首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prion hypothesis13 states that the prion and non-prion form of a protein differ only in their 3D conformation and that different strains of a prion differ by their 3D structure.4,5 Recent technical developments have enabled solid-state NMR to address the atomic-resolution structures of full-length prions, and a first comparative study of two of them, HET-s and Ure2p, in fibrillar form, has recently appeared as a pair of companion papers.6,7 Interestingly, the two structures are rather different: HET-s features an exceedingly well-ordered prion domain and a partially disordered globular domain. Ure2p in contrast features a very well ordered globular domain with a conserved fold, and—most probably—a partially ordered prion domain.6 For HET-s, the structure of the prion domain is characterized at atomic-resolution. For Ure2p, structure determination is under way, but the highly resolved spectra clearly show that information at atomic resolution should be achievable.Key words: prion, NMR, solid-state NMR, MAS, structure, Ure2p, HET-sDespite the large interest in the basic mechanisms of fibril formation and prion propagation, little is known about the molecular structure of prions at atomic resolution and the mechanism of propagation. Prions with related properties to the ones responsible for mammalian diseases were also discovered in yeast and funghi8,9 which provide convenient model system for their studies. Prion proteins described include the mammalian prion protein PrP, Ure2p,10 Rnq1p,11 Sup35,12 Swi1,13 and Cyc8,14 from bakers yeast (S. cervisiae) and HET-s from the filamentous fungus P. anserina. The soluble non-prion form of the proteins characterized in vitro is a globular protein with an unfolded, dynamically disordered N- or C-terminal tail.1518 In the prion form, the proteins form fibrillar aggregates, in which the tail adopts a different conformation and is thought to be the dominant structural element for fibril formation.Fibrills are difficult to structurally characterize at atomic resolution, as X-ray diffraction and liquid-state NMR cannot be applied because of the non-crystallinity and the mass of the fibrils. Solid-state NMR, in contrast, is nowadays well suited for this purpose. The size of the monomer, between 230 and 685 amino-acid residues for the prions of Figure 1, and therefore the number of resonances in the spectrum—that used to be large for structure determination—is now becoming tractable by this method.Open in a separate windowFigure 1Prions identified today and characterized as consisting of a prion domain (blue) and a globular domain (red).Prion proteins characterized so far were found to be usually constituted of two domains, namely the prion domain and the globular domain (see Fig. 1). This architecture suggests a divide-and-conquer approach to structure determination, in which the globular and prion domain are investigated separately. In isolation, the latter, or fragments thereof, were found to form β-sheet rich structures (e.g., Ure2p(1-89),6,19 Rnq1p(153-405)20 and HET-s(218-289)21). The same conclusion was reached by investigating Sup35(1-254).22 All these fragements have been characterized as amyloids, which we define in the sense that a significant part of the protein is involved in a cross-beta motif.23 An atomic resolution structure however is available presently only for the HET-s prion domain, and was obtained from solid-state NMR24 (vide infra). It contains mainly β-sheets, which form a triangular hydrophobic core. While this cross-beta structure can be classified as an amyloid, its triangular shape does deviate significantly from amyloid-like structures of smaller peptides.23Regarding the globular domains, structures have been determined by x-ray crystallography (Ure2p25,26 and HET-s27), as well as NMR (mammal prions15,2830). All reveal a protein fold rich in α-helices, and dimeric structures for the Ure2 and HET-s proteins. The Ure2p fold resembles that of the β-class glutathione S-transferases (GST), but lacks GST activity.25It is a central question for the structural biology of prions if the divide-and-conquer approach imposed by limitations in current structural approaches is valid. Or in other words: can the assembly of full-length prions simply be derived from the sum of the two folds observed for the isolated domains?  相似文献   

2.
3.
Flowering is a developmental process, which is influenced by chemical and environmental stimuli. Recently, our research established that the Arabidopsis SUMO E3 ligase, AtSIZ1, is a negative regulator of transition to flowering through mechanisms that reduce salicylic acid (SA) accumulation and involve SUMO modification of FLOWERING LOCUS D (FLD). FLD is an autonomous pathway determinant that represses the expression of FLOWERING LOCUS C (FLC), a floral repressor. This addendum postulates mechanisms by which SIZ1-mediated SUMO conjugation regulates SA accumulation and FLD activity.Key words: SIZ1, SA, flowering, SUMO, FLD, FLCSUMO conjugation and deconjugation are post-translational processes implicated in plant defense against pathogens, abscisic acid (ABA) and phosphate (Pi) starvation signaling, development, and drought and temperature stress tolerance, albeit only a few of the modified proteins have been identified.18 The Arabidopsis AtSIZ1 locus encodes a SUMO E3 ligase that regulates floral transition and leaf development.8,9 siz1 plants accumulate substantial levels of SA, which is the primary cause for dwarfism and early short-day flowering exhibited by these plants.1,9 How SA promotes transition to flowering is not yet known but apparently, it is through a mechanism that is independent of the known floral signaling pathways.9,10 Exogenous SA reduces expression of AGAMOUS-like 15 (AGL15), a floral repressor that functions redundantly with AGL18.11,12 A possible mechanism by which SA promotes transition to flowering may be by repressing expression of AGL15 and AGL18 (Fig. 1).Open in a separate windowFigure 1Model of how SUMO conjugation and deconjugation regulate plant development in Arabidopsis. SIZ1 and Avr proteins regulate biosynthesis and accumulation of SA, a plant stress hormone that is involved in plant innate immunity, leaf development and regulation of flowering time. SA promotes transition to flowering may through AGL15/AGL18 dependent and independent pathways. FLC expression is activated by FRIGIDA but repressed by the autonomous pathway gene FLD, and SIZ1-mediated sumoylation of FLD represses its activity. Lines with arrows indicate upregulation (activation), and those with bars identify downregulation (repression).siz1 mutations also cause constitutive induction of pathogenesis-related protein genes leading to enhanced resistance against biotrophic pathogens.1 Several bacterial type III effector proteins, such as YopJ, XopD and AvrXv4, have SUMO isopeptidase activity.1315 PopP2, a member of YopJ/AvrRxv bacterial type III effector protein family, physically interacts with the TIR-NBS-LRR type R protein RRS1, and possibly stabilizes the RRS1 protein.16 Phytopathogen effector and plant R protein interactions lead to increased SA biosynthesis and accumulation, which in turn activates expression of pathogenesis-related proteins that facilitate plant defense.17 SIZ1 may participate in SUMO conjugation of plant R proteins to regulate Avr and R protein interactions leading to SA accumulation, which, in turn, affects phenotypes such as diseases resistance, dwarfism and flowering time (Fig. 1).Our recent work revealed also that AtSIZ1 facilitates FLC expression, negatively regulating flowering.9 AtSIZ1 promotes FLC expression by repressing FLD activity.9 Site-specific mutations that prevent SUMO1/2 conjugation to FLD result in enhanced activity of the protein to represses FLC expression, which is associated with reduced acetylation of histone 4 (H4) in FLC chromatin.9 FLD, an Arabidopsis ortholog of Lysine-Specific Demethylase 1 (LSD1), is a floral activator that downregulates methylation of H3K4 in FLC chromatin and represses FLC expression.18,19 Interestingly, bacteria expressing recombinant FLD protein did not demethylate H3K4me2, inferring that the demethylase activity requires additional co-factors as are necessary for LSD1.18,20 Together, these results suggest that SIZ1-mediated SUMO modification of FLD may affect interactions between FLD and co-factors, which is necessary for FLC chromatin modification.Despite our results that implicate SA in flowering time control, how SIZ1 regulates SA accumulation and the identity of the effectors involved remain to be discovered. In addition, it remains to be determined if SIZ1 is involved in other mechanisms that modulate FLD activity and FLC expression, or the function of other autonomous pathway determinants.  相似文献   

4.
5.
A high-throughput in planta overexpression screen of a Nicotiana benthamiana cDNA library identified a mitogen activated protein kinase kinase (MAPKK), NbMKK1, as a potent inducer of hypersensitive response (HR)-like cell death. NbMKK1-mediated cell death was attenuated in plants whereby expression of NbSIPK, an ortholog of tobacco SIPK and Arabidopsis AtMPK6, was knocked down by virus-induced gene silencing (VIGS), suggesting that NbMKK1 functions upstream of NbSIPK. In accordance with this result, NbMKK1 phosphorylated NbSIPK in vitro, and furthermore NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. VIGS of NbMKK1 in N. benthamiana resulted in a delay of Phytophthora infestans INF1 elicitin-mediated HR as well as in the reduction of resistance against a non-host pathogen Pseudomonas cichorii. Our data of NbMKK1, together with that of LeMKK4,1 demonstrate the presence of a novel defense signaling pathway involving NbMKK1/LeMKK4 and SIPK.Key Words: MAPK, defense, cell death, in planta screenMitogen activated protein kinase (MAPK) cascades are highly conserved signaling pathways in eukaryotes, comprising three tiered classes of protein kinase, MAPKKK (MAPKK kinase), MAPKK and MAPK, that sequentially relay phosphorylation signals.2 The Arabidopsis genome carries genes for 20 MAPKs, 10 MAPKKs3 and more than 25 MAPKKKs.4 In plants, MAPK signaling is known to function in various biotic4,5 and abiotic6 stress responses and cytokinesis.7 In defense signaling, extensive research has been carried out for two tobacco MAPKs, SIPK8 (salicylic-acid-induced protein kinase; hereafter designated as NtSIPK) and WIPK9 (wound-induced protein kinase = NtWIPK), and their orthologs in Arabidopsis10 (AtMPK6 and ATMPK3, respectively), partly because kinase activities of these two MAPKs are easy to detect by an in gel kinase assay using myeline basic protein (MBP) as substrate.11 Both NtSIPK and NtWIPK are activated by the interaction between host resistance (R)- gene and cognate avirulence gene of pathogen11,12 and elicitor perception by host cells.13,14 Shuqun Zhang and his group showed that an upstream kinase of both NtSIPK and NtWIPK is NtMEK2.15 Transient overexpression of constitutively active NtMEK2 caused phosphorylation of NtSIPK and NtWIPK, resulting in rapid HR-like cell death in tobacco leaves.15 Later, the same lab showed that overexpression of NtSIPK alone also caused HR-like cell death.16 The downstream target proteins of NtSIPK and AtMPK6 are being identified and include 1-aminocyclopropane-1-carboxylic acid sythase-6 (ACS-6).17,18 Although recent studies identified another MAPK cascade (NtMEK1 → Ntf6) involved in defense responses19,20 we can still say that the current research focus of MAPK defense signaling centers around the cascade comprising [NtMEK2→ NtSIPK/NtWIPK→ target proteins] of tobacco and its orthologous pathways in other plant species.In an effort to search for plant genes involved in HR-like cell death, we have been employing a high-throughput in planta expression screen of N. benthamiana cDNA libraries. In this experimental system, a cDNA library was made in a binary potato virus X (PVX)-based expression vector pSfinx.21 The cDNA library was transferred to Agrobacterium tumefaciens, and 40,000 of the bacterial colonies were individually inoculated by toothpicks onto leaf blades of N. benthamiana leaves. The phenotype around the inoculated site was observed 1–2 weeks following the inoculation. This rapid screen identified 30 cDNAs that caused cell death after overexpression, including genes coding for ubiquitin proteins, RNA recognition motif (RRM) containing proteins, a class II ethylene-responsive element binding factor (EREBP)-like protein22 and a MAPKK protein (this work). Such an in planta screening technique has been used before for the isolation of fungal21 and oomycete23,24 elicitors and necrosis inducing genes, but not for isolation of plant genes. Overexpression screening of cDNA libraries is a common practice in prokaryotes, yeast and amimal cells,25,26 so it is a surprise that this approach has not been systematically applied in plants. Given its throughput, we propose that this virus-based transient overexpression system is a highly efficient way to isolate novel plant genes by functional screen.27 Since overexpression frequently causes non-specific perturbation of signaling, genes identified by overexpression should be further validated by loss-of-function assays, for instance, VIGS.28Overexpression of the identified MAPKK gene, NbMKK1, triggered a rapid generation of H2O2, followed by HR-like cell death in N. benthamiana leaves (this work). NbMKK1-GFP fusion protein overexpression also caused cell death, and curiously NbMKK1-GFP was shown to localize consistently in the nucleus. Sequence comparison classified NbMKK1 to the Group D of MAPKKs about which little information is available. So far, a MAPKK, LeMKK4, from tomato belonging to the Group D MAPKKs, was shown to cause cell death after overexpression.1 Based on amino acid sequence similarity and phylogenetic analyses, LeMKK4 and NbMKK1 seem to be orthologs. To see whether NbMKK1 transduces signals through SIPK and WIPK, we performed NbMKK1 overexpression in N. benthamiana plants whereby the expression of either NbSIPK or NbWIPK (WIPK ortholog in N. benthamiana) was silenced by VIGS. NbMKK1 did not induce cell death in NbSIPK-silenced plants, suggesting that the NbMKK1 cell death signal is transmitted through NbSIPK. Indeed, NbMKK1 phosphorylated NbSIPK in vitro, and NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. These results suggest that NbMKK1 interacts with NbSIPK, most probably with its N-terminal docking domain, and phosphorylates NbSIPK in vivo to transduce the cell death signal downstream.NbMKK1 exhibits constitutive expression in leaves. To determine the function of NbMKK1 in defense, we silenced NbMKK1 by VIGS, and such plants were challenged with Phytophthora infestans INF1 elicitin29 and Pseudomonas cichorii, a non-host pathogen. INF1-mediated HR cell death was remarkably delayed in NbMKK1-silenced plants. Likewise, plant defense against P. cichorii was compromised in NbMKK1-silenced plants. These results indicate that NbMKK1 is an important component of signaling of INF1-mediated HR and non-host resistance to P. cichorii.Together, our analyses of NbMKK1 and independent work from Greg Martin''s lab on LeMKK41 suggest that a Group D MAPKK, NbMKK1/LeMKK4, functions upstream of SIPK and transduces defense signals in these solanaceous plants (Fig. 1). In plants as well as in other eukaryotes, it is common that kinases have multiple partners. The work on these kinases fits this concept. A single MAPK (e.g., SIPK) is phosphorylated by multiple MAPKKs (e.g., NtMEK2 and NbMKK1), and a single MAPKK (e.g., NtMEK2) can phosphorylate multiple MAPKs (e.g., NtSIPK and NtWIPK).Open in a separate windowFigure 1Defense signaling through NbMKK1/LeMKK4. Two defense signal pathways involving NtMEK2 (indicated as MEK2) → WIPK/SIPK and NtMEK1(indicated as MEK1) → Ntf6 are well documented. By our and Pedley and Martin''s1 works, another novel MAPKK, NbMKK1/LeMKK4 was demonstrated to participate in defense signaling by phosphorylation of SIPK.  相似文献   

6.
7.
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric αβ integrins is correlated to the association state of the single-pass α and β transmembrane domains. The association of integrin αIIbβ3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (αIIb) and tilted (β3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual αIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the β3 transmembrane helix, enabling αIIb(D723)β3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/β complex that overlap with the αβ transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.Key words: cell adhesion, membrane protein, integrin, platelet, transmembrane complex, transmembrane signalingThe communication of biological signals across the plasma membrane is fundamental to cellular function. The ubiquitous family of integrin adhesion receptors exhibits the unusual ability to convey signals bi-directionally (outside-in and inside-out signaling), thereby controlling cell adhesion, migration and differentiation.15 Integrins are Type I heterodimeric receptors that consist of large extracellular domains (>700 residues), single-pass transmembrane (TM) domains, and mostly short cytosolic tails (<70 residues). The activation state of heterodimeric integrins is correlated to the association state of the TM domains of their α and β subunits.610 TM dissociation initiated from the outside results in the transmittal of a signal into the cell, whereas dissociation originating on the inside results in activation of the integrin to bind ligands such as extracellular matrix proteins. The elucidation of the role of the TM domains in integrin-mediated adhesion and signaling has been the subject of extensive research efforts, perhaps commencing with the demonstration that the highly conserved GFFKR sequence motif of α subunits (Fig. 1), which closely follows the first charged residue on the intracellular face, αIIb(K989), constrains the receptor to a default low affinity state.11 Despite these efforts, an understanding of this sequence motif had not been reached until such time as the structure of the αIIb TM segment was determined.12 In combination with the structure of the β3 TM segment13 and available mutagenesis data,6,9,10,14,15 this has allowed the first correct prediction of the overall association of an integrin αβ TM complex.12 The predicted association was subsequently confirmed by the αIIbβ3 complex structure determined in phospholipid bicelles,16 as well as by the report of a similar structure based on molecular modeling using disulfide-based structural constraints.17 In addition to the structures of the dissociated and associated αβ TM domains, their membrane embedding was defined12,13,16,18,19 and it was experimentally recognized that, in the context of the native receptor, the TM complex is stabilized by the inactive, resting ectodomain.16 These advances in integrin membrane structural biology are complemented by the recent structures of a resting integrin ectodomain and an activating talin/β cytosolic tail complex that overlap with the αβ TM complex,20,21 allowing detailed insight into integrin bi-directional TM signaling.Open in a separate windowFigure 1Amino acid sequence of integrin αIIb and β3 transmembrane segments and flanking regions. Membrane-embedded residues12,13,16,18,19 are enclosed by a gray box. Residues 991–995 constitute the highly conserved GFFKR sequence motif of integrin α subunits.  相似文献   

8.
9.
Polar auxin transport (PAT), which is controlled precisely by both auxin efflux and influx facilitators and mediated by the cell trafficking system, modulates organogenesis, development and root gravitropism. ADP-ribosylation factor (ARF)-GTPase protein is catalyzed to switch to the GTP-bound type by a guanine nucleotide exchange factor (GEF) and promoted for hybridization to the GDP-bound type by a GTPase-activating protein (GAP). Previous studies showed that auxin efflux facilitators such as PIN1 are regulated by GNOM, an ARF-GEF, in Arabidopsis. In the November issue of The Plant Journal, we reported that the auxin influx facilitator AUX1 was regulated by ARF-GAP via the vesicle trafficking system.1 In this addendum, we report that overexpression of OsAGAP leads to enhanced root gravitropism and propose a new model of PAT regulation: a loop mechanism between ARF-GAP and GEF mediated by vesicle trafficking to regulate PAT at influx and efflux facilitators, thus controlling root development in plants.Key Words: ADP-ribosylation factor (ARF), ARF-GAP, ARF-GEF, auxin, GNOM, polar transport of auxinPolar auxin transport (PAT) is a unique process in plants. It results in alteration of auxin level, which controls organogenesis and development and a series of physiological processes, such as vascular differentiation, apical dominance, and tropic growth.2 Genetic and physiological studies identified that PAT depends on efflux facilitators such as PIN family proteins and influx facilitators such as AUX1 in Arabidopsis.Eight PIN family proteins, AtPIN1 to AtPIN8, exist in Arabidopsis. AtPIN1 is located at the basal side of the plasma membrane in vascular tissues but is weak in cortical tissues, which supports the hypothesis of chemical pervasion.3 AtPIN2 is localized at the apical side of epidermal cells and basally in cortical cells.1,4 GNOM, an ARF GEF, modulates the localization of PIN1 and vesicle trafficking and affects root development.5,6 The PIN auxin-efflux facilitator network controls root growth and patterning in Arabidopsis.4 As well, asymmetric localization of AUX1 occurs in the root cells of Arabidopsis plants,7 and overexpression of OsAGAP interferes with localization of AUX1.1 Our data support that ARF-GAP mediates auxin influx and auxin-dependent root growth and patterning, which involves vesicle trafficking.1 Here we show that OsAGAP overexpression leads to enhanced gravitropic response in transgenic rice plants. We propose a model whereby ARF GTPase is a molecular switch to control PAT and root growth and development.Overexpression of OsAGAP led to reduced growth in primary or adventitious roots of rice as compared with wild-type rice.1 Gravitropism assay revealed transgenic rice overxpressing OsAGAP with a faster response to gravity than the wild type during 24-h treatment. However, 1-naphthyl acetic acid (NAA) treatment promoted the gravitropic response of the wild type, with no difference in response between the OsAGAP transgenic plants and the wild type plants (Fig. 1). The phenotype of enhanced gravitropic response in the transgenic plants was similar to that in the mutants atmdr1-100 and atmdr1-100/atpgp1-100 related to Arabidopsis ABC (ATP-binding cassette) transporter and defective in PAT.8 The physiological data, as well as data on localization of auxin transport facilitators, support ARF-GAP modulating PAT via regulating the location of the auxin influx facilitator AUX1.1 So the alteration in gravitropic response in the OsAGAP transgenic plants was explained by a defect in PAT.Open in a separate windowFigure 1Gravitropism of OsAGAP overexpressing transgenic rice roots and response to 1-naphthyl acetic acid (NAA). (A) Gravitropism phenotype of wild type (WT) and OsAGAP overexpressing roots at 6 hr gravi-stimulation (top panel) and 0 hr as a treatment control (bottom panel). (B) Time course of gravitropic response in transgenic roots. (C and D) results correspond to those in (A and B), except for treatment with NAA (5 × 10−7 M).The polarity of auxin transport is controlled by the asymmetric distribution of auxin transport proteins, efflux facilitators and influx carriers. ARF GTPase is a key member in vesicle trafficking system and modulates cell polarity and PAT in plants. Thus, ARF-GDP or GTP bound with GEF or GAP determines the ARF function on auxin efflux facilitators (such as PIN1) or influx ones (such as AUX1).ARF1, targeting ROP2 and PIN2, affects epidermal cell polarity.9 GNOM is involved in the regulation of PIN1 asymmetric localization in cells and its related function in organogenesis and development.6 Although VAN3, an ARF-GAP in Arabidopsis, is located in a subpopulation of the trans-Golgi transport network (TGN), which is involved in leaf vascular network formation, it does not affect PAT.10 OsAGAP possesses an ARF GTPase-activating function in rice.11 Specifically, our evidence supports that ARF-GAP bound with ARF-GTP modulates PAT and gravitropism via AUX1, mediated by vesicle trafficking, including the Golgi stack.1Therefore, we propose a loop mechanism between ARF-GAP and GEF mediated by the vascular trafficking system in regulating PAT at influx and efflux facilitators, which controls root development and gravitropism in plants (Fig. 2). Here we emphasize that ARF-GEF catalyzes a conversion of ARF-bound GDP to GTP, which is necessary for the efficient delivery of the vesicle to the target membrane.12 An opposite process of ARF-bound GDP to GTP is promoted by ARF-GTPase-activating protein via binding. A loop status of ARF-GTP and ARF-GDP bound with their appurtenances controls different auxin facilitators and regulates root development and gravitropism.Open in a separate windowFigure 2Model for ARF GTPase as a molecular switch for the polar auxin transport mediated by the vesicle traffic system.  相似文献   

10.
11.
Processes putatively dependent on the galactolipid monogalactosyldiacylglycerol (MGDG) were recently studied using the knockdown monogalactosyldiacylglycerol synthase 1 (mgd1-1) mutant (∼40% reduction in MGDG). Surprisingly, targeting of chloroplast proteins was not affected in mgd1-1 mutants, suggesting they retain sufficient MGDG to maintain efficient targeting. However, in dark-grown mgd1-1 plants the photoactive to photoinactive protochlorophyllide (Pchlide) ratio was increased, suggesting that photoprotective responses are induced in them. Nevertheless, mgd1-1 could not withstand high light intensities, apparently due to impairment of another photoprotective mechanism, the xanthophyll cycle (and hence thermal dissipation). This was mediated by increased conductivity of the thylakoid membrane leading to a higher pH in the thylakoid interior, which impaired the pH-dependent activation of violaxanthin de-epoxidase (VDE) and PsbS. These findings suggest that MGDG contribute directly to the regulation of photosynthesis-related processes.Key words: conductivity, galactolipid, light stress, photosynthesis, plastid, xanthophyllThe galactolipid monogalactosyldiacylglycerol (MGDG), the major lipid in plastids,1 is mainly synthesised in inner plastid envelopes,2 where monogalactosyldiacylglycerol synthase 1 (MGD1) catalyses the last step of its production.3 Two MGDG-deficient mutants are known: the knockdown mgd1-1 mutant, which accumulates ∼40% less MGDG than wild type,4 and the null mutant mgd1-2, which displays extremely severe defects in chloroplast and plant development.5 Thus, the mgd1-1 mutant is more suitable for assessing putative roles of MGDG in processes such as protein targeting and photoprotection.There are conflicting indications regarding the involvement of galactolipids in chloroplast protein targeting: some suggest they play an important role,610 but not all.11,12 The data recently collected for mgd1-1 do not support MGDG''s involvement in protein targeting, since (inter alia) the level of MGDG in mgd1-1 mutants is clearly sufficient for efficient targeting.13 Further, the galactolipid associated with the TOC complex12 is digalactosyldiacylglycerol (DGDG) and the digalactosyldiacylglycerol synthase 1 (dgd1) mutant,14 which has ∼10% of wild-type levels of DGDG, has impaired import efficiency.15,16 Hence, this may indicate that DGDG is relatively more important for chloroplast import than MGDG.The prolamellar bodies (PLBs) of etioplasts have high lipid-to-protein ratios compared to thylakoids. Their major lipid and protein are MGDG and NADPH:Pchlide oxidoreductase (POR), respectively,17 and MGDG putatively plays an important role, interactively with POR, in the formation of PLBs.1820 The transformation of PLBs into thylakoids involves phototransformation of photoactive Pchlide (F656), a precursor of chlorophyll. Non-photoactive Pchlide (F631) is susceptible to photooxidative damage, but POR is believed to suppress this.21,22 After excitation at 440 nm, mgd1-1 mutants display distinctly higher fluorescence emission peaks corresponding to photoactive Pchlide than wild type counterparts and (hence) higher photoactive:non-photoactive Pchlide ratios.13 These changes may be photoprotective responses that favour formation of photoactive Pchlide and optimize the plants'' opportunities to use light for chlorophyll production, enabling the transformation of etioplasts into chloroplasts.Interestingly,the xanthophyll cycle, another photoprotective mechanism, is impaired in mgd1-1.13 Normally, the xanthophyll cycle pigment violaxanthin is de-epoxidized into antheraxanthin, and then into zeaxanthin, by the enzyme VDE (Fig. 1), which is dependent on MGDG.23 MGDG is also an integral component of photosynthetic complexes.2426 Thus, since mgd1-1 mutants have reduced total amounts of xanthophyll and chlorophyll pigments, but increased chlorophyll a/b ratios, their photosynthesis capacity is unsurprisingly reduced, even though the organization of their electron transport chains is not strongly affected by the MGDG deficiency.13Open in a separate windowFigure 1Reactions of the xanthophyll cycle (adapted from ref. 29). VDE, violaxanthin de-epoxidase; ZE, zeaxanthin epoxidase.During short-term high light stress, antheraxanthin and zeaxanthin are thought to facilitate dissipation of excess light energy in the PSII antenna bed by non-photochemical quenching.27,28 Upon high light stress the pH decreases, triggering photoprotective mechanisms via changes in the PSII antenna system. The PsbS protein, which is involved in thermal dissipation, is protonated and initiates a conformational change in the PSII antenna bed. This change is further stabilized by the de-epoxidation of violaxanthin to zeaxanthin by the luminal VDE.28 However, the thermal dissipation is impaired in mgd1-1 mutants at high light intensities (>1000 µmol m−2 s−1) making them more susceptible to light stress. Surprisingly, this is not mediated by direct effects on VDE and PsbS activities, but by changes in the proton conductivity of the thylakoid membrane.13The steady-state capacity of the xanthophyll cycle is reduced in mgd1-1 mutants, due to a ∼40% reduction in the proton motive force (pmf) across their thylakoid membranes, indicating that they have impaired capacities to energize these membranes. Nevertheless, the pmf is more or less equal to wild type under light-limited conditions (200 µmol m−2 s−1 light); it is only the increase in pmf in high light intensities that is impaired in the mutants.13 This leads to the thylakoid lumen being less acidic in mgd1-1 than in wild type, hampering full activation of VDE and PsbS. Thus, the thylakoid lumen pH is above the threshold level required for full activation of PsbS and VDE under steady-state conditions and so de-epoxidation rates are retarded and the equilibrium between zeaxanthin and violaxanthin starts to shift slightly towards violaxanthin (Fig. 2).13 Thus, increased conductivity of the thylakoid membranes is probably responsible for the diminished non-photochemical quenching in mgd1-1, and the findings strongly indicate that MGDG is required for efficient photosynthesis and photoprotection, in addition to being a physical membrane constituent.Open in a separate windowFigure 2Schematic diagram illustrating the normal mode of action of the xanthophyll cycle. In standard light conditions, V is bound to the photosynthetic complexes and harvests light. In strong light, V is released from the complexes and converted to Z by VDE, which is unable to access V when it is associated with the photosynthetic complexes. The newly formed Z then binds to the photosynthetic complexes (at the PsbS protein), where it dissipates excess energy through NPQ. V, violaxanthin; A, antheraxanthin; Z, zeaxanthin; VDE, violaxanthin de-epoxidase; ZE, zeaxanthin epoxidase. Arrows indicate the directions of reactions.  相似文献   

12.
13.
Long chain bases or sphingoid bases are building blocks of complex sphingolipids that display a signaling role in programmed cell death in plants. So far, the type of programmed cell death in which these signaling lipids have been demonstrated to participate is the cell death that occurs in plant immunity, known as the hypersensitive response. The few links that have been described in this pathway are: MPK6 activation, increased calcium concentrations and reactive oxygen species (ROS) generation. The latter constitute one of the more elusive loops because of the chemical nature of ROS, the multiple possible cell sites where they can be formed and the ways in which they influence cell structure and function.Key words: hydrogen peroxide, long chain bases, programmed cell death, reactive oxygen species, sphinganine, sphingoid bases, superoxideA new transduction pathway that leads to programmed cell death (PCD) in plants has started to be unveiled.1,2 Sphingoid bases or long chain bases (LCBs) are the distinctive elements in this PCD route that naturally operates in the entrance site of a pathogen as a way to contend its spread in the plant tissues.2,3 This defense strategy has been known as the hypersensitive response (HR).4,5As a lately discovered PCD signaling circuit, three connected transducers have been clearly identified in Arabidopsis: the LCB sphinganine (also named dihydrosphingosine or d18:0); MPK6, a mitogen activated kinase and superoxide and hydrogen peroxide as reactive oxygen species (ROS).1,2 In addition, calcium transients have been recently allocated downstream of exogenously added sphinganine in tobacco cells.6Contrary to the signaling lipids derived from complex glycerolipid degradation, sphinganine, a metabolic precursor of complex sphingolipids, is raised by de novo synthesis in the endoplasmic reticulum to mediate PCD.1,2 Our recent work demonstrated that only MPK6 and not MPK3 (commonly functionally redundant kinases) acts in this pathway and is positioned downstream of sphinganine elevation.2 Although ROS have been identified downstream of LCBs in the route towards PCD,1 the molecular system responsible for this ROS generation, their cellular site of formation and their precise role in the pathway have not been unequivocally identified. ROS are produced in practically all cell compartments as a result of energy transfer reactions, leaks from the electron transport chains, and oxidase and peroxidase catalysis.7Similar to what is observed in pathogen defense,3 increases in endogenous LCBs may be elicited by addition of fumonisin B1 (FB1) as well; FB1 is a mycotoxin that inhibits ceramide synthase. This inhibition results in an accumulation of its substrate, sphinganine and its modified forms, leading to the activation of PCD.1,2,8 The application of FB1 is a commonly used approach for the study of PCD elicitation in Arabidopsis.1,2,911An early production of ROS has been linked to an increase of LCBs. For example, an H2O2 burst is found in tobacco cells after 2–20 min of sphinganine supplementation,12 and superoxide radical augmented in the medium 60 min after FB1 or sphinganine addition to Arabidopsis protoplasts (Fig. 1A). In consonance with this timing, both superoxide and H2O2 were detected in Arabidopsis leaves after 3–6 h exposure to FB1 or LCBs.1 However, the source of ROS generation associated with sphinganine elevation seems to not be the same in both species: in tobacco cells, ROS formation is apparently dependent on a NADPH oxidase activity, a ROS source consistently implicated in the HR,13,14 while in Arabidopsis, superoxide formation was unaffected by diphenyliodonium (DPI), a NADPH oxidase inhibitor (Fig. 1A). It is possible that the latter oxidative burst is due to an apoplastic peroxidase,15 or to intracellular ROS that diffuse outwards.16,17 These results also suggest that both tobacco and Arabidopsis cells could produce ROS from different sources.Open in a separate windowFigure 1ROS are produced at early and long times in the FB1-induced PCD in Arabidopsis thaliana (Col-0). (A) Superoxide formation by Arabidopsis protoplasts is NADPH oxidase-independent and occurs 60 min after FB1 or sphinganine (d18:0) exposure. Protoplasts were obtained from a cell culture treated with cell wall lytic enzymes. Protoplasts were incubated with 10 µM FB1 or 10 µM sphinganine for 1 h. Then, cells were vacuum-filtered and the filtrate was used to determine XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide, disodium salt] reduction as described in references 28 and 29. DPI was used at 50 µM. (B) H2O2 formation in Arabidopsis wt and lcb2a-1 mutant in the presence and absence of FB1. Arabidopsis seedlings were exposed to 10 µM FB1 and after 48 h seedlings were treated with DA B (3,3-diaminobencidine) to detect H2O2 according to Thordal-Christensen et al.30It has been suggested that the H2O2 burst associated with the sphinganine signaling pathway leads to the expression of defense-related genes but not to the PCD itself in tobacco cells.12 It is possible that ROS are involved in the same way in Arabidopsis, since defense gene expression is also induced by FB1 in Arabidopsis.9 In this case, it will be important to define how the early ROS that are DPI-insensitive could contribute to the PCD manifestation mediated by sphinganine.The generation of ROS (4–60 min) found in Arabidopsis was associated to three conditions: the addition of sphinganine (Fig. 1A), FB1 (Fig. 1A) or pathogen elicitors.15 This is consistent with the MPK6 activation time, which is downstream of sphinganine elevation and occurs as early as 15 min of FB1 or sphinganine exposure.2 All of them are events that appear as initial steps in the relay pathway that produces PCD.In order to explore a possible participation of ROS at more advanced times of PCD progression, we detected in situ H2O2 formation in Arabidopsis seedlings previously exposed to FB1 for 48 h. As shown in Figure 1B, formation of the brown-reddish precipitate corresponding to the reaction of H2O2 with 3,3′-diaminobenzidine (DAB) was only visible in the FB1-exposed wild type plants, as compared to the non-treated plants. However, when lcb2a-1 mutant seedlings were used, FB1 exposure had a subtle effect in ROS formation. This mutant has a T-DNA insertion in the gene encoding subunit LCB2a from serine palmitoyltransferase (SPT), which catalyzes the first step in sphingolipid synthesis18 and the mutant has a FB1-resistant phenotype.2 These results indicate that mutations in the LCB11 and LCB2a2 genes (coding for the subunits of the heterodimeric SPT) that lead to a non-PCD phenotype upon the FB1 treatment, are unable to produce H2O2. In addition, they suggest that high levels of hydrogen peroxide are produced at advanced times in the PCD mediated by LCBs in Arabidopsis.Exposure of Arabidopsis to an avirulent strain of Pseudomonas syringae produces an endogenous elevation of LCBs as a way to implement defense responses that include HR-PCD.3 In this condition, we clearly detected H2O2 formation inside chloroplasts (Fig. 2A). When ultrastructure of the seedlings tissues exposed to FB1 for 72 h was analyzed, integrity of the chloroplast membrane system was severely affected in Arabidopsis wild-type seedlings exposed to FB1.2 Therefore, we suggest that ROS generation-LCB induced in the chloroplast could be responsible of the observed membrane alteration, as noted by Liu et al. who found impairment in chloroplast function as a result of H2O2 formation in this organelle from tobacco plants. Interestingly, these plants overexpressed a MAP kinase kinase that activated the kinase SIPK, which is the ortholog of the MPK6 from Arabidopsis, a transducer in the PCD instrumented by LCBs.2Open in a separate windowFigure 2Conditions of LCBs elevation produce H2O2 formation in the chloroplast and perturbation in the membrane morphology of mitochondria. (A) Exposure of Arabidopsis leaves to the avirulent strain Pseudomonas syringae pv. tomato DC3000 (avrRPM1) (or Pst avrRPM1) induces H2O2 formation in the chloroplast. Arabidopsis leaves were infiltrated with 1 × 108 UFC/ml Pst avrRPM1 and after 18 h, samples were treated to visualize H2O2 formation with the DAB reaction. Controls were infiltrated with 10 mM MgCl2 and then processed for DAB staining. Then, samples were analyzed in an optical photomicroscope Olympus Provis Model AX70. (B) Effect of FB1 on mitochondria ultrastructure. Wild type Arabidopsis seedlings were treated with FB1 for 72 h and tissues were processed and analyzed according to Saucedo et al.2 Ch, chloroplast; M, mitochondria; PM, plasma membrane. Arrows show mitochondrial cisternae. Bars show the correspondent magnification.In addition, we have detected alterations in mitochondria ultrastructure as a result of 72 h of FB1 exposure (Fig. 2B). These alterations mainly consist in the reduced number of cristae, the membrane site of residence of the electron transport complexes. In this sense, it has been shown that factors that induce PCD such as the victorin toxin, methyl jasmonate and H2O2 produce alterations in mitochondrial morphology.2022 In fact, some of these studies propose that ROS are formed in the mitochondria and then diffuse to the chloroplasts.2224It is reasonable to envisage that damage of the membrane integrity of these two organelles reflects the effects of vast amounts of ROS produced by the electron transport chains.25,26 Recent evidence supports the destruction of the photosynthetic apparatus associated to the generation of ROS in the HR.26 At this time of PCD progression, ROS could be contributing to shut down the energy machinery in the cell, which ultimately would become the point of no-return of PCD27 as part of the execution program of the cell death mediated by LCBs.In conclusion, we propose that ROS can display two different functional roles in the PCD process driven by LCBs. These roles depend on the time of ROS expression, the cellular site where they are generated, the enzymes that produce them, and the magnitude in which they are formed.  相似文献   

14.
Phosphatidylinositol phosphate kinase (PIPK) catalyzes a key step controlling cellular contents of phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2], a critical intracellular messenger involved in vesicle trafficking and modulation of actin cytoskeleton and also a substrate of phospholipase C to produce the two intracellular messengers, diacylglycerol and inositol-1,4,5-trisphosphate. In addition to the conserved C-terminal PIPK catalytic domain, plant PIPKs contain a unique structural feature consisting of a repeat of membrane occupation and recognition nexus (MORN) motifs, called the MORN domain, in the N-terminal half. The MORN domain has previously been proposed to regulate plasma membrane localization and phosphatidic acid (PA)-inducible activation. Recently, the importance of the catalytic domain, but not the MORN domain, in these aspects was demonstrated. These conflicting data raise the question about the function of the MORN domain in plant PIPKs. We therefore performed analyses of PpPIPK1 from the moss Physcomitrella patens to elucidate the importance of the MORN domain in the control of enzymatic activity; however, we found no effect on either enzymatic activity or activation by PA. Taken together with our previous findings of lack of function in plasma membrane localization, there is no positive evidence indicating roles of the MORN domain in enzymatic and functional regulations of PpPIPK1. Therefore, further biochemical and reverse genetic analyses are necessary to understand the biological significance of the MORN domain in plant PIPKs.Key words: membrane occupation and recognition nexus (MORN) domain, phosphatidylinositol phosphate kinase, phosphatidic acid, Physcomitrella patensPhosphoinositides (PIs) are minor membrane phospholipds that play pivotal roles in various signal transduction cascades involved in development and stress response via the regulation of cytoskeletal organization, ion channel activation and vesicle trafficking.1,2 These are derivatives of phosphatidylinositol (PtdIns) produced by phosphorylation of the 3-, 4- and 5- positions of the inositol ring.2 To address the roles of PIs, enzymes involved in their production have been extensively studied using biochemical and molecular biological approaches. Of these enzymes, phosphatidylinositol monophosphate kinases (PIPKs) catalyze the reaction producing phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] that is a substrate of phospholipase C and phosphatidylinositol 3-kinase, and also acts as an intracellular messenger involved in the regulation of F-actin organization and activity of ion channels.13 Although PtdIns(4,5)P2 is produced by sequential phosphorylation by phosphatidylinositol 4-kinase, producing phosphatidylinositol-4-phosphate [PtdIns(4)P], and then by PIPK,1,2 the cellular levels of PtdIns(4)P are much higher compared to PtdIns(4,5)P2.46 Thus, a restriction step controlling cellular PtdIns(4,5)P2 contents is mediated by PIPKs, indicating the importance of PIPK regulation in various kinds of physiological processes.The roles of plant PIPKs have been established in growth regulation, such as polarized tip growth of root hairs and pollen tubes, via their localization at plasma membranes.712 It is worth to note that plant PIPKs contain a unique structure consisting of a repeat of a membrane occupation recognition nexus (MORN) motifs, called MORN domain, at the N-terminal region and a C-terminal PIPK catalytic domain, except for AtPIP5K10 and AtPIP5K11 from Arabidopsis thaliana, which lack the N-terminal MORN domain.13 The MORN domain was first identified as plasma membrane-binding module in junctophilin14 and the involvement of the MORN domain in plasma membrane localization was proposed for A. thaliana AtPIP5K1 and AtPIP5K3.9,15,16Another remarkable feature of eukaryotic PIPKs is dependency of the enzymatic activity on phosphatidic acid (PA).17,18 Indeed, PA-dependent activation of PIPKs has been observed in A. thaliana and in the moss Physcomitrella patens,6,19,20 as with animal type I PIPKs.21 Although much less is known about how PA activates PIPKs in plants, biochemical analyses suggested the involvement of the MORN domain in PA-dependent activation of AtPIP5K1.15Based on above findings, it was proposed that plasma membrane-localization and PA-dependent activation of plant PIPKs might be regulated by the MORN domain.9,15,16 In contrast, we recently demonstrated the critical involvement of the C-terminal half containing the catalytic domain of plant PIPKs in both plasma membrane-localization and PA-dependent activation.22 Thus, the function of the MORN domain remains elusive in plant PIPKs.As shown earlier, the N-terminal half of P. patens PpPIPK1 containing the MORN domain enhances its catalytic activity.22 Thus, to identify the region required for the activation of PpPIPK1, we further dissected the N-terminal half into 3 regions; the N-terminal region (amino acid nos. 1–154), the MORN repeat (amino acid nos. 155–316) and the linker region (amino acid nos. 338–452), and made deletion mutants of PpPIPK1 as shown in Figure 1A. Using Pfu Turbo DNA polymerase (Stratagene, La Jolla, USA), DNA fragments corresponding to deletion mutants lacking the N-terminal and N-terminal plus the MORN repeat, designated PpPIPK1ΔN and PpPIPK1ΔN-MORN, respectively, were amplified with primer sets; one is M_PIPK1_fb (5′-GGC AAG CAC GTG TAT AAT GTC TGA AGG GCT T-3′) and XhoIPIPK1 (5′-TAA ACT CGA GTT AGC TGG GTA GGA GGA AA-3′) and the other is M_PIPK1_f7 (5′-AGA GAA CAC GTG TAT AAT GTC TGA CTT CTA CGT CGG T-3′) and XhoIPIPK1. For building an expression plasmid for a deletion mutant lacking the MORN repeat, designated PpPIPK1ΔMORN, the N-terminal region and PpPIPK1ΔN-MORN were amplified with primer sets, M_PIPK1_fb and M_PIPK1_r3 (5′-TTG TAA GTC TCG GGT GCC ATT TGA GAG CTC-3′) M_PIPK1_f6 (5′-GAG CTC TCA AAT GGC ACC CGA GAC TTA CAA-3′) and XhoIPIPK1, respectively, using Pfu Turbo DNA polymerase and resultant DNA fragments were fused by PCR with a primer set, M_PIPK1_fb and XhoIPIPK1 using the same enzyme. These PCR products were digested with Pml1 and XhoI and inserted into Pml1-XhoI digested pPICZB (Invitrogen) to construct expression plasmids, pPICZB-PpPIPK1ΔN, pPICZB-PpPIPK1ΔN-MORN and pPICZB-PpPIPK1ΔMORN. Transformation of P. pastoris X-33 cells with the above expression plasmids, colony PCR of transformants and following expression, purification and western blot analysis of His-tagged recombinant proteins were performed as described previously.6 The PIPK activity assay using purified His-tagged proteins was carried out as described previously23 with the modifications.6Open in a separate windowFigure 1Functional dissection of the N-terminal region of PpPIPK1 identifies positive regulatory regions. (A) His-tagged recombinant PpPIPK1 proteins. A repetition of eight MORN motifs (grey boxes) and the conserved catalytic domain (black box) are indicated in wild type and mutant PpPIPK1s. The MORN repeat and junction of internal deletion are indicated by amino acid position numbers. (B) In vitro lipid kinase activity of His-tagged recombinant proteins. The activities of recombinant proteins bound to Ni-NTA agarose beads were assayed with PtdIns4P. (C) In vitro PA-dependent lipid kinase activity of His-tagged proteins. The activities of recombinant proteins bound to Ni-NTA agarose beads were assayed with PtdIns4P with 143 µM PA. Top and bottom arrowheads represent reaction products PtdIns(4,5)P2 and lysoPtdIns(4,5)P2, respectively.Biochemical analyses of these enzymes after expression in yeast P. pastoris X-33 cells followed by purification showed that deletion of the N-terminal region (PpPIPK1ΔN) reduced PpPIPK1 activity ca 40% compared to the full length enzyme, whereas loss of the MORN repeat (PpPIPK1ΔMORN) had no significant effect (Fig. 1B). In agreement, a mutant lacking four MORN repeats of the total eight repeats showed no difference in the activity compared the full length enzyme (data not shown). These results indicate a positive role of the N-terminal region, but not the MORN repeats, on PpPIPK1 activity. However, these findings differ from those obtained with AtPIP5K1, where the MORN domain represses enzymatic activity.15 Interestingly, PpPIPK1ΔN-MORN containing the linker and catalytic regions showed higher enzymatic activity of ca 23 % compared to the full length PpPIPK1 (Fig. 1B). The C-terminal half only containing the catalytic domain of PpPIPK1 and thus lacking the linker region showed a reduced activity.22 It is therefore proposed that the linker region carries a positive regulatory element. Although details are unknown, negligible effects of the N-terminal and MORN domains for the enzymatic activity has been indicated in AtPIP5K3 from A. thaliana.11 Moreover, it is noteworthy that PA-dependent activation was not affected by any deletion as shown in Figure 1C, confirming that the N-terminal half is not involved in PA dependency of the PpPIPK1 activity.22Our results indicated that the MORN domain is not involved in the regulation of the catalytic activity in PpPIPK1. Similarly, the function of the MORN domain found in the accumulation and replication of chloroplasts 3 (ARC3) was not resolved. ARC3 is an FtsZ homologue involved in chloroplast division24 and the only protein containing the MORN repeats other than PIPKs in A. thaliana. It was shown that the ARC3 MORN domain did not interact with any stromal plastid division components.25 Moreover, there are reports representing functions of the MORN domain other than plasma membrane binding. Human amyotrophic lateral sclerosis 2 (ALS2), a guanine nucleotide exchange factor (GEF) specific to the small GTPase Rab5, contains the MORN domain at the central region that is essential for the GEF activity but not for interaction with Rab5.26 In contrast, specific interaction of the MORN domain with Rab-E GTPases and resultant enzymatic activation was recently demonstrated for AtPIP5K2.12 It is interesting that these results are inconsistent with each other in terms of interaction of the MORN domain with small GTPases.Taken together, with no function of the MORN domain in plasma membrane localization of PpPIPK1 and AtPIP5K1,22 the function of the MORN domain is still unknown, despite its high conservation plants PIPKs. Alternatively, based on the findings of ARC3, ALS2 and AtPIP5K2,12,25,26 the function of the MORN domain possibly varies among PIPK isoforms and may thus have multifunctional roles. Therefore, it is necessary to identify interaction partners for the MORN domain of each plant PIPKs and to analyze phenotypes of transgenic plants carrying MORN domain-lacking PIPKs during developmental process and environmental stress responses.  相似文献   

15.
The significance of cell wall invertase (cwINV) for plant defense was investigated by comparing wild type (wt) tobacco Nicotiana tabacum L. Samsun NN (SNN) with plants with RNA interference-mediated repression of cwINV (SNN::cwINV) during the interaction with the oomycetic phytopathogen Phytophthora nicotianae. We have previously shown that the transgenic plants developed normally under standard growth conditions, but exhibited weaker defense reactions in infected source leaves and were less tolerant to the pathogen. Here, we show that repression of cwINV was not accompanied by any compensatory activities of intracellular sucrose-cleaving enzymes such as vacuolar and alkaline/neutral invertases or sucrose synthase (SUSY), neither in uninfected controls nor during infection. In wt source leaves vacuolar invertase did not respond to infection, and the activity of alkaline/neutral invertases increased only slightly. SUSY however, was distinctly stimulated, in parallel to enhanced cwINV. In SNN::cwINV SUSY-activation was largely repressed upon infection. SUSY may serve to allocate sucrose into callose deposition and other carbohydrate-consuming defense reactions. Its activity, however, seems to be directly affected by cwINV and the related reflux of carbohydrates from the apoplast into the mesophyll cells.Key words: cell wall invertase, apoplastic invertase, alkaline invertase, neutral invertase, sucrose synthase, plant defense, Nicotiana tabacum, Phytophthora nicotianaePlant defense against pathogens is costly in terms of energy and carbohydrates.1,2 Sucrose (Suc) and its cleavage products glucose and fructose are central molecules for metabolism and sensing in higher plants (reviewed in refs. 3 and 4). Rapid mobilization of these carbohydrates seems to be an important factor determining the outcome of plant-pathogen interactions. In particular in source cells reprogramming of the carbon flow from Suc to hexoses may be a crucial process during defense.1,2There are two alternative routes of sucrolytic carbohydrate mobilization. One route is reversible and involves an uridine 5′-diphosphate (UDP)-dependent cleavage catalyzed by sucrose synthase (SUSY). Its activity is limited by the concentrations of Suc and UDP in the cytosol, as the affinity of the enzyme to its substrate is relatively low (Km for Suc 40–200 mM). The other route is the irreversible, hydrolytic cleavage by invertases (INVs), which exhibit high affinity to Suc (Km 7–15 mM).5Plants possess three different types of INV isoenzymes, which can be distinguished by their solubility, subcellular localization, pH-optima and isoelectric point. Usually, they are subdivided into cell wall (cwINV), vacuolar (vacINV), and alkaline/neutral (a/nINVs) INVs.cwINV, also referred to as extracellular or apoplastic INV, is characterized by a low pH-optimum (pH 3.5–5.0) and usually ionically bound to the cell wall. It is the key enzyme of the apoplastic phloem unloading pathway and plays a crucial role in the regulation of source/sink relations (reviewed in refs. 3, 68). A specific role during plant defense has been suggested, based on observations that cwINV is often induced during various plant-pathogen interactions, and the finding that overexpression of a yeast INV in the apoplast increases plant resistance.6,810 It was shown, that a rapid induction of cwINV is, indeed, one of the early defense-related reactions in resistant tobacco source leaves after infection with Phytophthora nicotianae (P. nicotianae).11 Finally, the whole infection area in wt leaves was covered with hypersensitive lesions, indicating that all cells had undergone hypersensitive cell death (Fig. 1A).1,11 When the activity of cwINV was repressed by an RNAi construct, defense-related processes were impaired, and the infection site exhibited only small spots of hypersensitive lesions. Finally, the pathogen was able to sporulate, indicating a reduced resistance of these transgenic plants (Fig. 1A).1Open in a separate windowFigure 1Defense-induced changes in the activity of intracellular sucrose-cleaving enzymes and their contribution to defense. (A) The repression of cwINV in source leaves of tobacco leads to impaired pathogen resistance and can not be compensated by other sucrose-cleaving enzymes. The intensity of defense reactions is amongst others indicated by the extent of hypersensitive lesions. (B and C) Absolute activity of vacuolar (B) and alkaline/neutral (C) INVs at the infection site (white symbols, control; black symbols, infection site). (D) Increase in SUSY activity at the infection site. All data points taken from noninfected control parts of the plants in each individual experiment and each point along the time scale of an experiment are set as 0%. At least three independent infections are averaged and their means are presented as percentage changes ± SE (circles, SNN; triangles, SNN::cwINV). Insets show the means of the absolute amount of activities (white symbols, control; black symbols, infection site). Material and methods according to Essmann, et al.1vacINV, also labeled as soluble acidic INV, is characterized by a pH optimum between pH 5.0–5.5. Among others it determines the level of Suc stored in the vacuole and generates hexose-based sugar signals (reviewed in refs. 3 and 12). Yet, no specific role of vacINV during pathogen response has been reported. Although vacINV and cwINV are glycoproteins with similar enzymatic and biochemical properties and share a high degree of overall sequence homology and two conserved amino acid motifs,4 the activity of vacINV in tobacco source leaves was not changed due to the repression of the cwINV (Fig. 1B).1 After infection with P. nicotianae the activity of vacINV in wt SNN did not respond under conditions where cwINV was stimulated.1 There was also no significant change in the transgenic SNN::cwINV (Fig. 1B). This suggests that during biotic stress, there is no crosstalk between the regulation of cwINV and vacINV.a/nINVs exhibit activity maxima between pH 6.5 and 8.0, are not glycosylated and thought to be exclusively localized in the cytosol. But recent reports also point to a subcellular location in mitochondria and chloroplasts.13,14 Only a few a/nINVs have been cloned and characterized, and not much is known about their physiological functions (reviewed in refs. 4, 14 and 15). Among other things they seem to be involved in osmotic or low-temperature stress response.14,15 During the interaction between tobacco and P. nicotianae the activity of a/nINVs rose on average 17% in the resistant wt SNN between 1 to 9 hours post infection (Fig. 1C). By contrast, in SNN::cwINV the a/nINVs activities remained unchanged in control leaves and even after infection (Fig. 1C). This suggests that the defense related stimulation in a/nINVs activities is rather a secondary phenomenon, possibly in response to the enhanced cwINV activity and the related carbohydrate availability in the cytosol.SUSY can be found as a soluble enzyme in the cytosol, bound to the inner side of the plasma membrane or the outer membrane of mitochondria, depending on the phosphorylation status. It channels hexoses into polysaccharide biosynthesis (i.e., starch, cellulose and callose) and respiration.12,16 There is also evidence that SUSY improves the metabolic performance at low internal oxygen levels17 but little is known about its role during plant defense. Callose formation is presumably one of the strongest sink reactions in plant cells.1,18 Defense-related SUSY activity may serve to allocate Suc into callose deposition and other carbohydrate-consuming defense reactions. In fact, in the resistant wt the activity of SUSY increased upon interaction with P. nicotianae in a biphasic manner (Fig. 1D). The time course is comparable to that of cwINV activity and correlates with callose deposition and enhanced respiration.1,11 However, repression of cwINV leads in general to a reduction of SUSY activity in source leaves of tobacco.1 After infection the activation of SUSY was also significantly impaired (Fig. 1D). At the same time, the early defense-related callose deposition in infected mesophyll cells of SNN::cwINV plants is substantially delayed.1 It is known that expression of SUSY isoforms is differentially controlled by sugars,12 and there is evidence that hexoses generated by the defense-induced cwINV activity deliver sugar signals to the infected cells.1 In this sense, the reduction of defense-related, cwINV-generated sugar signals could be responsible for the repression of SUSY activity in SNN::cwINV plants after infection with P. nicotianae.Only limited hexoses or hexose-based sugar signals could be generated by cytoplasmic Suc cleavage.12 The reduction of soluble carbohydrates for sugar signaling and also as fuel for metabolic pathways that support defense reactions could be responsible for the impaired resistance in SNN::cwINV plants (Fig. 1A).Obviously, neither intracellular INV isoforms, nor SUSY can compensate for the reduced carbohydrate availability due to cwINV repression during plant defense. The data also suggest that the activity of SUSY is affected by cwINV and related reflux of carbohydrates. It is known that SUSY activity can be controlled, e.g., by sugar-mediated phosphorylation12 and one may speculate that posttranslational modulation of the protein is affected by the defense-related carbohydrate status of the cell.  相似文献   

16.
Here we announce the complete genome sequence of Croceibacter atlanticus HTCC2559T, which was isolated by high-throughput dilution-to-extinction culturing from the Bermuda Atlantic Time Series station in the Western Sargasso Sea. Strain HTCC2559T contained genes for carotenoid biosynthesis, flavonoid biosynthesis, and several macromolecule-degrading enzymes. The genome confirmed physiological observations of cultivated Croceibacter atlanticus strain HTCC2559T, which identified it as an obligate chemoheterotroph.The phylum Bacteroidetes comprises 6 to ∼30% of total bacterial communities in the ocean by fluorescence in situ hybridization (8-10). Most marine Bacteroidetes are in the family Flavobacteriaceae, most of which are aerobic respiratory heterotrophs that form a well-defined clade by 16S rRNA phylogenetic analyses (4). The members of this family are well known for degrading macromolecules, including chitin, DNA, cellulose, starch, and pectin (17), suggesting their environmental roles as detritus decomposers in the ocean (6). Marine Polaribacter and Dokdonia species in the Flavobacteriaceae have also shown to have photoheterotrophic metabolism mediated by proteorhodopsins (11, 12).Several strains of the family Flavobacteriaceae were isolated from the Sargasso Sea and Oregon coast, using high-throughput culturing approaches (7). Croceibacter atlanticus HTCC2559T was cultivated from seawater collected at a depth of 250 m from the Sargasso Sea and was identified as a new genus in the family Flavobacteriaceae based on its 16S rRNA gene sequence similarities (6). Strain HTCC2559T met the minimal standards for genera of the family Flavobacteriaceae (3) on the basis of phenotypic characteristics (6).Here we report the complete genome sequence of Croceibacter atlanticus HTCC2559T. The genome sequencing was initiated by the J. Craig Venter Institute as a part of the Moore Foundation Microbial Genome Sequencing Project and completed in the current announcement. Gaps among contigs were closed by Genotech Co., Ltd. (Daejeon, Korea), using direct sequencing of combinatorial PCR products (16). The HTCC2559T genome was analyzed with a genome annotation system based on GenDB (14) at Oregon State University and with the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (15, 16).The HTCC2559T genome is 2,952,962 bp long, with 33.9 mol% G+C content, and there was no evidence of plasmids. The number of protein-coding genes was 2,715; there were two copies of the 16S-23S-5S rRNA operon and 36 tRNA genes. The HTCC2559T genome contained genes for a complete tricarboxylic acid cycle, glycolysis, and a pentose phosphate pathway. The genome also contained sets of genes for metabolic enzymes involved in carotenoid biosynthesis and also a serine/glycine hydroxymethyltransferase, which is often associated with the assimilatory serine cycle (13). The potential for HTCC2559T to use bacterial type III polyketide synthase (PKS) needs to be confirmed because this organism had a naringenin-chalcone synthase (CHS) or chalcone synthase (EC 2.3.1.74), a key enzyme in flavonoid biosynthesis. CHS initiates the addition of three molecules of malonyl coenzyme A (malonyl-CoA) to a starter CoA ester (e.g., 4-coumaroyl-CoA) (1) and takes part in a few bacterial type III polyketide synthase systems (1, 2, 5, 18).The complete genome sequence confirmed that strain HTCC2559T is an obligate chemoheterotroph because no genes for phototrophy were found. As expected from physiological characteristics (6), the HTCC2559T genome contained a set of genes coding for enzymes required to degrade high-molecular-weight compounds, including peptidases, metallo-/serine proteases, pectinase, alginate lyases, and α-amylase.  相似文献   

17.
18.
Extracellular matrix (ECM) proteins, cell adhesion molecules, cytokines, morphogens and membrane receptors are synthesized in the ER and transported through the Golgi complex to the cell surface and the extracellular space. The first leg in this journey from the ER to Golgi is facilitated by the coat protein II (COPII) vesicular carriers. Genetic defects in genes encoding various COPII components cause a broad spectrum of human diseases, from anemia to skeletal deformities. Here, we summarize our findings in zebrafish and discuss how mutations in COPII elements may cause specific cellular and developmental defects.Key words: Sec24D, Sec23A, ECM, COPII, craniofacial morphogenesisCOPII vesicle formation is initiated when the small, cytoplasmic GTPase Sar1 undergoes a conformational change upon GTP binding, exposing an amphipathic α-helix that allows Sar1 to associate with the ER membrane.13 Sar1 then recruits the Sec23/Sec24 heterodimer to the ER surface, forming a “pre-budding complex.” Sec23 acts as a GTPase-activating protein for Sar1, whereas Sec24 plays a role in protein cargo selection.4,5 These three proteins form the inner coat and are thought to impose the initial ER membrane deformation. Next, the COPII outer coat complex assembles by Sec13 and Sec31 heterotetramers, which form a cage that encompasses the pre-budding vesicle (Fig. 1A).6,7Open in a separate windowFigure 1bulldog and crusher encode mutations in the COPII complex. (A) Graphic depicting the COPII inner coat bound to the ER membrane and a complete COPII vesicle. (B) Structure of human SEC24D and SEC23A and the truncation caused by bulldog and crusher mutations in zebrafish proteins as projected on human proteins. (C) Overlay of the structure of human SEC23A and SEC23B. Structures are based on known crystal structures by Mancias et al.5 with SEC23B (light blue) and unresolved loops modeled using Modeller.27 Binding interfaces to other proteins are indicated by purple lines.COPII components are highly conserved throughout the plant and animal kingdoms. The yeast S. cerevisiae has one Sec23 gene and three Sec24 paralogs (Sec24, Lst1 and Iss), while vertebra genomes contain four Sec24 (A–D) and two Sec23 paralogs (A and B).8,9 Although the yeast Sec23 and Sec24 are essential for survival, private variants in genes of COPII components in humans cause a broad spectrum of diseases with clinical manifestations as diverse as skeletal defects,10 anemia,11 or lipid malabsorption.12 The precise molecular and cellular mechanisms that lead to such outcomes are poorly understood, underscoring the importance of animal models to study these organ- and tissue-specific deficits.11,13  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号