and mass. However, in our study, all holm oaks showed a similar leaf morphology among treatments (Kruskal-Wallis, leaf mass: H3,20 = 2.16, p = 0.53; leaf area: H3,20 = 2.64, p = 0.45) (24,27 This lack of consistence of aphid effect on leaf area and mass limits the development of a clear pattern linking aphids feeding, leaf area or mass and VOC emissions. On the other hand, to achieve statistical significance of emitted VOCs among treatments, values should differ strongly given the high variability of VOC emission within treatments.26 Under this scenario, we recommend giving the values of leaf morphology and to give VOC emissions on both unit bases to facilite comparisons among different studies.

Table 1

Means and standard error of the emission rates of the main compounds emitted by Quercus ilex saplings (n = 4 for T1 and T2 and n = 8 for T3) infested with untended aphids (T1) or infested with aphids tended by the native ant Lasius grandis (T2) or by the invasive ant Lasius neglectus (T3)
Emission rates: µg g−1 h−1 above and nmol m−2 s−1 below
CompoundT1T2T3
Non tendedTended by native antTended by invasive ant
α-Thujene0.007 ± 0.004a0.015 ± 0.005a0.005 ± 0.001a
0.006 ± 0.004a0.006 ± 0.003a0.009 ± 0.008a
α-Pinene0.391 ± 0.182a2.072 ± 0.033b0.551 ± 0.105a
0.244 ± 0.139a0.532 ± 0.082a0.244 ± 0.127a
Camphene0.007 ± 0.003a0.047 ± 0.014b0.012 ± 0.004ab
0.005 ± 0.003a0.014 ± 0.004a0.007 ± 0.004a
Sabinene0.084 ± 0.042a0.387 ± 0.045b0.075 ± 0.017a
0.100 ± 0.076a0.210 ± 0.097a0.128 ± 0.107a
β-Pinene0.227 ± 0.105a1.454 ± 0.269b0.306 ± 0.075a
0.159 ± 0.097a0.322 ± 0.134a0.179 ± 0.097a
Myrcene0.443 ± 0.057a0.482 ± 0.044a0.093 ± 0.020b
0.101 ± 0.034a0.119 ± 0.026a0.060 ± 0.034a
Δ3-Carene0.003 ± 0.002a0.018 ± 0.001b0.010 ± 0.003ab
0.001 ± 0.001a0.004 ± 0.001a0.002 ± 0.001a
α-Terpine0.004 ± 0.001a0.003 ± 0.001a0.001 ± 0.000a
0.001 ± 0.000a0.004 ± 0.003a0.001 ± 0.001a
γ-Terpinene0.012 ± 0.002a0.011 ± 0.004a0.013 ± 0.005a
0.003 ± 0.001a0.013 ± 0.010a0.006 ± 0.003a
Terpinolene0.001 ± 0.000a0.002 ± 0.001a0.005 ± 0.002a
0.001 ± 0.000a0.002 ± 0.001a0.001 ± 0.001a
Leaf mass (g)0.001 ± 0.000a0.002 ± 0.001a0.005 ± 0.002a
Leaf area (m2)0.104 ± 0.005a0.146 ± 0.026a0.113 ± 0.006a
Open in a separate windowThe emission rate were compared first by Kruskal-Wallis test. Values given above were calculated as µg g−1 h−1, while values below were calculated as nmols m−2 s−1. At the last row, leaf morphology is shown for each treatment. Different letters indicate statistical differences of multiple non parametrical post hoc comparisons (Dunn''s test, p < 0.05).The tended aphid, Lachnus roboris, feed most of the time on the petiole or on the cap of acorns of holm oaks.28 Therefore, acorn quantity and quality (lipid content) and seedlings quality could be affected by tending ants through their mutualism with aphids. We analyzed lipid content as an estimator of acorn quality. Lipids and starches are synthetized in acorns from carbohydrates translocated from leaves.29 However, before being used for metabolic functions, lipid content of acorns must be transformed into glucids and then can be used as respiratory substrate during germination.29 As a consequence, when aphids suck sap from acorns they may act as a sink of translocated carbohydrates, thus decreasing the amount that reaches the seeds.30During two consecutive years, we counted all acorns from one branch (8–11 cm diameter) for each one of 6 holm oaks colonized by L. neglectus and 6 holm oaks colonized by L. grandis that we studied. We followed them at different stages of their development (July, September and December). Among holm oaks, the loss of acorn production varied between 87.9–96.8%. Acorn production (acorns that started to develop and reached maturity) did not differ between the tree colonized by one or another ant species (mean number of acorns per branch ± SE, 2003: L. neglectus trees: 2.67 ± 1.38, L. grandis trees: 2.67 ± 2.01; Mann Whitney, U = 15, p = 0.69; 2004: L. neglectus trees: 35.83 ± 19.23, L. grandis trees: 49.80 ± 27.99; Mann Whitney, U = 12, p = 0.66). The only work in which researchers evaluated the effect of ants on acorn production was conducted by Ito and Higashi.31 These authors showed that the acorn production of Quercus dentata in the presence of the tending ant Formica yessensis did not differ either. However, there was a significantly lower proportion of infested acorns with weevil larvae when Formica yessensis were tending aphids.31 So, ants may indirectly increase the probability that acorns reach the maturity in healthy conditions, improving in this way one component of the fitness of the oak. In the case of the larvae of weevils, wasps and moth species that infest holm oak acorns32 during their development, they do not move to other acorn as in the case reported by Ito and Higashi.31 This behavior prevents ant predation during the move from one acorn to another.Lipid content of acorn cotyledons was analyzed by gas cromatography-flame ionization detector (FID) after performing the derivatization of lipid acids to methyl esters with BF3 in methanol.33 Acorn quality only differed in the content of linolenic acid, which was significantly higher in acorns from oaks colonized by the invasive ant Lasius neglectus (Fig. 1). Linolenic acid acts as a precursor for the synthesis of jasmonic acid,34 a signaling molecule involved in responses associated with insect herbivory.35 The increase of linolenic acid suggests that a local response to aphid feeding was triggered during acorn development. In boreal trees, aphid feeding increased up to 50% the emission of methyl salicylate, a defence compound of plants, that acts as aphid repellent and an attractor of foraging predators and parasitoids.24Open in a separate windowFigure 1Mean (±SE) of the percentage of each fatty acid relative to the total amount of fatty acids of acorns from holm oaks colonized by invasive ants L. neglectus (in grey) or by native ants L. grandis (in white). Asterisk shows significant differences of linolenic content (Mann Whitney, U = 7.5, p = 0.026).We then performed a germination test at the second year when enough acorns reached maturity. We picked mature acorns from trees colonized by the invasive or by the native ant. Those acorns with visual evidence of being infested by insect larvae were discarded as non-viable. From the group of healthy acorns, we chose randomly between 6 to 18 acorns per tree comprising in total 94 or 97 acorns for holm oaks colonized by L. neglectus or L. grandis, respectively. We performed a laboratory germination test at 20–25°C under natural light conditions. Acorns were planted in nursery flats of 300 cc filled with commercial compost (70% organic matter, pH = 6.5), watered twice a week and inspected daily from January to April until emergency. After 90 days, acorn viability (germination + seedling emergence) was 89% and 87% for acorns from holm oaks colonized by the invasive or by native ant, respectevily. Puerta-Piñeiro et al. obtained a 90% acorn viability when acorns where sown in sterilized river sand. On the other hand, Leiva and Fernαndez-Alés37 sowed 20 acorns per 7l pots filled with peat and obtained 59% of acorn viability. In our test, we sowed acorns in separate flats under a less competitive environment. The mean time of seedling emergence was 47.8 ± 13.1 days for acorns from holm oaks colonized by L. neglectus and 47.3 ± 14.1 days for acorns from holm oaks colonized by L. grandis. We randomly chose 10 one-month-old seedlings to calculate their quality using the Dickson index.38 This index indicates the potentiality of a seedling to survive and to grow by combining the ratio between root biomass and total biomass with the height and the diameter of the sapling. Seedlings with a higher quality have a higher index. Seedlings showed a very low and similar Dickson index (Mann-Whitnney, L. neglectus: 0.072 ± 0.015; L. grandis: 0.075 ± 0.015, U = 44, p = 0.68, n = 10 seedlings). The low values of Dickson index of the two treatments suggest that from the chosen acorns, emerged seedlings had, per se, a low quality. Only a long term experiment, i.e., at least 10 years to achieve at least two masting years with reproductive holm oaks that never had been infested with aphids, and another group that was infested, could reveal if the effect of aphid feeding on acorns really affect holm oak fitness.We conclude that ants, through their mutualism with tended aphids, may promote considerable changes of holm oaks VOCs emission and acorn quality. However, there was no effect on seedling quality in spite of the decrease of linolenic acid content of acorns from holm oaks where aphids were tended by the invasive ant. These results indicate that the physiological response of acorns to aphid feeding tended by invasive or local ants does not necessary imply a low quality of seedlings as we previously expected. Under natural conditions, the emission of mature holm oak doubled those of saplings from a plantation.39 So considering that we performed our experiment using 4-year-old saplings, it is probable that the indirect effect of ants on VOCs emissions and acorn quality could be magnified when aphid outbreaks occur in mature holm oak forest. Taking into account the contribution of monoterpenes and isoprene emitted by mediterranean and boreal forests to atmospheric VOC pools40 and the species richness of aphids in the north hemisphere,41 we suggest, in agreement with Blande et al., that aphid infestations should be considered in future models of biogenic VOC emissions from forests.  相似文献   

9.
Interactions of meniscal cells with extracellular matrix molecules: Towards the generation of tissue engineered menisci     
Guak-Kim Tan  Justin J Cooper-White 《Cell Adhesion & Migration》2011,5(3):220-226
  相似文献   

10.
Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice     
Pavan Umate 《Plant signaling & behavior》2011,6(3):335-338
The enzymes called lipoxygenases (LOXs) can dioxygenate unsaturated fatty acids, which leads to lipoperoxidation of biological membranes. This process causes synthesis of signaling molecules and also leads to changes in cellular metabolism. LOXs are known to be involved in apoptotic (programmed cell death) pathway, and biotic and abiotic stress responses in plants. Here, the members of LOX gene family in Arabidopsis and rice are identified. The Arabidopsis and rice genomes encode 6 and 14 LOX proteins, respectively, and interestingly, with more LOX genes in rice. The rice LOXs are validated based on protein alignment studies. This is the first report wherein LOXs are identified in rice which may allow better understanding the initiation, progression and effects of apoptosis, and responses to bitoic and abiotic stresses and signaling cascades in plants.Key words: apoptosis, biotic and abiotic stresses, genomics, jasmonic acid, lipidsLipoxygenases (linoleate:oxygen oxidoreductase, EC 1.13.11.-; LOXs) catalyze the conversion of polyunsaturated fatty acids (lipids) into conjugated hydroperoxides. This process is called hydroperoxidation of lipids. LOXs are monomeric, non-heme and non-sulfur, but iron-containing dioxygenases widely expressed in fungi, animal and plant cells, and are known to be absent in prokaryotes. However, a recent finding suggests the existence of LOX-related genomic sequences in bacteria but not in archaea.1 The inflammatory conditions in mammals like bronchial asthama, psoriasis and arthritis are a result of LOXs reactions.2 Further, several clinical conditions like HIV-1 infection,3 disease of kidneys due to the activation of 5-lipoxygenase,4,5 aging of the brain due to neuronal 5-lipoxygenase6 and atherosclerosis7 are mediated by LOXs. In plants, LOXs are involved in response to biotic and abiotic stresses.8 They are involved in germination9 and also in traumatin and jasmonic acid biochemical pathways.10,11 Studies on LOX in rice are conducted to develop novel strategies against insect pests12 in response to wounding and insect attack,13 and on rice bran extracts as functional foods and dietary supplements for control of inflammation and joint health.14 In Arabidopsis, LOXs are studied in response to natural and stress-induced senescence,15 transition to flowering,16 regulation of lateral root development and defense response.17The arachidonic, linoleic and linolenic acids can act as substrates for different LOX isozymes. A hydroperoxy group is added at carbons 5, 12 or 15, when arachidonic acid is the substrate, and so the LOXs are designated as 5-, 12- or 15-lipoxygenases. Sequences are available in the database for plant lipoxygenases (EC:1.13.11.12), mammalian arachidonate 5-lipoxygenase (EC:1.13.11.34), mammalian arachidonate 12-lipoxygenase (EC:1.13.11.31) and mammalian erythroid cell-specific 15-lipoxygenase (EC:1.13.11.33). The prototype member for LOX family, LOX-1 of Glycine max L. (soybean) is a 15-lipoxygenase. The LOX isoforms of soybean (LOX-1, LOX-2, LOX-3a and LOX-3b) are the most characterized of plant LOXs.18 In addition, five vegetative LOXs (VLX-A, -B, -C, -D, -E) are detected in soybean leaves.19 The 3-dimensional structure of soybean LOX-1 has been determined.20,21 LOX-1 was shown to be made of two domains, the N-terminal domain-I which forms a β-barrel of 146 residues, and a C-terminal domain-II of bundle of helices of 693 residues21 (Fig. 1). The iron atom was shown to be at the centre of domain-II bound by four coordinating ligands, of which three are histidine residues.22Open in a separate windowFigure 1Three-dimensional structure of soybean lipoxygenase L-1. The domain I (N-terminal) and domain II (C-terminal) are indicated. The catalytic iron atom is embedded in domain II (PDB ID-1YGE).21This article describes identification of LOX genes in Arabidopsis and rice. The Arabidopsis genome encodes for six LOX proteins23 (www.arabidopsis.org) (LocusAnnotationNomenclatureA*B*C*AT1G55020lipoxygenase 1 (LOX1)LOX185998044.45.2049AT1G17420lipoxygenase 3 (LOX3)LOX3919103725.18.0117AT1G67560lipoxygenase family proteinLOX4917104514.68.0035AT1G72520lipoxygenase, putativeLOX6926104813.17.5213AT3G22400lipoxygenase 5 (LOX5)LOX5886101058.86.6033AT3G45140lipoxygenase 2 (LOX2)LOX2896102044.75.3177Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.Interestingly, the rice genome (rice.plantbiology.msu.edu) encodes for 14 LOX proteins as compared to six in Arabidopsis (and22). Of these, majority of them are composed of ∼790–950 aa with the exception for loci, LOC_Os06g04420 (126 aa), LOC_Os02g19790 (297 aa) and LOC_Os12g37320 (359 aa) (Fig. 2).Open in a separate windowFigure 2Protein alignment of rice LOXs and vegetative lipoxygenase, VLX-B,28 a soybean LOX (AA B67732). The 14 rice LOCs are indicated on left and sequence position on right. Gaps are included to improve alignment accuracy. Figure was generated using ClustalX program.

Table 2

Genes encoding lipoxygenases in rice
ChromosomeLocus IdPutative functionA*B*C*
2LOC_Os02g10120lipoxygenase, putative, expressed9271035856.0054
2LOC_Os02g19790lipoxygenase 4, putative29733031.910.4799
3LOC_Os03g08220lipoxygenase protein, putative, expressed9191019597.4252
3LOC_Os03g49260lipoxygenase, putative, expressed86897984.56.8832
3LOC_Os03g49380lipoxygenase, putative, expressed87898697.57.3416
3LOC_Os03g52860lipoxygenase, putative, expressed87197183.56.5956
4LOC_Os04g37430lipoxygenase protein, putative, expressed79889304.610.5125
5LOC_Os05g23880lipoxygenase, putative, expressed84895342.97.6352
6LOC_Os06g04420lipoxygenase 4, putative12614054.76.3516
8LOC_Os08g39840lipoxygenase, chloroplast precursor, putative, expressed9251028196.2564
8LOC_Os08g39850lipoxygenase, chloroplast precursor, putative, expressed9421044947.0056
11LOC_Os11g36719lipoxygenase, putative, expressed86998325.45.3574
12LOC_Os12g37260lipoxygenase 2.1, chloroplast precursor, putative, expressed9231046876.2242
12LOC_Os12g37320lipoxygenase 2.2, chloroplast precursor, putative, expressed35940772.78.5633
Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.

Table 3

Percent homology of rice lipoxygenases against Arabidopsis
Loci (Os)Homolog (At)Identity/similarity (%)No. of aa compared
LOC_Os02g10120LOX260/76534
LOC_Os02g19790LOX554/65159
LOC_Os03g08220LOX366/79892
LOC_Os03g49260LOX556/73860
LOC_Os03g49380LOX560/75861
LOC_Os03g52860LOX156/72877
LOC_Os04g37430LOX361/75631
LOC_Os05g23880LOX549/66810
LOC_Os06g04420LOX549/62114
LOC_Os08g39840LOX249/67915
LOC_Os08g39850LOX253/70808
LOC_Os11g36719LOX552/67837
LOC_Os12g37260LOX253/67608
LOC_Os12g37320LOX248/60160
Open in a separate windowOs, Oryza sativa L.; At, Arabidopsis thaliana L.; aa, amino acids.In plants, programmed cell death (PCD) has been linked to different stages of development and senescence, germination and response to cold and salt stresses.24,25 To conclude, this study indicates that rice genome encodes for more LOX proteins as compared to Arabidopsis. The LOX members are not been thoroughly investigated in rice. The more advanced knowledge on LOXs function might spread light on the significant role of LOXs in PCD, biotic and abiotic stress responses in rice.  相似文献   

11.
Prion interference with multiple prion isolates     
Charles R Schutt  Jason C Bartz 《朊病毒》2008,2(2):61-63
Co-inoculation of prion strains into the same host can result in interference, where replication of one strain hinders the ability of another strain to cause disease. The drowsy (DY) strain of hamster-adapted transmissible mink encephalopathy (TME) extends the incubation period or completely blocks the hyper (HY) strain of TME following intracerebral, intraperitoneal or sciatic nerve routes of inoculation. However, it is not known if the interfering effect of the DY TME agent is exclusive to the HY TME agent by these experimental routes of infection. To address this issue, we show that the DY TME agent can block hamster-adapted chronic wasting disease (HaCWD) and the 263K scrapie agent from causing disease following sciatic nerve inoculation. Additionally, per os inoculation of DY TME agent slightly extends the incubation period of per os superinfected HY TME agent. These studies suggest that prion strain interference can occur by a natural route of infection and may be a more generalized phenomenon of prion strains.Key words: prion diseases, prion interference, prion strainsPrion diseases are fatal neurodegenerative diseases that are caused by an abnormal isoform of the prion protein, PrPSc.1 Prion strains are hypothesized to be encoded by strain-specific conformations of PrPSc resulting in strain-specific differences in clinical signs, incubation periods and neuropathology.27 However, a universally agreed upon definition of prion strains does not exist. Interspecies transmission and adaptation of prions to a new host species leads to the emergence of a dominant prion strain, which can be due to selection of strains from a mixture present in the inoculum, or produced upon interspecies transmission.8,9 Prion strains, when present in the same host, can interfere with each other.Prion interference was first described in mice where a long incubation period strain 22C extended the incubation period of a short incubation period strain 22A following intracerebral inoculation.10 Interference between other prion strains has been described in mice and hamsters using rodent-adapted strains of scrapie, TME, Creutzfeldt-Jacob disease and Gerstmannn-Sträussler-Scheinker syndrome following intracerebral, intraperitoneal, intravenous and sciatic nerve routes of inoculation.1015 We previously demonstrated the detection of PrPSc from the long incubation period DY TME agent correlated with its ability to extend the incubation period or completely block the superinfecting short incubation period HY TME agent from causing disease and results in a reduction of HY PrPSc levels following sciatic nerve inoculation.12 However, it is not known if a single long incubation period agent (e.g., DY TME) can interfere with more than one short incubation period agent or if interference can occur by a natural route of infection.To examine the question if one long incubation period agent can extend the incubation period of additional short incubation period agents, hamsters were first inoculated in the sciatic nerve with the DY TME agent 120 days prior to superinfection with the short-incubation period agents HY TME, 263K scrapie and HaCWD.1618 The HY TME and 263K scrapie agents have been biologically cloned and have distinct PrPSc properties.19,20 The HaCWD agent used in this study is seventh hamster passage that has not been biologically cloned and therefore will be referred to as a prion isolate. Sciatic nerve inoculations were performed as previously described.11,12 Briefly, hamsters were inoculated with 103.0 i.c. LD50 of the DY TME agent or equal volume (2 µl of a 1% w/v brain homogenate) of uninfected brain homogenate 120 days prior to superinfection of the same sciatic nerve with either 104.6 i.c. LD50 of the HY TME agent, 105.2 i.c. LD50 of the HaCWD agent or 104.6 i.c. LD50/g 263K scrapie agent (Bartz J, unpublished data).16,18,21 Animals were observed three times per week for the onset of clinical signs of HY TME, 263K and HaCWD based on the presence of ataxia and hyperexcitability, while the clinical diagnosis of DY TME was based on the appearance of progressive lethargy.1618 The incubation period was calculated as the number of days between the onset of clinical signs of the agent strain that caused disease and the inoculation of that strain. The Student''s t-test was used to compare incubation periods.12 We found that sciatic nerve inoculation of both the HaCWD agent and 263K scrapie agent caused disease with a similar incubation period to animals infected with the HY TME agent (12 In hamsters inoculated with the DY TME agent 120 days prior to superinfection with the HaCWD or 263K agents, the animals developed clinical signs of DY TME with an incubation period that was not different from the DY TME agent control group (12 The PrPSc migration properties were consistent with the clinical diagnosis and all co-infected animals had PrPSc that migrated similar to PrPSc from the DY TME agent infected control animal (Fig. 1, lanes 1–10). This data indicates that the DY TME agent can interfere with more than one isolate and that interference in the CNS may be a more generalized phenomenon of prion strains.Open in a separate windowFigure 1The strain-specific properties of PrPSc correspond to the clinical diagnosis of disease. Western blot analysis of 250 µg brain equivalents of proteinase K digested brain homogenate from prion-infected hamsters following intracerebral (i.c.), sciatic nerve (i.sc.) or per os inoculation with either the HY TME (HY), DY TME (DY), 263K scrapie (263K), hamster-adapted CWD (CWD) agents or mock-infected (UN). The unglycoyslated PrPSc glycoform of HY TME, 263K scrapie and hamster-adapted CWD migrates at 21 kDa. The unglycosylated PrPSc glycoform of DY PrPSc migrates at 19 kDa. Migration of 19 and 21 kDa PrPSc are indicated by the arrows on the left of the figure. n.a., not applicable.

Table 1

Clinical signs and incubation periods of hamsters inoculated in the sciatic nerve with either the HY TME, HaCWD or 263K scrapie agents, or co-infected with the DY TME agent 120 days prior to superinfection of hamsters with the HY TME, HaCWD or 263K agents
Onset of clinical signs
First inoculationInterval between inoculationsSecond inoculationClinical signsPrP-res migrationA/IaAfter 1st inoculationAfter 2nd inoculation
Mock120 daysHY TMEHY TME21 kDa5/5n.a.72 ± 3b
Mock120 daysHaCWDHaCWD21 kDa5/5n.a.73 ± 3
Mock120 days263K263K21 kDa5/5n.a.72 ± 3
DY TME120 daysMockDY TME19 kDa4/4224 ± 2n.a.
DY TME120 daysHY TMEDY TME19 kDa5/5222 ± 2c102 ± 2
DY TME120 daysHaCWDDY TME19 kDa5/5223 ± 3c103 ± 3
DY TME120 days263KDY TME19 kDa5/5222 ± 2c102 ± 2
Open in a separate windowaNumber affected/number inoculated;bAverage days postinfection ± standard deviation;cIncubation period similar compared to control animals inoculated with the DY TME agent alone (p > 0.05). n.a., not applicable.To examine the question if prion interference can occur following a natural route of infection, hamsters were first inoculated per os with the DY TME agent and then superinfected per os with the HY TME agent at various time points post DY TME agent infection. Hamsters were per os inoculated by drying the inoculum on a food pellet and feeding this pellet to an individual animal as described previously.22 For the per os interference experiment, 105.7 i.c. LD50 of the DY TME agent or an equal volume of uninfected brain homogenate (100 µl of a 10% w/v brain homogenate) was inoculated 60, 90 or 120 days prior to per os superinfection of hamsters with 107.3 i.c. LD50 of the HY TME agent. A 60 or 90 day interval between DY TME agent infection and HY TME agent superinfection resulted in all of the animals developing clinical signs of HY TME with incubation periods that are similar to control hamsters inoculated with the HY TME agent alone (Fig. 1, lanes 11–16). The eight-day extension in the incubation period of HY TME in the 120 day interval co-infected group is consistent with a 1 log reduction in titer.21 This is the first report of prion interference by the per os route of infection, a likely route of prion infection in natural prion disease and provides further evidence that prion strain interference could occur in natural prion disease.2325

Table 2

Clinical signs and incubation periods of hamsters per os inoculated with either the HY TME or DY TME agent, or per os co-infected with the DY TME agent 60, 90 or 120 days prior to superinfection of hamsters with the HY TME agent
Onset of clinical signs
First inoculationInterval between inoculationsSecond inoculationClinical signsPrP-res migrationA/IaAfter 1st inoculationAfter 2nd inoculation
Mock120 daysHY TMEHY TME21 kDa5/5n.a.140 ± 5b
DY TME60 daysHY TMEHY TME21 kDa5/5195 ± 6135 ± 6
DY TME90 daysHY TMEHY TME21 kDa5/5230 ± 5140 ± 5
DY TME120 daysHY TMEHY TME21 kDa5/5269 ± 3149 ± 3c
Open in a separate windowaNumber affected/number inoculated;bAverage days postinfection ± standard deviation;cIncubation period extended compared to control animals inoculated with the HY TME agent alone (p < 0.01); n.a., not applicable.The capacity of the DY TME agent to replicate modulates its ability to interfere with the HY TME agent. TME interference, following sciatic nerve inoculation, occurs in the lumbar spinal cord and DY PrPSc abundance in this structure correlates with the ability of the DY TME agent to interfere with the HY TME agent.12 Following extraneural routes of infection, DY TME agent replication and PrPSc deposition are not detected in spleen or lymph nodes, which is the major site of extraneural HY TME agent replication.11,21,26 The DY TME agent can interfere with the HY TME agent following intraperitoneal and per os infection, suggesting that the DY TME agent is replicating in other locations that are involved in HY TME agent neuroinvasion (11  相似文献   

12.
Decorin regulates endothelial cell-matrix interactions during angiogenesis     
Lorna R Fiedler  Johannes A Eble 《Cell Adhesion & Migration》2009,3(1):3-6
Interactions between endothelial cells and the surrounding extracellular matrix are continuously adapted during angiogenesis, from early sprouting through to lumen formation and vessel maturation. Regulated control of these interactions is crucial to sustain normal responses in this rapidly changing environment, and dysfunctional endothelial cell behaviour results in angiogenic disorders. The proteoglycan decorin, an extracellular matrix component, is upregulated during angiogenesis. While it was shown previously that the absence of decorin leads to dysregulated angiogenesis in vivo, the molecular mechanisms were not clear. These abnormal endothelial cell responses have been attributed to indirect effects of decorin; however, our recent data provides evidence that decorin directly regulates endothelial cell-matrix interactions. This data will be discussed in conjunction with findings from previous studies, to better understand the role of this proteoglycan in angiogenesis.Key words: decorin, angiogenesis, motility, α2β1 integrin, insulin-like growth factor I receptor, Rac GTPaseLed by appropriate cues, the vascular system undergoes postnatal remodelling (angiogenesis), to maintain tissue homeostasis. Thus while much of the mature endothelium is quiescent, locally activated endothelial cells re-enter the cell cycle, and assume a motile phenotype essential for sprouting and neo-vessel formation. Concomitantly, the surrounding extracellular matrix (ECM) is significantly altered through de novo protein expression, deposition of plasma components and protease-mediated degradation. The latter liberates cryptic binding sites and sequestered growth factors in addition to intact and degraded ECM components, which themselves possess pro- and anti-angiogenic signalling properties. For supported blood flow, endothelium quiescence and integrity is re-established, and the ECM is organized into mature, cross-linked networks. In short, endothelial cells regulate ECM synthesis, assembly and turnover while the structure and composition of ECM in turn influences cellular phenotype. The ECM therefore, plays a critical role in control of endothelial cell behaviour during angiogenesis.Decorin is a member of the small leucine-rich repeat proteoglycan (SLRP) family, which was first discovered ‘decorating’ collagen I fibrils and was subsequently shown to regulate fibrillogenesis.1,2 Both the protein core and the single, covalently attached glycosaminoglycan (GAG) moieties of decorin are involved in this function, the relevance of which is demonstrated by the phenotype of the decorin null mouse, which exhibits loose, fragile skin due to dysregulated fibrillogenesis.2 Interestingly, a role for decorin in postnatal angiogenesis was also revealed by studies in the decorin null background. Corneal neoangiogenesis was reduced.3 Conversely, neo-angiogenesis was enhanced during dermal wound healing, although surprisingly this led to delayed wound closure.4 In this case, skin fragility due to the absence of decorin may have hindered wound closure, despite an increased blood supply. It is apparent however, that decorin plays a role in inflammation-associated angiogenesis. Indeed, endothelial cells undergoing angiogenic morphogenesis in this environment express decorin, while quiescent endothelial cells do not,36 indicating that decorin modulates endothelial cell behaviour specifically during inflammatory-associated remodelling of the vascular system.To understand decorin effects on angiogenic morphogenesis within a minimalist environment, various in vitro models of angiogenesis have been employed (6 Similarly, decorin expression enhanced tube formation on matrigel,8 but in other studies utilising this substrate was found to either have no influence9 or to inhibit tubulogenesis induced by growth factors.10 In yet another study, decorin inhibited tube formation when presented as a substrate prior to addition of collagen I.7 These contrasting observations may reflect the importance of the micro-environment within which decorin is presented. Alternatively, controversial results could result from different sources of decorin since cell types differ in their post-translational modifications of the GAG moiety. Hence, varying length or sulfation patterns of GAG chains may account for different biological activities of decorin. Discrepancies can also be explained as artefacts due to different purification protocols, such as when denaturing conditions are used to extract decorin from tissue. Taken together however, these observations suggest that decorin is neither a pro- nor an anti-angiogenic factor per se, but rather a regulator of angiogenesis, dependent on local cues for different activities. Further, that decorin is capable of both enhancing and inhibiting tubulogenesis may suggest a role in balancing vessel regression versus persistence. Immature vessels have a period of plasticity prior to maturation, during which they can be remodelled, and either regress, or given the appropriate signals, proceed to maturity.11 As a modulator of tube formation, it is tempting to speculate that decorin could influence the switch from immature to mature vessels, favouring one or the other in conjunction with signals from the local environment.

Table 1

Summary of the key functions of decorin in controlling cell behaviour
Cell typeFunctionDecorin additionEnvironment/MechanismReferences
Endothelial (HUVEC derived)Enhanced tubulogenesisOverexpressionCollagen I lattices, enhanced survival potentially IGF-IR mediated6, 18
Mouse cerebral endothelial cellsEnhanced tubulogenesisOverexpressionMatrigel substrate, EGFR activation leads to VEGF upregulation8
HUVECNo effect on tubulogenesisExogenousMatrigel substrate9
HUVECInhibited tubulogenesisExogenousMatrigel substrate, growth factor induced10
HUVEC, HDMECInhibited tubulogenesisSubstrateCollagen I lattice overlay7
HUVECMinimal adhesionSubstrateDecorin substrate7
HUVECInhibited adhesionExogenousCollagen I and fibronectin10
HUVECInhibited migrationExogenousVEGF-mediated chemotaxis through gelatin10
Endothelial (HUVEC derived)Enhanced adhesionExogenousCollagen I, fibronectin17
BAEInhibited migrationOverexpressionCollagen I, enhanced fibronectin fibrilllogenesis by decorin12
Endothelial (HUVEC derived)Enhanced motilityExogenousCollagen I, Decorin activates IGF-IR/Rac-1 and α2β1 integrin activity17
Human lung fibroblastEnhanced motilityExogenousDecorin activates Rho GTPases, mediators of motility20
Human foreskin fibroblastInhibited adhesionExogenousDecorin GAG moiety competes with CD44 for binding to collagen XIV14
Mouse Fibroblast (3T3)Inhibited adhesionExogenousDecorin competes with cells for interaction with thrombospondin at the cell-binding domain15
Human fibroblastInhibits adhesionExogenousDecorin GAG competes with cell-surface heparin-sulphate for interaction with fibronectin16
PlateletsSupported adhesionSubstrateDecorin interacts with, and signals through α2β1 integrin on platelets19
Open in a separate windowDecorin has been demonstrated to influence cell adhesion and motility, in particular, its influence on endothelial cell adhesion, migration and tube formation is controversial, and is the main focus of this table. Some additional key effects of decorin on fibroblast and platelet adhesion and motility are also summarised. In each case, the extracellular matrix environment in which the assay was conducted is shown, and where known, the proposed mechanism is stated.What are the molecular mechanisms by which decorin influences tubulogenesis? Since endothelial cell-matrix interactions control all aspects of angiogenesis, from motility, sprouting and lumen formation, to survival and proliferation, the role of decorin should be considered in this regard. Indirectly, decorin could quite feasibly modulate cell-matrix interactions through regulation of matrix structure and organisation2,12 and growth factor activity.13 However in vitro studies have begun to unravel rather more direct mechanisms. Studies on fibroblasts indicate that decorin can inhibit cell-matrix interactions by binding to and masking integrin attachment sites in matrix substrates. For instance, decorin inhibits fibroblast adhesion by competing with cell-surface GAG-containing CD44 for GAG binding sites on collagen XIV;14 similarly, decorin inhibits fibroblast adhesion to thrombospondin by interacting with the cell-binding domain of this substrate15 and may compete with fibroblast cell-surface heparin sulphate proteoglycans for binding to fibronectin.16 While such studies are rather lacking in endothelial cell systems, any one of these interactions could be relevant to endothelial cells. However, that decorin slightly enhanced endothelial cell attachment to fibronectin and collagen I in our system points to the existence of alternative mechanisms.17Indeed, a recent study demonstrated that decorin is an important signalling molecule in endothelial cells, where it both signals through the insulin-like growth factor I receptor (IGF-IR) and competes with the natural ligand for interaction.18 Further, decorin appears to be biologically available and relevant for interaction with this receptor in vivo. Increased receptor expression was observed in both native and neo-vessels in decorin knockout mouse cornea in conjunction with reduced neoangiogenesis. In accordance with this, decorin downregulates the IGF-IR in vitro,18 indicating that signalling through, and control of IGF-IR levels by decorin could be an important factor in regulating angiogenesis. Additionally, immobilised decorin supports platelet adhesion through interactions with the collagen I-binding integrin, α2β1.19 We have shown that decorin—α2β1 integrin interaction may play a part in modulating endothelial cell—collagen I interactions, and further, have demonstrated that decorin promotes motility in this context through activation of IGF-IR and the small Rho GTPase, Rac.17 Similarly, decorin stimulates fibroblast motility through activation of small Rho GTPases,20 supporting a direct mechanism by which decorin influences cell-matrix interactions and motility, via activation of key regulators of cytoskeleton and focal adhesion dynamics. It should also be noted that signalling by decorin directly through ErbB receptors has also been extensively demonstrated in cancer cell systems where these receptors are frequently overexpressed.21 This interaction was not relevant to human umbilical vein endothelial cells18 although a recent study found that decorin activated the epidermal growth factor receptor in mouse cerebral endothelial cells.8 These differences presumably depend on cell-specific factors such as receptor availability as well as relative receptor affinities. In a complex system such as angiogenesis, multiple mechanisms doubtlessly are involved. However, it is clear that modulation of cell-matrix interactions by decorin could certainly be expected to play a key role in contributing to regulation of postnatal angiogenesis.Signals from the extracellular matrix via integrins and from growth factors to their receptors are co-ordinately integrated into the complex angiogenic cascade. Evidence exists to suggest that decorin could regulate cell-matrix interactions during early tube formation, i.e., endothelial cell sprouting and cell alignment, through both influencing integrin activity and signalling through IGF-IR.17 Later stages of angiogenesis, such as lumen formation and maturation are also potentially regulated by decorin through activation of Rac and α2β1 integrin,17 since activity of both these molecules is integral to this phase of angiogenesis.22 Additionally, Rac activity is implicated in regulating endothelium permeability and integrity,23 providing further possibilities in control of endothelium function by decorin. Further investigations would be required however, to establish whether decorin exerts its effects on tubulogenesis through these molecular mechanisms.Of relevance to α2β1 integrin-dependent endothelial cell interaction with collagen I, sprouting endothelial cells would encounter interstitial ECM, of which collagen I is a major component. Further, a ‘provisional’ matrix containing collagen I is secreted by sprouting endothelial cells and may be required for motility,24 and tube formation.25 Theoretically, various interactions could exist between decorin, collagen type I and α2β1 integrin in this context, which may be differentially supported through various stages of angiogenesis. Up to eleven interaction sites of α2β1 integrin have been postulated to exist within collagen I, albeit with different affinities towards this receptor. Some of these binding sites may only be recognized by the integrin in its highly active conformation.26 By influencing the collagen I binding activity of α2β117 decorin could thus alter the number of endothelial cell—collagen I contacts, thereby modulating adhesion and motility. Additionally, some decorin and α2β1 integrin binding sites may overlap, or are in close proximity.27 By virtue of this location, decorin would be ideally placed to locally modulate collagen I—binding activity of the integrin. Interestingly, modulation of activity of both α2β1 integrin and the small Rho GTPase Rac by decorin also could have implications for collagen I fibrillogenesis, which in turn, would indirectly influence cell-matrix interactions. Both the related Rho GTPase RhoA, and α2β1 integrin are involved in cellular control of pericellular collagen I fibrillogenesis.28 Thus in addition to regulating cell independent fibrillogenesis1 decorin could potentially influence cell-mediated aspects of this process. Pertinent questions remain therefore, as to under which biological situations is the interaction between α2β1 integrin and decorin relevant, and does decorin influence α2β1 integrin activity on the cell-surface through direct interactions, and/or by inside-out signalling through the IGF-I receptor (or alternative receptors)? Further, how do differential decorin/α2β1 integrin/collagen I interactions mediate fibrillogenesis and cell-matrix interactions?Interaction of decorin with multiple binding partners makes it challenging to fully understand the role of decorin in angiogenesis (Fig. 1). A consideration of the relative accessibility and affinity of binding sites on both decorin and its'' binding partners would facilitate further understanding. It is still an open question whether collagen I—bound decorin can simultaneously interact with other ligands. In the case of the IGF-IR, the binding site on the concave surface of decorin overlaps with that of collagen I, thus mutually exclusive interactions seem more likely. That decorin clearly influences both collagen I matrix integrity and IGF-IR activity in vivo, would suggest that decorin is not exclusively associated with collagen I. Perhaps decorin occurs in a more ‘soluble’ form when locally secreted by endothelial cells undergoing angiogenic morphogenesis. Does collagen-bound decorin interact simultaneously with α2β1 integrin? This could be a possibility, since decorin core protein interacts with collagen I, allowing the possibility of GAG—integrin interaction. In this scenario however, interaction of α2β1 integrin with the GAG moiety of decorin in preference to collagen I might sound improbable. Nevertheless, during remodelling, interactions such as these could occur in a transient manner, and be crucial in controlling cell-matrix interactions in a rapidly changing environment. Interestingly, decorin interacts with IGF-IR via the core protein,18 and with α2β1 integrin via the GAG moiety17 raising yet another possibility of simultaneous decorin interaction with multiple binding partners. Additionally, while it is a matter of some debate whether decorin exists predominantly as a monomer or as a dimer in a physiologically relevant environment, it has been proposed that collagen-bound decorin could support simultaneous interactions of decorin with additional binding partners, and that dimer-monomer transitions also could facilitate differential interactions.29 Perhaps supporting multiple simultaneous interactions of decorin, the phenotype of patients with a progeroid variant of Ehlers-Danlos Syndrome indicates an essential role for properly glycosylated decorin (and the related SLRP biglycan). These patients exhibit skeletal and craniofacial abnormalities, loose skin and deficiencies in wound healing as a direct result of abnormal decorin and biglycan glycosylation, such that approximately half the population of decorin is secreted as the core protein only.30 Notably, the defect in loose skin and in wound healing is similar to the phenotype of the decorin knockout mouse.2,4 Evidently, the core protein alone cannot maintain normal function in vivo, despite being responsible for several important interactions of decorin, in particular, binding to collagen I and the IGF-IR. These studies may therefore support a requirement for simultaneous interactions of the core protein and GAG moieties for proper function of decorin.Open in a separate windowFigure 1Decorin influences cell-matrix interactions through multiple mechanisms. Decorin signals through the IGF-IR via the core protein moiety (grey diamond), and may simultaneously interact with the α2 subunit (cross-hatched subunit) of α2β1 integrin via the GAG moiety (wavy black line) (A). Activation of Rac through IGF-IR enhances motility by modulating cytoskeleton dynamics and may influence α2β1 integrin activity for collagen I through inside-out signalling (B). Decorin induces large, peripheral vinculin (grey oval)-positive focal adhesions by signalling through IGF-IR and/or α2β1 integrin (C and D). Decorin could also directly influence α2β1 integrin activity through binding to the α2 subunit and/or simultaneous interactions with collagen I (thick wavy black line) through the core protein. Collagen I interacts with the A-domain (white circle) of the α2 subunit at a site distinct to that of decorin (D). In summary, activation of IGF-IR, Rac and modulation of α2β1 integrin affinity for collagen I by decorin modulates cell-matrix interactions and contributes to enhanced motility and tubulogenesis in a collagen I environment.Modulation of cell-matrix interactions by decorin plays a key role in modulating endothelial cell motility and angiogenesis in vivo, and some of the mechanisms responsible have been elucidated in conjunction with in vitro studies. The large number of potential interactions of decorin with multiple matrix components and cell-surface receptors makes a clear understanding difficult. However, direct activation of signalling pathways by decorin has been highlighted recently as likely to play an important role. In conclusion, a better understanding of the mechanisms by which decorin regulates vessel formation and persistence would contribute to understanding how angiogenesis is dysregulated in a clinical setting, and how rational therapeutic strategies can be developed to restore tissue function and homeostasis.  相似文献   

13.
Natural Infection of Burkholderia pseudomallei in an Imported Pigtail Macaque (Macaca nemestrina) and Management of the Exposed Colony     
Crystal H Johnson  Brianna L Skinner  Sharon M Dietz  David Blaney  Robyn M Engel  George W Lathrop  Alex R Hoffmaster  Jay E Gee  Mindy G Elrod  Nathaniel Powell  Henry Walke 《Comparative medicine》2013,63(6):528-535
Identification of the select agent Burkholderia pseudomallei in macaques imported into the United States is rare. A purpose-bred, 4.5-y-old pigtail macaque (Macaca nemestrina) imported from Southeast Asia was received from a commercial vendor at our facility in March 2012. After the initial acclimation period of 5 to 7 d, physical examination of the macaque revealed a subcutaneous abscess that surrounded the right stifle joint. The wound was treated and resolved over 3 mo. In August 2012, 2 mo after the stifle joint wound resolved, the macaque exhibited neurologic clinical signs. Postmortem microbiologic analysis revealed that the macaque was infected with B. pseudomallei. This case report describes the clinical evaluation of a B. pseudomallei-infected macaque, management and care of the potentially exposed colony of animals, and protocols established for the animal care staff that worked with the infected macaque and potentially exposed colony. This article also provides relevant information on addressing matters related to regulatory issues and risk management of potentially exposed animals and animal care staff.Abbreviations: CDC, Centers for Disease Control and Prevention; IHA, indirect hemagglutination assay; PEP, postexposure prophylacticBurkholderia pseudomallei, formerly known as Pseudomonas pseudomallei, is a gram-negative, aerobic, bipolar, motile, rod-shaped bacterium. B. pseudomallei infections (melioidosis) can be severe and even fatal in both humans and animals. This environmental saprophyte is endemic to Southeast Asia and northern Australia, but it has also been found in other tropical and subtropical areas of the world.7,22,32,42 The bacterium is usually found in soil and water in endemic areas and is transmitted to humans and animals primarily through percutaneous inoculation, ingestion, or inhalation of a contaminated source.8, 22,28,32,42 Human-to-human, animal-to-animal, and animal-to-human spread are rare.8,32 In December 2012, the National Select Agent Registry designated B. pseudomallei as a Tier 1 overlap select agent.39 Organisms classified as Tier 1 agents present the highest risk of deliberate misuse, with the most significant potential for mass casualties or devastating effects to the economy, critical infrastructure, or public confidence. Select agents with this status have the potential to pose a severe threat to human and animal health or safety or the ability to be used as a biologic weapon.39Melioidosis in humans can be challenging to diagnose and treat because the organism can remain latent for years and is resistant to many antibiotics.12,37,41 B. pseudomallei can survive in phagocytic cells, a phenomenon that may be associated with latent infections.19,38 The incubation period in naturally infected animals ranges from 1 d to many years, but symptoms typically appear 2 to 4 wk after exposure.13,17,35,38 Disease generally presents in 1 of 2 forms: localized infection or septicemia.22 Multiple methods are used to diagnose melioidosis, including immunofluorescence, serology, and PCR analysis, but isolation of the bacteria from blood, urine, sputum, throat swabs, abscesses, skin, or tissue lesions remains the ‘gold standard.’9,22,40,42 The prognosis varies based on presentation, time to diagnosis, initiation of appropriate antimicrobial treatment, and underlying comorbidities.7,28,42 Currently, there is no licensed vaccine to prevent melioidosis.There are several published reports of naturally occurring melioidosis in a variety of nonhuman primates (NHP; 2,10,13,17,25,30,31,35 The first reported case of melioidosis in monkeys was recorded in 1932, and the first published case in a macaque species was in 1966.30 In the United States, there have only been 7 documented cases of NHP with B. pseudomallei infection.2,13,17 All of these cases occurred prior to the classification of B. pseudomallei as a select agent. Clinical signs in NHP range from subclinical or subacute illness to acute septicemia, localized infection, and chronic infection. NHP with melioidosis can be asymptomatic or exhibit clinical signs such as anorexia, wasting, purulent drainage, subcutaneous abscesses, and other soft tissue lesions. Lymphadenitis, lameness, osteomyelitis, paralysis and other CNS signs have also been reported.2,7,10,22,28,32 In comparison, human''s clinical signs range from abscesses, skin ulceration, fever, headache, joint pain, and muscle tenderness to abdominal pain, anorexia, respiratory distress, seizures, and septicemia.7,9,21,22

Table 1.

Summary of reported cases of naturally occurring Burkholderia pseudomalleiinfections in nonhuman primates
CountryaImported fromDate reportedSpeciesReference
AustraliaBorneo1963Pongo sp.36
BruneiUnknown1982Orangutan (Pongo pygmaeus)33
France1976Hamlyn monkey (Cercopithecus hamlyni) Patas monkey (Erythrocebus patas)11
Great BritainPhilippines and Indonesia1992Cynomolgus monkey (Macaca fascicularis)10
38
MalaysiaUnknown1966Macaca spp.30
Unknown1968Spider monkey (Brachytelis arachnoides) Lar gibbon (Hylobates lar)20
Unknown1969Pig-tailed macaque (Macaca nemestrina)35
Unknown1984Banded leaf monkey (Presbytis melalophos)25
SingaporeUnknown1995Gorillas, gibbon, mandrill, chimpanzee43
ThailandUnknown2012Monkey19
United StatesThailand1970Stump-tailed macaque (Macaca arctoides)17
IndiaPig-tailed macaque (Macaca nemestrina)
AfricaRhesus macaque (Macaca mulatta) Chimpanzee (Pan troglodytes)
Unknown1971Chimpanzee (Pan troglodytes)3
Malaysia1981Pig-tailed macaque (Macaca nemestrina)2
Wild-caught, unknown1986Rhesus macaque (Macaca mulatta)13
Indonesia2013Pig-tailed macaque (Macaca nemestrina)Current article
Open in a separate windowaCountry reflects the location where the animal was housed at the time of diagosis.Here we describe a case of melioidosis diagnosed in a pigtail macaque (Macaca nemestrina) imported into the United States from Indonesia and the implications of the detection of a select agent identified in a laboratory research colony. We also discuss the management and care of the exposed colony, zoonotic concerns regarding the animal care staff that worked with the shipment of macaques, effects on research studies, and the procedures involved in reporting a select agent incident.  相似文献   

14.
Influence of polyploidy on insect herbivores of native and invasive genotypes of Solidago gigantea (Asteraceae)     
Helen M Hull-Sanders  Robert H Johnson  Heather A Owen  Gretchen A Meyer 《Plant signaling & behavior》2009,4(9):893-895
Herbivores are sensitive to the genetic structure of plant populations, as genetics underlies plant phenotype and host quality. Polyploidy is a widespread feature of angiosperm genomes, yet few studies have examined how polyploidy influences herbivores. Introduction to new ranges, with consequent changes in selective regimes, can lead to evolution of changes in plant defensive characteristics and also affect herbivores. Here, we examine how insect herbivores respond to polyploidy in Solidago gigantea, using plants derived from both the native range (USA) and introduced range (Europe). S. gigantea has three cytotypes in the US, with two of these present in Europe. We performed bioassays with generalist (Spodoptera exigua) and specialist (Trirhabda virgata) leaf-feeding insects. Insects were reared on detached leaves (Spodoptera) or potted host plants (Trirhabda) and mortality and mass were measured. Trirhabda larvae showed little variation in survival or pupal mass attributable to either cytotype or plant origin. Spodoptera larvae were more sensitive to both cytotype and plant origin: they grew best on European tetraploids and poorly on US diploids (high mortality) and US tetraploids (low larval mass). These results show that both cytotype and plant origin influence insect herbivores, but that generalist and specialist insects may respond differently.Key words: polyploidy, cytotype, Solidago gigantea, insect herbivore, herbivory, invasive plant, introduced plantPolyploidy, or the possession of more than two sets of homologous chromosomes, is a fundamental force in angiosperm evolution.1,2 Many plant species or species complexes consist of multiple cytotypes that may occur sympatrically;3 this is an important source of genetic structure in plant populations that is often overlooked.4 Possession of multiple genomes may confer advantages to polyploid plants such as increased heterozygosity, a decreased probability of inbreeding depression, or a greater gene pool available for selection; these traits contribute to the widespread success of polyploids and may make them prone to invasiveness.5,6 In a recent article,7 we examined the functional consequences of polyploidy for different cytotypes of Solidago gigantea Ait. (Asteraceae), collected from both its native range (North America) and its introduced range (Europe). In this addendum, we show how cytotype and continent of origin influence interactions of S. gigantea with insect herbivores. Interactions with herbivores are expected to vary with cytotype because of phenotypic changes associated with polyploidy, but this area has received little study (reviewed in refs. 811). Plant origin, from either the native range or an introduced range, should also influence herbivores. Plants may escape from their specialist natural enemies in the introduced range, thereby experiencing reduced herbivore pressure from an insect community dominated by generalists.12,13 Given sufficient time, plants from the introduced range may evolve to decrease investment in anti-herbivore defenses, particularly those effective against specialists.14 While a growing body of research has addressed whether plant defenses against herbivory are lower in the introduced range,12,15,16 few of these studies have also examined the influence of cytotype.17Three cytotypes of S. gigantea can be found in its native range in North America (diploid, tetraploid and hexaploid, 2n = 18, 36 and 54 respectively). These are morphologically indistinguishable and not generally treated as separate species.18 In Europe, where S. gigantea was introduced in the mid 18th century,19 tetraploids are the dominant cytotype but diploids also occur. S. gigantea supports a diverse array of insect herbivores in its native range, but has few natural enemies in its introduced range.20 We report here on experiments using both a generalist and a specialist leaf-chewing insect. The generalist, Spodoptera exigua (Lepidoptera: Noctuidae) is widely distributed and highly polyphagous, while the specialist Trirhabda virgata (Coleoptera: Chrysomelidae) feeds only on closely-related species within the genus Solidago. T. virgata is an outbreak insect that can be a major defoliator of S. gigantea and related species in North America.21 We grew plants originating from 10 populations in the US and 20 populations in Europe in common gardens at the University of Wisconsin-Milwaukee Field Station in Saukville, Wisconsin. There were five plant origin-cytotype combinations: three cytotypes from the US and two from Europe. Insects were reared on detached leaves from a single plant (Spodoptera) or on potted host plants (Trirhabda), for a set period of 21 d (Spodoptera) or until pupation (Trirhabda). We recorded insect survival and mass at the end of 21 d (Spodoptera) or at pupation (Trirhabda) (reviewed in ref. 22).Overall survival was much better for the specialist Trirhabda than for the generalist Spodoptera (91% vs. 72%). Spodoptera larvae are not generally found on S. gigantea in the field, and while they are able to complete development, we found that this plant was not an ideal host. Spodoptera larvae were more sensitive to differences among cytotype and plant origin than were Trirhabda larvae. Percent survival was particularly poor for Spodoptera larvae reared on diploids from the US, where slightly more than half of the caterpillars survived for 21 days (Fig. 1). Trirhabda pupal mass was remarkably consistent across the five ploidy-plant origin combinations. In contrast, Spodoptera larvae responded to both cytotype and continent of origin. Surviving Spodoptera larvae did particularly well on tetraploid plants from the introduced range (Europe), and particularly poorly on tetraploids from the US (Fig. 1). We have previously reported that Spodoptera grow better on plants from Europe;22 our current results reveal that this difference is due exclusively to better growth on tetraploid plants. However, our results also show that both diploids and tetraploids from the US were poor hosts for Spodoptera: diploids because they caused high mortality and tetraploids because they resulted in poor growth. These results indicate that plants from the introduced range have reduced defenses against herbivores, even when accounting for polyploidy.Open in a separate windowFigure 1Mass ± se of S. exigua (A) and T. virgata (B) larvae reared on host plants of different cytotypes of Solidago gigantea originating from the US (native range) or europe (introduced range). Means in A followed by different letters are significantly different at p < 0.05 (ANOVA followed by multiple Student''s t-tests with Bonferroni correction). There were no significant differences in (B). Sample sizes for (A and B) shown in SpodopteraTrirhabdaNo. SurvivingInitial No.% SurvivalNo. SurvivingInitial No.% SurvivalUS-Diploid213954373995US-Tetraploid709375829289US-Hexaploid162467232496EU-Diploid152365232496EU-Tetraploid1011297811412988Open in a separate windowInsects were reared on a single genotype of each cytotype-origin combination for 21 days (Spodoptera) or until pupation (Trirhabda). Sample sizes for each cytotype-origin combination vary because cytotypes were not known at the time plants were collected; these distributions represent frequencies of cytotypes in our collections.Effects of the host plant on Spodoptera were probably driven, at least in part, by changes in secondary chemistry. We have previously shown that foliar terpenoids, chemicals known to influence insect herbivores,23,24 are affected by both cytotype and continent of origin.7 It is surprising that Trirhabda larvae were not more sensitive to these differences in secondary chemistry among the five ploidy-origin combinations, given that Trirhabda is known to respond to host-plant chemistry.23 We have previously reported that Trirhabda growth does not differ on European and US plants22 and show here that accounting for cytotype does not change this conclusion. In a recent study on the closely-related Solidago altissima, Halverson et al.11 reported that the effects of plant cytotype on 5 gall-making herbivores were complex and not easily characterized. All five herbivores responded to plant cytotype, but for four of the five insects the most preferred cytotype was not consistent across sites. It is possible in our study that Trirhabda were responding to cytotype at a finer scale than that examined here. There may be differences due to cytotype that shift among the populations that we sampled, and that are averaged out when examined at the continental scale. We lack sufficient replication of cytotypes within populations to test this possibility. Even so, our results reported here reveal that plant cytotype can be an important source of variation affecting insect herbivores, but that generalist and specialist insects may respond differently.  相似文献   

15.
Heritability and role for the environment in DNA methylation in AXL receptor tyrosine kinase     
Carrie V Breton  Muhammad T Salam  Frank D Gilliland 《Epigenetics》2011,6(7):895-898
  相似文献   

16.
Gene silencing to investigate the roles of receptor-like proteins in Arabidopsis     
Ursula Ellendorff  Zhao Zhang  Bart PHJ Thomma 《Plant signaling & behavior》2008,3(10):893-896
  相似文献   

17.
Chitosan as a MAMP,searching for a PRR     
Marcello Iriti  Franco Faoro 《Plant signaling & behavior》2009,4(1):66-68
Chitosan, a deacetylated chitin derivative, behaves like a general elicitor, inducing a non-host resistance and priming a systemic acquired immunity. The defence responses elicited by chitosan include rising of cytosolic H+ and Ca2+, activation of MAP-kinases, callose apposition, oxidative burst, hypersensitive response (HR), synthesis of abscissic acid (ABA), jasmonate, phytoalexins and pathogenesis related (PR) proteins. Putative receptors for chitosan are a chitosan-binding protein, recently isolated, and possibly the chitin elicitor-binding protein (CEBiP). Nevertheless, it must be pointed out that biological activity of chitosan, besides the plant model, strictly depends on its physicochemical properties (deacetylation degree, molecular weight and viscosity), and that there is a threshold for chitosan concentration able to switch the induction of a cell death programme into necrotic cell death (cytotoxicity).Key words: chitosan, induced resistance, MAMP, PAMP, PCD, PRR, SARRecognition of microbe-associated molecular patterns (MAMPs), by pattern recognition receptors (PRRs), represents the major trait of innate immunity common to plants and animals. In plant immunity, MAMPs, more commonly known as general elicitors, include lipopolysaccharides (LPS), peptidoglycans, flagellin and fungal cell wall fragments (chitin/chitosan oligomers), phospholipids, oxylipins, fatty acids, sterols, proteins, double stranded RNA and methylated DNA, able to elicit a host defence response by binding to specific PRRs. In this view, chitosan, a deacetylated chitin derivative, behaves like a general elicitor, inducing a non-host resistance, by a PRR-mediated recognition, and priming a systemic acquired immunity (or systemic acquired resistance, SAR).1 The defence responses elicited by chitosan include: raising of cytosolic Ca2+, activation of MAP-kinases, callose apposition, oxidative burst, hypersensitive response (HR), synthesis of abscissic acid (ABA), jasmonate, phytoalexins and pathogenesis related proteins (PR) (Fig. 1 and 220Open in a separate windowFigure 1Different responses induced on Phaseolus vulgaris leaves by treatment with solutions of chitosan with 85% deacetylation degree and different molecular weights; all solutions have been prepared at 0.15% w/v in 0.05 M acetic acid and adjusted at pH 5.6. Callose detection with aniline blue (A–C) 12 h after treatment shows that 76 kD-chitosan elicits the formation of a network of small bright yellow fluorescent spots (B) due to callose apposition between the plasmalemma and the cell wall of some mesophyll cells (see the enlargement in the inset), while 6 kD-chitosan induces lesions involving numerous cells fluorescing in yellow-orange, possibly as consequence of the overlap of phenolics autofluorescence and callose fluorescence (see the enlargement in the inset). In 322 kD chitosan-treated leaves numerous green-fluorescent patches (C), due to chitosan deposits, are present on the leaf epidermis along cell walls, but rarely callose apposition is present. Detection of H2O2 deposits (as brownish precipitates in D–F) with 3-3′-diaminobenzydine (DAB), 24 h after 6 kD-chitosan treatment, indicates that the lesions in (A) are constituted by necrotizing cells as a consequence of extensive H2O2 deposition (D). At the same time, leaves treated with 76 kD-chitosan show moderate H2O2 deposits limited to the same mesophyll cells involved in callose apposition, and often localized around the substomatal cavity into which chitosan can permeate (E, arrow). No H2O2 deposition is present in 322 kD-chitosan treated plants (F). Evans blue staining to detect dead cells (stained in blue) 24 h after treatment (G–I) shows that the lesions in (A) have already evolved in extensive necrotic cell death, while only some of the cells with callose deposition visible in (B) had turned to programmed cell death (H) (as previously shown with other techniques). No dead cells are present in leaves treated with 322 kD-chitosan (I).

Table 1

Defence responses elicited by chitosan
Plant responsesRef.
Calcium transient3,11
Plasma membrane H+-ATPase inhibition21
MAP-kinase activation12,15
Callose apposition4,16,18
Reactive oxygen species12,13,14,20
Hypersensitive response/
Programmed cell death11,14,20
Abscisic acid19
Jasmonate6
Phytoalexins5,10,17
Pathogenesis related proteins2,8,9,13,15
Systemic acquired resistance14,18
Open in a separate windowRecently, in their work entitled ‘Early events induced by chitosan on plant cells’, Amborabé and colleagues21 provided a novel and original insight on the early processes elicited by chitosan in plant. They showed that the effect of chitosan on the plasma membrane H+-ATPase activity occurred at least 30 min after treatment, i.e., earlier than other events triggered by chitosan and mentioned above (callose, oxidative burst, HR, phytoalexins, PR proteins). However, the references provided by the authors are somewhat incomplete and, according to our opinion, they did not consider some important topics related to chitosan-induced resistance in plant.In their discussion, they hypothesized on the presence of a putative receptor for chitosan, without taking into account the work of Chen and Xu22 on the isolation of a chitosan-binding protein, possibly a receptor. They also did not consider that chitosan induces the expression of a receptor-like kinase (RLKs) gene15 and the activation of MAP-kinase pathway in different plant species.1215 Moreover, a plasma membrane receptor for chitin has been identified in rice cells, both at gene and protein level.23 The mature chitin elicitor-binding protein (CEBiP) structurally differs from the two major classes of PRRs, the receptor-like proteins (RLPs) and the RLKs, both groups containing extracellular leucine-reach reapeats (LRRs). CEBiP has a transmembrane domain at the C terminus, but lacks of LRRs and intracellular kinase domains normally present in RLKs, like the receptor FLAGELLIN SENSITIVE 2 (FLS2). Two lysine motifs (LysM) are present in the extracellular portion of CEBiP, involved in chitin perception. It is supposed that receptors with extracellular LysM motifs are responsible for chitin sensing, such as Nod-factor receptor kinases (NFR1 and NFR2), involved in the symbiotic signaling between leguminous plants and arbuscular mycorrhiza fungi or rhizobial bacteria in root nodule formation.23,24 Therefore, it is possible that chitosan recognition also occurs by a putative chitosan-binding protein with extracellular LysM domains, the latter playing a key role in chitin recognition. Interestingly, knockdown of CEBiP gene by RNA interference resulted in the suppression of the chitin-induced defence response, whereas treatment with LPS did not affect ROS generation in CEBiP-RNAi cell lines.23Amborabé and colleagues,21 while discussing the chitosan-induced cytotoxicity, did not consider that this elicitor, depending both on its concentration and its physiochemical properties (deacetylation degree, molecular weight and viscosity),5,16,25 can activate a HR, i.e., a programmed cell death (PCD) phenomenon at the onset of the SAR. In other words, it exists a threshold concentration, for each chitosan type, able to switch PCD into necrotic cell death (cytotoxicity), that should be evaluated for each considered plant model.11,14,20 In this view, it is of fundamental importance, when using chitosan as elicitor, to assess and report its physiochemical properties, as well as to consider that the type of acid solvent may be determinant for the biological activity.14Finally, as well as for other elicitors, the concentration and physicochemical properties of chitosan employed in field experiments on plant induced resistance are decisive in determining the induction of priming (the capacity for augmented defence expression in plant after pathogen challenge) or the activation of plant direct defences, the latter a less effective defence strategy and more costly in term of plant fitness.26,27  相似文献   

18.
Allelic frequency and genotypes of prion protein at codon 136 and 171 in Iranian Ghezel sheep breeds     
Siamak Salami  Reza Ashrafi Zadeh  Mir Davood Omrani  Fatemeh Ramezani  Amir Amniattalab 《朊病毒》2011,5(3):228-231
PrP genotypes at codons 136 and 171 in 120 Iranian Ghezel sheep breeds were studied using allele-specific PCR amplification and compared with the well-known sheep breeds in North America, the United States and Europe. The frequency of V allele and VV genotype at codon 136 of Ghezel sheep breed was significantly lower than AA and AV. At codon 171, the frequency of allele H was significantly lower than Q and R. Despite the similarities of PrP genotypes at codons 136 and 171 between Iranian Ghezel sheep breeds and some of the studied breeds, significant differences were found with others. Planning of effective breeding control and successful eradication of susceptible genotypes in Iranian Ghezel sheep breeds will not be possible unless the susceptibility of various genotypes in Ghezel sheep breeds to natural or experimental scrapie has been elucidated.Key words: scrapie, Ghezel sheep breed, PrP genotyping, allele specific amplification, codon 136, codon 171Scrapie was first described in England in 1732,1 and it is an infectious neurodegenerative fatal disease of sheep and goats belonging to the group of transmissible subacute spongiform encephalopathies (TSEs), along with bovine spongiform encephalopathy (BSE), chronic wasting disease and Creutzfeldt-Jakob disease.2,3 The term prion, proteinaceous infectious particles, coined by Stanley B. Prusiner, was introduced, and he presents the idea that the causal agent is a protein.4 Prion proteins are discovered in two forms, the wild-type form (PrPc) and the mutant form (PrPSc).5 Although scrapie is an infectious disease, the susceptibility of sheep is influenced by genotypes of the prion protein (PrP) gene.2,6 Researchers have found that the PrP allelic variant alanine/arginine/arginine (ARR) at codons 136, 154 and 171 is associated with resistance to scrapie in several breeds.714 Most of the sheep populations in the Near East and North African Region (84% of the total population of 255 million) are raised in Iran, Turkey, Pakistan, Sudan, Algeria, Morocco, Afghanistan, Syria and Somalia.15 In 2003, the Iranian sheep population was estimated at 54,000,000 head. The Ghezel sheep breed, which also is known as Kizil-Karaman, Mor-Karaman, Dugli, Erzurum, Chacra, Chagra, Chakra, Gesel, Gezel, Kazil, Khezel, Khizel, Kizil, Qezel, Qizil and Turkish Brown, originated in northwestern Iran and northeastern Turkey. By considering sheep breeds as one of the main sources of meat, dairy products and related products, a global screening attempt is started in different areas. In compliance with European Union Decision 2003/100/EC, each member state has introduced a breeding program to select for resistance to TSEs in sheep populations to increase the frequency of the ARR allele. A similar breeding program is established in United States and Canada. The Near East and North African Region still needs additional programs to help the global plan of eradication of scrapie-susceptible genotypes. The current study was the first to assess the geographical and molecular variation of codons 136 and 171 polymorphism between Iranian Ghezel sheep breed and well-known sheep breeds.Polymorphism at codon 136 is associated with susceptibility to scrapie in both experimental and natural models.10,11,13,16 17 and Austrian Carynthian sheep.18 Swiss White Alpine showed higher frequency of allele V at position 136 than Swiss Oxford Down, Swiss Black-Brown Mountain and Valais Blacknose.19 Comparison of polymorphism at codon 136 in the current study with some of other breeds (20 some flock of Hampshire sheep21 with current study, but the frequency of it is higher than that of some other breeds.

Table 1

Comparison of PrP allelic and genotype frequencies at codon 136 in different breeds
BreedA (%)V (%)AA (%)AV (%)VV (%)Reference
Iranian Ghezel breeds (n = 120)77.5022.565.0025.0010.00Current study
Oklahoma sheep (n = 334)De Silva, et al.27
Suffolk99.240.7698.481.520.00
Hampshire1000.001000.000.00
Dorset92.67.9487.309.523.17
Montadale77.6622.3459.5736.174.26
Hampshire (n = 48)93.756.2588.0012.000.00Youngs, et al.21
German Sheep Breeds (n = 660)92.897.1187.8010.471.73Kutzer, et al.28
Bleu du Maine83.4716.5369.5627.832.61
Friesian Milk S.1000.001000.000.00
Nolana90.139.8785.908.465.64
Suffolk1000.001000.000.00
Texel90.879.1382.1617.410.43
Swiss Sheep (n = 200)92.57.5Gmur, et al.19
Swiss Oxford Down93.007.00---
Swiss Black-Brown M.99.001.00---
Valais Blacknose1000.00---
Swiss White Alpine88.0022.00---
Austrian Sheep (n = 112)98.951.0598.950.001.05Sipos, et al.18
Tyrolean mountain sheep1000.001000.000.00
Forest sheep1000.001000.000.00
Tyrolean stone sheep1000.001000.000.00
Carynthian sheep95.804.2095.800.004.20
Open in a separate windowIt has been found that a polymorphism at codon 171 also is associated with susceptibility to experimental scrapie in Cheviot sheep16 and natural scrapie in Suffolk sheep.22 As shown in 23 They also found that different breeds show different predominant genotypes in ewes and rams.23 Different PrP genotypes were found at codon 171 in Austrian sheep breeds, but QQ has higher frequency than others.18 In some kinds of Swiss breeds, allelic frequencies of allele Q was higher than R.19 Distribution of prion protein codon 171 genotypes in Hampshire sheep revealed that different flocks shows different patterns.21 The frequency of PrP genotypes at codon 171 in Iranian Ghezel breeds was similar to some sheep breeds, like the Suffolk breed of Oklahoma sheep, but it was completely different from others (PrP genotypes at codon 172BreedAllelic frequencyGenotypesReferenceQRHRRQRQQQHRHHHIranian Iranian Ghezel breeds (n = 120)55.0043.331.6723.3336.6736.670.003.330.00Current studyOklahoma sheep (n = 334)De Silva, et al.20Suffolk40.9559.050.0037.0743.9718.970.000.000.00Hampshire51.8948.110.0021.7052.8325.470.000.000.00Dorset67.7531.250.007.9546.5945.450.000.000.00Montadale62.9637.040.0014.8144.4440.740.000.000.00Hampshire (n = 201)72.1426.601.265.0042.0050.002.001.000.00Youngs, et al.21German Sheep Breeds (n = 660)Kutzer, et al.28Bleu du Maine37.862.20.0046.9630.4422.60.000.000.00Friesian Milk S.90.458.90.651.2715.382.80.000.000.64Nolana42.357.80.0036.6242.2621.130.000.000.00Suffolk68.427.64.016.121.8455.174.61.151.15Texel55.3529.714.912.5626.8336.3611.257.365.63Swiss Sheep (n = 200)Gmur, et al.19Swiss Oxford Down32.0068.00-------Swiss Black-Brown M.70.0030.00-------Valais Blacknose85.0015.00-------Swiss White Alpine27.0073.00-------Austrian Sheep (n = 112)Sipos, et al.18Tyrolean mountain sheep74.3025.800.002.9045.7051.400.000.000.00Forest sheep77.0019.203.8011.5015.4069.200.000.003.80Tyrolean stone sheep81.5014.803.700.0029.6062.907.400.000.00Carynthian sheep72.8023.004.204.2041.7013.008.400.000.00Open in a separate windowThe association between scrapie susceptibility and polymorphism at codon154 is unclear, and fewer evidences were found that support it.24,25 So the frequency of different genotypes at codon 154 in Iranian Sheep breeds has not been included in the current study.In addition to difference in number of included animals and methodology of genotyping, the apparent discrepancies among reported allelic frequency might be caused by the difference in geographical dissemination of sheep breeds and related purity.26 The deviations from Hardy-Weinberg equilibrium, which were assumed in the current study, were checked using Pearson''s chi-squared test or Fisher''s exact test. Although the number of animals in this study is acceptable, a population study is still suggested. In conclusion, fairly different patterns of PrP genotypes in this common Near eastern sheep breed are an evidence for geographical variation of molecular susceptibility to scrapie. Because other report from Turkey also has shown a prevalence of genotypes, which is different from western countries,26 and no reports have been published yet to show which of the genotypes in that breed are actually resistant or susceptible to natural or experimental scrapie, our results is an authentic platform to motivate further studies. Actually, extrapolation of the existing general pattern of susceptibility or resistance for all breeds and current plan of elimination would not be successful unless the susceptible genotypes in the Near East with numerous breeds will be identified. Hence, the current study could be used as an important pilot study for further investigation.Genomic DNA was isolated from fresh EDTA-treated blood of 120 healthy, randomly chosen sheep of Iranian Ghezel sheep breeds using a mammalian blood DNA isolation kit (Bioflux, Japan). The allelic frequencies of prion protein codons 171 and 136 were determined by allele-specific PCR amplifications using scrapie susceptibility test kit (Elchrom Scientific AG). Primer sets were designed by manufacturer to amplify specific gene targets according to possible genotypes of positions 136 and 171.The amplification reactions were performed using iCycler™ (BioRad Inc.,), and PCR products (PositionGenotypeFragment size136A133136V139171H170171Q247171R155Open in a separate window  相似文献   

19.
Nooks and Crannies in Type VI Secretion Regulation     
Christophe S. Bernard  Yannick R. Brunet  Erwan Gueguen  Eric Cascales 《Journal of bacteriology》2010,192(15):3850-3860
  相似文献   

20.
Recovery from drought stress in tobacco: An active process associated with the reversal of senescence in some plant parts and the sacrifice of others     
Radomíra Vanková  Jana Dobrá  Helena ?torchová 《Plant signaling & behavior》2012,7(1):19-21
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号