首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sound for the human voice is produced via flow-induced vocal fold vibration. The vocal folds consist of several layers of tissue, each with differing material properties 1. Normal voice production relies on healthy tissue and vocal folds, and occurs as a result of complex coupling between aerodynamic, structural dynamic, and acoustic physical phenomena. Voice disorders affect up to 7.5 million annually in the United States alone 2 and often result in significant financial, social, and other quality-of-life difficulties. Understanding the physics of voice production has the potential to significantly benefit voice care, including clinical prevention, diagnosis, and treatment of voice disorders.Existing methods for studying voice production include in vivo experimentation using human and animal subjects, in vitro experimentation using excised larynges and synthetic models, and computational modeling. Owing to hazardous and difficult instrument access, in vivo experiments are severely limited in scope. Excised larynx experiments have the benefit of anatomical and some physiological realism, but parametric studies involving geometric and material property variables are limited. Further, they are typically only able to be vibrated for relatively short periods of time (typically on the order of minutes).Overcoming some of the limitations of excised larynx experiments, synthetic vocal fold models are emerging as a complementary tool for studying voice production. Synthetic models can be fabricated with systematic changes to geometry and material properties, allowing for the study of healthy and unhealthy human phonatory aerodynamics, structural dynamics, and acoustics. For example, they have been used to study left-right vocal fold asymmetry 3,4, clinical instrument development 5, laryngeal aerodynamics 6-9, vocal fold contact pressure 10, and subglottal acoustics 11 (a more comprehensive list can be found in Kniesburges et al. 12)Existing synthetic vocal fold models, however, have either been homogenous (one-layer models) or have been fabricated using two materials of differing stiffness (two-layer models). This approach does not allow for representation of the actual multi-layer structure of the human vocal folds 1 that plays a central role in governing vocal fold flow-induced vibratory response. Consequently, one- and two-layer synthetic vocal fold models have exhibited disadvantages 3,6,8 such as higher onset pressures than what are typical for human phonation (onset pressure is the minimum lung pressure required to initiate vibration), unnaturally large inferior-superior motion, and lack of a "mucosal wave" (a vertically-traveling wave that is characteristic of healthy human vocal fold vibration).In this paper, fabrication of a model with multiple layers of differing material properties is described. The model layers simulate the multi-layer structure of the human vocal folds, including epithelium, superficial lamina propria (SLP), intermediate and deep lamina propria (i.e., ligament; a fiber is included for anterior-posterior stiffness), and muscle (i.e., body) layers 1. Results are included that show that the model exhibits improved vibratory characteristics over prior one- and two-layer synthetic models, including onset pressure closer to human onset pressure, reduced inferior-superior motion, and evidence of a mucosal wave.  相似文献   

2.
3.
The influence of asymmetric vocal fold stiffness on voice production was evaluated using life-sized, self-oscillating vocal fold models with an idealized geometry based on the human vocal folds. The models were fabricated using flexible, materially-linear silicone compounds with Young's modulus values comparable to that of vocal fold tissue. The models included a two-layer design to simulate the vocal fold layered structure. The respective Young's moduli of elasticity of the “left” and “right” vocal fold models were varied to create asymmetric conditions. High-speed videokymography was used to measure maximum vocal fold excursion, vibration frequency, and left–right phase shift, all of which were significantly influenced by asymmetry. Onset pressure, a measure of vocal effort, increased with asymmetry. Particle image velocimetry (PIV) analysis showed significantly greater skewing of the glottal jet in the direction of the stiffer vocal fold model. Potential applications to various clinical conditions are mentioned, and suggestions for future related studies are presented.  相似文献   

4.
5.
Vocal folds play a crucial role in voice production. The physiological vibrations of vocal folds depend on the unchanged multilayered structure of the vocal folds mucosa. Morphological changes of mucosa are the cause of voice quality disorders - dysphonia. The aim of this study was to determine the morphological base of dysphonia in patients with vocal folds atrophy. A group of 24 patients with larynx atrophy confirmed by endoscopic (VLS) and stroboscopic (VLSS) examination of the larynx was included in the study. The morphological assessment of the larynx mucosa was carried out with the use of the transmission electron microscopy (TEM). Ultramorphological examinations revealed changes in the epithelium, basal membrane and lamina propria of the vocal folds mucosa. An increased number of collagenous fibers, fibroblasts with signs of vacuolar degeneration inflammatory cells and a decreased number of blood vessels and pericytes were observed. Morphological changes found in the epithelium, basal membrane and lamina propria of the vocal folds mucosa were the cause of disorders of vocal folds vibrations registered in the stroboscopic examination of the larynx (VLSS).  相似文献   

6.
Klemuk SA  Riede T  Walsh EJ  Titze IR 《PloS one》2011,6(11):e27029
Vocal production requires active control of the respiratory system, larynx and vocal tract. Vocal sounds in mammals are produced by flow-induced vocal fold oscillation, which requires vocal fold tissue that can sustain the mechanical stress during phonation. Our understanding of the relationship between morphology and vocal function of vocal folds is very limited. Here we tested the hypothesis that vocal fold morphology and viscoelastic properties allow a prediction of fundamental frequency range of sounds that can be produced, and minimal lung pressure necessary to initiate phonation. We tested the hypothesis in lions and tigers who are well-known for producing low frequency and very loud roaring sounds that expose vocal folds to large stresses. In histological sections, we found that the Panthera vocal fold lamina propria consists of a lateral region with adipocytes embedded in a network of collagen and elastin fibers and hyaluronan. There is also a medial region that contains only fibrous proteins and hyaluronan but no fat cells. Young's moduli range between 10 and 2000 kPa for strains up to 60%. Shear moduli ranged between 0.1 and 2 kPa and differed between layers. Biomechanical and morphological data were used to make predictions of fundamental frequency and subglottal pressure ranges. Such predictions agreed well with measurements from natural phonation and phonation of excised larynges, respectively. We assume that fat shapes Panthera vocal folds into an advantageous geometry for phonation and it protects vocal folds. Its primary function is probably not to increase vocal fold mass as suggested previously. The large square-shaped Panthera vocal fold eases phonation onset and thereby extends the dynamic range of the voice.  相似文献   

7.
Vocal nodules are benign tumefactions on the vocal cords due to excessive or improper use of the voice. They vary in size, shape, location and histologic composition and are essentially a clinical rather than a pathologic entity.High-speed motion pictures at 5,000 frames per second revealed that they disturb the normal vibratory pattern in the same manner as benign tumors of the vocal cords generally. Treatment consists of vocal rest, vocal reeducation, and surgical operation, singly or in combination.  相似文献   

8.
IntroductionLaryngeal tuberculosis (LTB) is the most frequent larynx granulomatous disease. In general there is lung involvement, but in an important proportion of cases you can find LTB without pulmonary disease. The lesions observed in LTB, such as ulceration and fibrosis, can interfere in the process of voice production. The involvement of the mucous lining of the vocal folds can change their flexibility and, consequently, change voice quality, and the main symptom is dysphonia present in almost 90% of cases.ObjectiveTo describe the anatomical characteristics and voice quality in LTB patients.ResultThe most frequently affected sites were vocal folds in 87.5% patients, vestibular folds in 66.7%, epiglottis in 41.7%, arytenoid in 50%, aryepiglottic folds in 33.3%, and interarytenoid region in 33.3% patients. We found 95.8% cases of dysphonia. The voice acoustic analysis showed 58.3% cases of Jitter alterations, 83.3% of Shimmer and 70.8% of GNE.ConclusionVoice disorders found in active laryngeal tuberculosis are similar to those reported after clinical healing of the disease, suggesting that sequelae and vocal adjustments may install during the active phase of the disease, negatively impacting the process of vocal quality reestablishment.  相似文献   

9.
To increase our understanding of pathological and healthy voice production, quantitative measurement of the medial surface dynamics of the vocal folds is significant, albeit rarely performed because of the inaccessibility of the vocal folds. Using an excised hemilarynx methodology, a new calibration technique, herein referred to as the linear approximate (LA) method, was introduced to compute the three-dimensional coordinates of fleshpoints along the entire medial surface of the vocal fold. The results were compared with results from the direct linear transform. An associated error estimation was presented, demonstrating the improved accuracy of the new method. A test on real data was reported including computation of quantitative measurements of vocal fold dynamics.  相似文献   

10.
A three-dimensional finite-element model was developed to simulate the complex movement of the laryngeal cartilages during vocal fold abduction and adduction. The model consists of cricoid and arytenoid cartilages, as well as the intralaryngeal muscles and vocal folds. The active and passive properties of the muscles were idealised by one-dimensional elements based on the Hill theory. Its controlling input value is a time dependent stimulation rate. Optimisation loops have been carried out for the arrangement of the individual stimulation rates. Since in vivo measurements are not feasible, the developed biomechanical model shall be used to analyse the force distribution within the laryngeal muscles during phonatory manoeuvres. Simulations of abduction and adduction in different pitches of voice lead to realistic tensions of the vocal folds. The model is a first step to analyse motional vocal fold diseases and to predict the consequences of phonosurgical interventions.  相似文献   

11.
A three-dimensional finite-element model was developed to simulate the complex movement of the laryngeal cartilages during vocal fold abduction and adduction. The model consists of cricoid and arytenoid cartilages, as well as the intralaryngeal muscles and vocal folds. The active and passive properties of the muscles were idealised by one-dimensional elements based on the Hill theory. Its controlling input value is a time dependent stimulation rate. Optimisation loops have been carried out for the arrangement of the individual stimulation rates. Since in vivo measurements are not feasible, the developed biomechanical model shall be used to analyse the force distribution within the laryngeal muscles during phonatory manoeuvres. Simulations of abduction and adduction in different pitches of voice lead to realistic tensions of the vocal folds. The model is a first step to analyse motional vocal fold diseases and to predict the consequences of phonosurgical interventions.  相似文献   

12.
The voice quality in prebysphonia is conditioned by morphological changes in the vocal folds mucosa. The studies including light microscopy and transmission electron microscopy (TEM) revealed changes within the basal membrane epithelium and the stroma of the vocal folds mucosa. Age-related changes in thickness of the epithelium and direction of the basal membrane, increased number of collagenous fibres (C) and fibroblasts and chronic inflammatory process in the stroma were found. Vacuolated and keratinised epithelial cells, enlarged extracellular spaces and numerous blood vessels confirm the edematous form of prebysphonia. Thinned epithelium with signs of hyalinization, inflammatory infiltrations in the stroma with numerous collagenous fibres and small number of blood vessels indicate atrophy of the vocal folds mucosa. Edematous and atrophic changes in the vocal folds mucosa are most frequently reported form of prebysphonia.  相似文献   

13.
Jitter, in voice production applications, is a random phenomenon characterized by the deviation of the glottal cycle length with respect to a mean value. Its study can help in identifying pathologies related to the vocal folds according to the values obtained through the different ways to measure it. This paper aims to propose a stochastic model, considering three control parameters, to generate jitter based on a deterministic one-mass model for the dynamics of the vocal folds and to identify parameters from the stochastic model taking into account real voice signals experimentally obtained. To solve the corresponding stochastic inverse problem, the cost function used is based on the distance between probability density functions of the random variables associated with the fundamental frequencies obtained by the experimental voices and the simulated ones, and also on the distance between features extracted from the voice signals, simulated and experimental, to calculate jitter. The results obtained show that the model proposed is valid and some samples of voices are synthesized considering the identified parameters for normal and pathological cases. The strategy adopted is also a novelty and mainly because a solution was obtained. In addition to the use of three parameters to construct the model of jitter, it is the discussion of a parameter related to the bandwidth of the power spectral density function of the stochastic process to measure the quality of the signal generated. A study about the influence of all the main parameters is also performed. The identification of the parameters of the model considering pathological cases is maybe of all novelties introduced by the paper the most interesting.  相似文献   

14.
In the interior of the larynx of Ranidae there are two sturdy vocal cords. The Bufonidae have more delicate vocal cords, and in addition paired cushions of tissue anterior to the cords and paired folds posterior to the cords.In the three ranids Rana esculenta, Rana ridibunda and Rana temporaria, partial or total extirpation of the vocal cords results in loss of voice or atypical release calls. In such remnants of calls as are retained, the frequency composition is little affected, whereas the intensity is always greatly reduced. The most severe impairment is evident in the formation of sound pulses and in the rhythmicity of the pulse sequence.In the three bufonids Bufo bufo, Bufo calamita and Bufo viridis loss of voice is a less common result of the various operations than in the ranids. The most marked deterioration follows removal of all or part of the vocal cords. The tissue cushions and the posterior folds participate, along with the vocal cords, in production of the release calls. Post-operative alterations in the release calls are therefore quite variable.  相似文献   

15.
Within the human larynx, the ventricular folds serve primarily as a protecting valve during swallowing. They are located directly above the sound-generating vocal folds. During normal phonation, the ventricular folds are passive structures that are not excited to periodical oscillations. However, the impact of the ventricular folds on the phonation process has not yet been finally clarified.An experimental synthetic human larynx model was used to investigate the effect of the ventricular folds on the phonation process. The model includes self-oscillating vocal fold models and allows the comparison of the pressure distribution at multiple locations in the larynx for configurations with and without ventricular folds.The results indicate that the ventricular folds increase the efficiency of the phonation process by reducing the phonation threshold level of the pressure below the vocal folds. Two effects caused by the ventricular folds could be identified as reasons: (1) a decrease in the mean pressure level in the region between vocal and ventricular folds (ventricles) and (2) an increase in the glottal flow resistance.The reason for the first effect is a reduction of the pressure level in the ventricles due to the jet entrainment and the low static pressure in the glottal jet. The second effect results from an increase in the glottal flow resistance that enhances the aerodynamic energy transfer into the vocal folds. This effect reduces the onset threshold of the pressure difference across the glottis.  相似文献   

16.
In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.  相似文献   

17.
Voice is the essential part of singing and speech communication. Voice disorders significantly affect the quality of life. The viscoelastic mechanical properties of the vocal fold mucosa determine the characteristics of the vocal folds oscillations, and thereby voice quality. In the present study, a non-invasive method was developed to determine the shear modulus of human vocal fold tissue in vivo via measurements of the mucosal wave propagation speed during phonation. Images of four human subjects' vocal folds were captured using high speed digital imaging (HSDI) and magnetic resonance imaging (MRI) for different phonation pitches, specifically fundamental frequencies between 110 and 440 Hz. The MRI images were used to obtain the morphometric dimensions of each subject's vocal folds in order to determine the pixel size in the high-speed images. The mucosal wave propagation speed was determined for each subject and at each pitch value using an automated image processing algorithm. The transverse shear modulus of the vocal fold mucosa was then calculated from a surface (Rayleigh) wave propagation dispersion equation using the measured wave speeds. It was found that the mucosal wave propagation speed and therefore the shear modulus of the vocal fold tissue were generally greater at higher pitches. The results were in good agreement with those from other studies obtained via in vitro measurements, thereby supporting the validity of the proposed measurement method. This method offers the potential for in vivo clinical assessments of vocal folds viscoelasticity from HSDI.  相似文献   

18.
The authors test the hypothesis that vocal fold morphology and biomechanical properties covary with species‐specific vocal function. They investigate mule deer (Odocoileus hemionus) vocal folds, building on, and extending data on a related cervid, the Rocky Mountain elk (Cervus elaphus nelsoni). The mule deer, in contrast to the elk, is a species with relatively little vocal activity in adult animals. Mule deer and elk vocal folds show the typical three components of the mammalian vocal fold (epithelium, lamina propria and thyroarytenoid muscle). The vocal fold epithelium and the lamina propria were investigated in two sets of tensile tests. First, creep rupture tests demonstrated that ultimate stress in mule deer lamina propria is of the same magnitude as in elk. Second, cyclic loading tests revealed similar elastic moduli for the vocal fold epithelium in mule deer and elk. The elastic modulus of the lamina propria is also similar between the two species in the low‐strain region, but differs at strains larger than 0.3. Sex differences in the stress–strain response, which have been reported for elk and human vocal folds, were not found for mule deer vocal folds. The laminae propriae in mule deer and elk vocal folds are comparatively large. In general, a thick and uniformly stiff lamina propria does not self‐oscillate well, even when high subglottic pressure is applied. If the less stiff vocal fold seen in elk is associated with a differentiated lamina propria it would allow the vocal fold to vibrate at high tension and high subglottic pressure. The results of this study support the hypothesis that viscoelastic properties of vocal folds varies with function and vocal behavior. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Subharmonics, deterministic chaos, biphonations, sidebands and frequency jumps, known under joining name nonlinear phenomena, represent acoustical appearances that occur in calls of various mammals, from insectivorous to humans. Although the physical basis for appearances of the nonlinear phenomen is known in principle, such aspects as occurrence and functional significance of nonlinear phenomena, are poorly understood. We described here the structural peculiarities of these appearances based on domestic dogs' whines demonstrating all kinds of the nonlinear phenomena. The nonlinear phenomena result directly from the work of mammalian vocal apparatus--lunges, vocal folds, and vocal tract, which are responsible for its inherent functional characteristics. The mammalian vocal folds represent a system of two coupled oscillators functioning in different vibratory regimes depending on degree of synchronization in their vibrations and occurrence of coupling between the vocal folds. This functioning does not need in direct neural control for turning on the complex regimes of vocal folds' vibration and switching from one regime to another. Besides, many mammals possess anatomical structures, such as vocal membranes, pads on vocal folds, or laryngeal air sacs, that are to participate in sound production as additional oscillators extend the range of possibilities for arising of nonlinear phenomena in vocalization. On the basis of published and own data, we provide and overview of the occurrence of nonlinear phenomena in sounds of humans, nonhuman primates, canids, and rodents, and discuss the supposed functional significance of these acoustical appearances in mammalian vocal communication systems. From one side, nonlinear phenomena may be related to various physiological disorders in humans and animals. In such cases, their appearance in calls may be nonadaptive, because they permit conspecifics' to avoid owners of such "ill" voices, and points easy prey to predators. From another side, in some cases the nonlinear phenomena may arise especially for performing of some signal functions in species communication system: to enhance reliability of individual recognition, to transmit information about size of a caller over the large distance, to permit individuals of not great size mimicry acoustically under more larger animal, to introduce variety into monotonous vocal sequences in order to force other group members to pay attention to a caller, and to facilitate distance estimation to a caller and direction of its movement.  相似文献   

20.
Vocal fold tissue lesions such as nodules and polyps are thought to develop in response to mechanical stress that occurs during vocal fold collision. Two computational models of vocal fold collision during voice production are used to investigate this hypothesis. A one-dimensional lumped mass model, whose parameters are derived from vocal fold tissue dimensions and material properties, predicts stress perpendicular to the direction of impact (normal stress). A previously published three-dimensional finite element model that incorporates the same dimensions and properties predicts the entire stress tensor. The hypothesis is supported by predictions from the finite element model that three components of normal stress and one component of shear stress are increased during collision in the typical location of lesions (i.e. the center of the superior medial edge of the vocal fold in the middle of the vibrating and contact region). The lumped mass model predicts that mechanical stress is negatively correlated with mucosal thickness (increased by voice warm-up and hydration), is positively correlated with driving force (proportional to voice intensity), and is affected by voice production method. These relationships are consistent with clinical observations of vocal fold lesion risk factors and have implications for improving prevention and treatment of benign vocal fold lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号