首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Next-generation sequencing (NGS) has proven a valuable platform for fast and easy obtaining of large numbers of sequences at relatively low cost. In this study we use shot-gun sequencing method on Illumina HiSeq 2000, to obtain enough sequences for the assembly of the bryozoan Membranipora grandicella (Bryozoa: Cheilostomatida) mitochondrial genome, which is the first representative of the suborder Malacostegina. The complete mitochondrial genome is 15,861 bp in length, which is relatively larger than other studied bryozoans. The mitochondrial genome contains 13 protein-coding genes, 2 ribosomal RNAs and 20 transfer RNAs. To investigate the phylogenetic position and the inner relationships of the phylum Bryozoa, phylogenetic trees were constructed with amino acid sequences of 11 PCGs from 30 metazoans. Two superclades of protostomes, namely Lophotrochozoa and Ecdysozoa, are recovered as monophyletic with strong support in both ML and Bayesian analyses. Somewhat to surprise, Bryozoa appears as the sister group of Chaetognatha with moderate or high support. The relationship among five bryozoans is Tubulipora flabellaris + (M. grandicella + (Flustrellidra hispida + (Bugula neritina + Watersipora subtorquata))), which supports for the view that Cheilostomatida is not a natural, monophyletic clade. NGS proved to be a quick and easy method for sequencing a complete mitochondrial genome.  相似文献   

2.
Samia cynthia ricini is a commercial silk-producing insect that is now reared year-round in Korea, with the expectation of being utilized for diverse purposes. In this report, we present the complete mitochondrial genome (mitogenome) of S. c. ricini. The 15,384-bp long S. cynthia ricini mitogenome was amplified into 26 short fragments using three long overlapping fragments using primers designed from reported lepidopteran mitogenome sequences. The genome comprises 37 genes (13 protein-coding genes, two rRNA genes, and 22 tRNA genes), and one large non-coding region termed the A + T-rich region. The A/T content of the third codon position was 91.7%, which was 18.8% and 21.6% higher than those of first and second codon positions, respectively. The high A/T content in the genome is reflected in codon usage, accounting for 39.5% of A/T-composed codons (TTA, ATT, TTT, and ATA). Unlike a previous report on the start codon for the COI gene, the S. c. ricini COI gene commences with a typical ATT codon. A total of 221 bp of non-coding sequences are dispersed in 17 regions, ranging in size from 1 to 54 bp, which comprise 1.4% of the total genome. One of the non-coding sequence located between tRNAGln and ND2 (54 bp) has 77% sequence homology with the 5′-sequence of the neighboring ND2 gene, suggesting partial duplication of the sequence during evolution. The 361-bp long A + T-rich region contains an 18 bp-long poly-T stretch, ATAGA motif, ATTTA element, microsatellite-like A/T sequence, poly-A stretch and one tRNA-like sequence, as typically found in Lepidoptera including Bombycoidea.  相似文献   

3.
The complete mitochondrial (mt) genome of the ark shell Scapharca broughtonii was determined using long PCR and a genome walking sequencing strategy with genus-specific primers. The S. broughtonii mt genome (GenBank accession number AB729113) contained 12 protein-coding genes (the atp8 gene is missing, as in most bivalves), 2 ribosomal RNA genes, and 42 transfer tRNA genes, in a length of 46,985 nucleotides for the size of mtDNA with only one copy of the heteroplasmic tandem repeat (HTR) unit. Moreover the S. broughtonii mt genome shows size variation; these genomes ranged in size from about 47 kb to about 50 kb because of variation in the number of repeat sequences in the non-coding region. The mt-genome of S. broughtonii is, to date, the longest reported metazoan mtDNA sequence. Sequence duplication in non-coding region and the formation of HTR arrays were two of the factors responsible for the ultra-large size of this mt genome. All the tRNA genes were found within the S. broughtonii mt genome, unlike the other bivalves usually lacking one or more tRNA genes. Twelve additional specimens were used to analyze the patterns of tandem repeat arrays by PCR amplification and agarose electrophoresis. Each of the 12 specimens displayed extensive heteroplasmy and had 8–10 length variants. The motifs of the HTR arrays are about 353–362 bp and the number of repeats ranges from 1 to 11.  相似文献   

4.
The complete mitochondrial (mt) genome sequence of Oratosquilla oratoria (Crustacea: Malacostraca: Stomatopoda) was determined; a circular molecule of 15,783 bp in length. The gene content and arrangement are consistent with the pancrustacean ground pattern. The mt control region of O. oratoria is characterized by no GA-block near the 3′ end and different position of [TA(A)]n-blocks compared with other reported Stomatopoda species. The sequence of the second hairpin structure is relative conserved which suggests this region may be a synapomorphic character for the Stomatopoda. In addition, a relative large intergenic spacer (101 bp) with higher A + T content than that in control region was identified between the tRNAGlu and tRNAPhe genes. Phylogenetic analyses based on the current dataset of complete mt genomes strongly support the Stomatopoda is closely related to Euphausiacea. They in turn cluster with Penaeoidea and Caridea clades while other decapods form a separate group, which rejects the monophyly of Decapoda. This challenges the suitability of Stomatopoda as an outgroup of Decapoda in phylogenetic analyses. The basal position of Stomatopoda within Eumalacostraca according to the morphological characters is also questioned.  相似文献   

5.
The complete mitochondrial genome (mitogenome) of Bombyx mori strain Dazao (Lepidoptera: Bombycidae) was determined to be 15,653 bp, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a A + T-rich region. It has the typical gene organization and order of mitogenomes from lepidopteran insects. The AT skew of this mitogenome was slightly positive and the nucleotide composition was also biased toward A + T nucleotides (81.31%). All PCGs were initiated by ATN codons, except for cytochrome c oxidase subunit 1 (cox1) gene which was initiated by CGA. The cox1 and cox2 genes had incomplete stop codons consisting of just a T. All the tRNA genes displayed a typical clover-leaf structure of mitochondrial tRNA. The A + T-rich region of the mitogenome was 495 bp in length and consisted of several features common to the lepidopteras. Phylogenetic analysis showed that the B. mori Dazao was close to Bombycidae.  相似文献   

6.
The phylogeny of the family Sciaridae is reconstructed, based on maximum likelihood, maximum parsimony, and Bayesian analyses of 4809 bp from two mitochondrial (COI and 16S) and two nuclear (18S and 28S) genes for 100 taxa including the outgroup taxa. According to the present phylogenetic analyses, Sciaridae comprise three subfamilies and two genus groups: Sciarinae, Chaetosciara group, Cratyninae, and Pseudolycoriella group + Megalosphyinae. Our molecular results are largely congruent with one of the former hypotheses based on morphological data with respect to the monophyly of genera and subfamilies (Sciarinae, Megalosphyinae, and part of postulated “new subfamily”); however, the subfamily Cratyninae is shown to be polyphyletic, and the genera Bradysia, Corynoptera, Leptosciarella, Lycoriella, and Phytosciara are also recognized as non-monophyletic groups. While the ancestral larval habitat state of the family Sciaridae, based on Bayesian inference, is dead plant material (plant litter + rotten wood), the common ancestors of Phytosciara and Bradysia are inferred to living plants habitat. Therefore, shifts in larval habitats from dead plant material to living plants may have occurred within the Sciaridae at least once. Based on the results, we discuss phylogenetic relationships within the family, and present an evolutionary scenario of development of larval habitats.  相似文献   

7.
扩增了西施舌日照、连云港、北海、漳州4个野生群体、四角蛤蜊和中国蛤蜊各1个群体共73个样本的NAD5基因片段,测序获得了480bp核苷酸序列,分析核苷酸的多态性,旨在评估福建漳州西施舌与日照、连云港、北海西施舌之间的分化水平。结果:从73个序列中共检测到44种单倍型(Hap),其中西施舌4个群体有29种Haps,四角蛤蜊和中国蛤蜊分别有10种和5种Haps,漳州群体与北海、日照、连云港群体单倍型有明显差异;将西施舌分为北海、日照、连云港组(GP1)和漳州组(GP2)2个组,分析核苷酸差异,GP1与GP2间的T、A、G含量差异极显著(P0.01)。GP1与GP2间的遗传距离与组内(GP1、GP2)遗传距离之比为25.1—41.8,四角蛤蜊与中国蛤蜊之间的遗传距离与种内个体间遗传距离之比为24.4—36.7,GP1、GP2间的差异达到了四角蛤蜊和中国蛤蜊种间差异水平,而日照、北海群体间的遗传距离只有0.009,北海与日照群体地理位置虽远,但遗传差异则很小;AMOVA分析显示漳州西施舌发生了极显著遗传分化(FST=0.966—0.978,P0.01)。  相似文献   

8.
《Tissue & cell》2016,48(6):596-604
The Drosophilidae family is formed by Brachycera Diptera distributed widely across different regions of the planet. It is composed of about 4000 species, 304 of which are found in Brazil. The objective of this work was to characterize morphologically the structure of the male internal reproductive apparatus and the ultrastructure of the spermatozoon in four Neotropical (Drosophila cardini, D. mercatorum, D. nebulosa and D. sturtevanti) and two invasive (D. simulans and Zaprionus indianus) species of drosophilids. The structural aspect of the internal reproductive apparatus corresponds with that described for other drosophilids; however, there are differences in the size and coloration of the structures, such as the testes, in each species analyzed. The spermatozoon of these species was seen to be long and fine, presenting morphological variation. The ultrastructure of the spermatozoon revealed that the morphological pattern is similar to that found in the majority of insects. The head region presents a nucleus with condensed chromatin and the acrosome positioned laterally to the nucleus. In the tail region, the axoneme presents the 9 + 9 + 2 pattern commonly described for other species of Diptera. The species presented differences regarding the shape and size of the mitochondrial derivatives. Cytochemical analysis using EPTA also revealed differences in terms of the location of the basic proteins in the mitochondrial derivates. The results obtained contribute to expanding the database for the Drosophilidae family, providing information that may contribute to intra- and inter-specific identification and supplying phylogenetic analyses.  相似文献   

9.
The mitochondrial genome (mitogenome) provides important information for phylogenetic analysis and understanding evolutionary origins. Herein, we sequenced, annotated, and characterised the mitogenome of the crab Helice wuana to better understand its molecular evolution and phylogeny. The 16,359 bp mitogenome includes 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and one control region. The genome composition is highly A + T biased 68.42%, and exhibits a negative AT–skew (? 0.036) and GC–skew (? 0.269) among Brachyura crabs. Gene rearrangements were detected, as was tandem duplication followed by random loss, which explains the translocation of mitochondrial genes. Phylogenetic analysis showed that H. wuana and H. tientsinensis clustered on one branch with high nodal support values. These results confirm that the placement of H. wuana within the Varunidae family of Thoracotrematan crabs. This study will provided a better understanding for gene rearrangements and crab evolution in the further.  相似文献   

10.
Even though the spermatozoa of several strepsipteran species were described earlier, no data were available for the basal family Mengenillidae. Well-fixed material of the recently described Tunisian species Mengenilla moldrzyki was used for a detailed examination of the sperm ultrastructure. The total length is c. 30 μm. The head region contains a conical acrosome vesicle (0.3-0.35 μm) and an elongated nucleus (7.3 μm) with dense chromatin. Some granular material along with a uniformely dense centriole adjunct and two mitochondrial derivatives are visible at the posterior end of the nucleus. The material of the centriole adjunct does not extend along the flagellum and accessory bodies are absent. The mitochondrial derivatives are elongated structures crossed by a longitudinal crista but lacking parallel transverse cristae and paracrystalline material in the dense matrix. The mitochondrial derivatives gradually reduce their size and end at the most posterior tail region. The flagellar axoneme has a 9 + 9 + 2 pattern and originates beneath the nucleus. In the terminal tail region the axoneme gradually disintegrates. Despite the extreme specialization of the endoparasitc group, strepsipteran spermatozoa are mostly characterized by plesiomorphies. The pattern within the order is largely uniform, but Mengenilla displays several apomorphic features compared to the presumptive strepsipteran groundplan (e.g., absence of crystallizations and cristae in the mitochondrial derivatives). The subdivision of the intertubular material into two compartments with a dense beak-like structure adhering to the tubular wall supports a clade Coleopterida (=Strepsiptera + Coleoptera) + Neuropterida.  相似文献   

11.
The Neotropical knifefish genus Gymnotus is the most broadly distributed and the most diverse (34 + species) gymnotiform genus. Its wide range includes both Central and South American drainages, including the Amazon, Orinoco, and La Plata Basins. Like all gymnotiforms, Gymnotus species produce weak electric fields for both navigation and communication, and these fields exhibit interspecific variation in electric waveform characteristics. Both biogeography and electric signal evolution can profitably be analyzed in a phylogenetic context. Here, we present a total evidence phylogeny for 19 Gymnotus species based on data from the mitochondrial cytochrome b and 16S genes (1558 bp), the nuclear RAG2 gene (1223 bp), and 113 morphological characters. Our phylogenetic hypothesis resolves five distinct Gymnotus lineages. In a previous morphology-based analysis, the Central American Gymnotus cylindricus lineage was hypothesized as the sister group to all other Gymnotus species. In our analysis, the G. cylindricus lineage is nested within South American species, and molecular age estimates support a relatively recent origin for the clade in Central America. Phylogenetic optimization of electric signal waveforms indicate that the ancestral state in Gymnotus is a multiphasic (4 + phases of alternating polarity) condition, and independent phase loss has occurred in multiple lineages. Gymnotus is a model group for understanding Neotropical diversification and the evolution of communication at a continental scale.  相似文献   

12.
The family Pipidae comprises the genera Hymenochirus, Pipa, Pseudhymenochirus, Silurana, and Xenopus but phylogenetic relationships within the family are unclear. Peptidomic analysis of norepinephrine-stimulated skin secretions from Pseudhymenochirus merlini Chabanaud, 1920, the single species within the genus Pseudhymenochirus, led to identification of 13 host-defense peptides with antimicrobial activity. Two peptides (hymenochirin-1Pa and -1Pb) show structural similarity to hymenochirin-1B from Hymenochirus boettgeri and eight peptides (hymenochirin-5Pa, -5Pb, -5Pc, -5Pd, -5Pe, -5Pf, 5Pg and -5Ph) are structurally similar to each other and to hymenochirin-5B from H. boettgeri. Two peptides differing by a single amino acid (IKIPSFFRNILKKVGKEAVSLM/I AGALKQS), termed pseudhymenochirin-1Pa and -1Pb, and pseudhymenochirin-2Pa (GIFPIFAKLLGKVIKVASSLISKGRTE) do not resemble host-defense peptides previously isolated from pipid frogs. Hymenochirin-5Pe was the most abundant peptide in the secretions and hymenochirin-1Pa the most potent against Staphylococcus aureus (MIC = 2.5 μM) and Escherichia coli (MIC = 10 μM). The data support a close phylogenetic relationship between Hymenochirus and Pseudhymenochirus that is distinct from the Xenopodinae (Xenopus + Silurana) clade with Pipa sister-group to all other extant pipids.  相似文献   

13.
14.
The black-veined white, Aporia crataegi (Lepidoptera: Papilionoidea) is nearly extinct in South Korea, although substantial numbers of dried specimens are available. One of the common practices used to rescue such endangered species is to launch a re-introduction program after a proper amount of genetic information is analyzed from donor and donee populations. In this study, we sequenced the complete mitochondrial genome (mitogenome) of A. crataegi to accumulate genetic information for subsequent population studies and to further understand the mitogenome evolution in true butterflies, Papilionoidea. The 15,140-bp long A. crataegi mitogenome has typical sets of 37 genes and is the smallest among the true butterfly species, with overall slightly smaller size genes and regions throughout the genome. The A/T content of the genome (81.3%) is the highest in Pieridae, where A. crataegi belongs, but lower than that of the lycaenid species (81.7%–82.7%). Unlike the diversified or modified usage of an anticodon for tRNASer(AGN), the species of Pieridae including A. crataegi all contain GCT that has been hypothesized as being ancestral for Lepidoptera. A total of 111 bp of non-coding sequences are interspersed in 13 regions, ranging in size from 1–49 bp. Among these sequences, relatively longer ones (≥ 16 bp) all have relatively higher sequence identity to other regions of the genome, suggesting partial duplication of the sequences during A. crataegi evolution.  相似文献   

15.
The complete mitochondrial genomes of the parasitic trematodes Opisthorchis felineus and Clonorchis sinensis (family Opisthorchiidae) were fully sequenced in order to develop markers for DNA diagnostics of the liver flukes infection, molecular ecology, population and phylogenetic studies. The complete sequences of mitochondrial genomes of these species comprise 14,277 and 13,875 bp, respectively, and are thus the shortest trematode mitochondrial genomes sequenced to date. The gene content and arrangement are identical to that of Fasciola hepatica. ATG and GTG are used as the start-codons and TAG and TAA are used as the stop-codons. The stop-codon TAG of the C. sinensis nad1 gene overlap by 1 nt with the downstream tRNA-Asn gene. Alternative structures for the Ser(UCN) tRNAs were found for both species. The noncoding control regions are separated into two parts by the tRNA-Gly gene and contain neither tandem repeats, which are characteristic for trematode control regions, nor secondary structures. In conclusion, the complete mitochondrial DNA sequences of O. felineus and C. sinensis will serve as a resource for comparative mitochondrial genomics and systematic studies of parasitic trematodes.  相似文献   

16.
17.
A functional urea cycle with both cytosolic (ARG I) and mitochondrial (ARG II) arginase activity is present in the liver of an ureogenic air-breathing teleost, Heteropneustes fossilis. Antibodies against mammalian ARG II showed no cross-reactivity with the H. fossilis ARG II. ARG II was purified to homogeneity from H. fossilis liver. Purified ARG II showed a native molecular mass of 96 kDa. SDS–PAGE showed a major band at 48 kDa. The native enzyme, therefore, appears to be a homodimer. The pI value of the enzyme was 7.5. The purified enzyme showed maximum activity at pH 10.5 and 55 °C. The Km of purified ARG II for l-arginine was 5.25 ± 1.12 mM. l-Ornithine and Nω-hydroxy-l-arginine showed mixed inhibition with Ki values 2.16 ± 0.08 and 0.02 ± 0.004 mM respectively. Mn+ 2 and Co+ 2 were effective activators of arginase activity. Antibody raised against purified H. fossilis ARG II did not cross-react with fish ARG I, and mammalian ARG I and ARG II. Western blot with the antibodies against purified H. fossilis hepatic ARG II showed cross reactivity with a 96 kDa band on native PAGE and a 48 kDa band on SDS–PAGE. The molecular, immunological and kinetic properties suggest uniqueness of the hepatic mitochondrial ARG II in H. fossilis.  相似文献   

18.
Bacterial genomic G + C composition-eliciting environmental adaptation   总被引:1,自引:0,他引:1  
Bacterial genomes reflect their adaptation strategies through nucleotide usage trends found in their chromosome composition. Bacteria, unlike eukaryotes contain a wide range of genomic G + C. This wide variability may be viewed as a response to environmental adaptation. Two overarching trends are observed across bacterial genomes, the first, correlates genomic G + C to environmental niches and lifestyle, while the other utilizees intra-genomic G + C incongruence to delineate horizontally transferred material. In this review, we focus on the influence of several properties including biochemical, genetic flows, selection biases, and the biochemical-energetic properties shaping genome composition. Outcomes indicate a trend toward high G + C and larger genomes in free-living organisms, as a result of more complex and varied environments (higher chance for horizontal gene transfer). Conversely, nutrient limiting and nutrient poor environments dictate smaller genomes of low GC in attempts to conserve replication expense. Varied processes including translesion repair mechanisms, phage insertion and cytosine degradation has been shown to introduce higher AT in genomic sequences. We conclude the review with an analysis of current bioinformatics tools seeking to elicit compositional variances and highlight the practical implications when using such techniques.  相似文献   

19.
《Journal of Asia》2014,17(4):663-671
The Apollo butterfly, Parnassius apollo is a representative species of the butterfly subfamily Parnassiinae. This charming species is one of the most endangered butterfly species in the world. In this study, we sequenced its complete mitochondrial genome (mitogenome), with the aim of accumulating genetic information for further studies of population genetics and mitogenome evolution in the Papilionidae. The 15,404-bp long mitogenome harbors a typical set of 37 genes and is the largest butterfly mitogenome determined, except for Papilio maraho (16,094 bp). Like many other sequenced lepidopteran species, one tRNATrp-like and one tRNALeu(UUR)-like sequences were detected in the AT-rich region. A total of 164 bp of non-coding sequences are dispersed in 14 regions throughout the genome. The longest intergenic spacer (68 bp) is located between tRNASer(AGN) and tRNAGlu, and is the largest spacer at this location among Papilionidae species. This spacer may have resulted from an 8-fold repetition of a TTTCTTCT motif or a 4-fold repetition of a CTTTATTT motif.  相似文献   

20.
《Genomics》2020,112(5):3713-3721
In this study, we sequenced the mitochondrial (mt) genome of Agrilus mali (Coleoptera: Buprestidae) using next-generation sequencing, and accordingly annotated 13 protein-coding, 22 tRNA, and 2 rRNA genes and a 1458-bp non-coding region. Comparative analysis indicated that the mt genome of A. mali is relatively conserved, with a typical gene content and order identical to those of other coleopterans. However, the newly sequenced mt genome is characterized by a relatively higher A + T content compared with that of other species within the family Buprestidae. Phylogenetic analysis based on Bayesian inference revealed that the evolutionary relationship among the six infraorders of the suborder Polyphaga is (Scirtiformia + (Elateriformia + ((Scarabaeiformia + Staphyliniformia) + (Bostrichiformia + (Cucujiformia))))). However, the topology indicated that the family Buprestidae is a sister group to other Polyphaga infraorders, excluding Scirtiformia as a monophyly, and thus the monophyly of Elateriformia was not supported. This study not only presents the mt genome of a species in the family Buprestidae and a comparative analysis of jewel beetles but also examines the contribution of mt genomes in elucidating phylogenetic relationships within the suborder Polyphaga of Coleoptera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号