首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Hutchinson-Gilford progeria syndrome (HGPS) is caused by a LMNA mutation that leads to the synthesis of a mutant prelamin A that is farnesylated but cannot be further processed to mature lamin A. A more severe progeroid disorder, restrictive dermopathy (RD), is caused by the loss of the prelamin A-processing enzyme, ZMPSTE24. The absence of ZMPSTE24 prevents the endoproteolytic processing of farnesyl-prelamin A to mature lamin A and leads to the accumulation of farnesyl-prelamin A. In both HGPS and RD, the farnesyl-prelamin A is targeted to the nuclear envelope, where it interferes with the integrity of the nuclear envelope and causes misshapen cell nuclei. Recent studies have shown that the frequency of misshapen nuclei can be reduced by treating cells with a farnesyltransferase inhibitor (FTI). Also, administering an FTI to mouse models of HGPS and RD ameliorates the phenotypes of progeria. These studies have prompted interest in testing the efficacy of FTIs in children with HGPS.  相似文献   

4.
5.
Prelamin A processing impairment is a common feature of a restricted group of rare genetic alterations/disorders associated with a wide range of clinical phenotypes. Changes in histone posttranslational modifications, alterations in non-histone chromatin proteins and chromatin disorganization have been specifically linked to impairment of specific, distinct prelamin A processing steps, but the molecular mechanism involved in these processes is not yet understood . In this study, we show that the accumulation of wild-type prelamin A detected in restrictive dermopathy (RD), as well as the accumulation of mutated forms of prelamin A identified in familial partial lipodystrophy (FPLD) and mandibuloacral dysplasia (MADA), affect the nuclear localization of barrier-to-autointegration factor (BAF), a protein able to link lamin A precursor to chromatin remodeling functions. Our findings, in accordance with previously described results, support the hypothesis of a prelamin A involvement in BAF nuclear recruitment and suggest BAF-prelamin A complex as a protein platform usually activated in prelamin A-accumulating diseases. Finally, we demonstrate the involvement of the inner nuclear membrane protein emerin in the proper localization of BAF-prelamin A complex.  相似文献   

6.
Prelamin A processing impairment is a common feature of a restricted group of rare genetic alterations/disorders associated with a wide range of clinical phenotypes. Changes in histone posttranslational modifications, alterations in non-histone chromatin proteins and chromatin disorganization have been specifically linked to impairment of specific, distinct prelamin A processing steps, but the molecular mechanism involved in these processes is not yet understood . In this study, we show that the accumulation of wild-type prelamin A detected in restrictive dermopathy (RD), as well as the accumulation of mutated forms of prelamin A identified in familial partial lipodystrophy (FPLD) and mandibuloacral dysplasia (MADA), affect the nuclear localization of barrier-to-autointegration factor (BAF), a protein able to link lamin A precursor to chromatin remodeling functions. Our findings, in accordance with previously described results, support the hypothesis of a prelamin A involvement in BAF nuclear recruitment and suggest BAF-prelamin A complex as a protein platform usually activated in prelamin A-accumulating diseases. Finally, we demonstrate the involvement of the inner nuclear membrane protein emerin in the proper localization of BAF-prelamin A complex.  相似文献   

7.
Lamin A is a nuclear lamina constituent implicated in a number of human disorders including Emery-Dreifuss muscular dystrophy. Since increasing evidence suggests a role of the lamin A precursor in nuclear functions, we investigated the processing of prelamin A during differentiation of C2C12 mouse myoblasts. We show that both protein levels and cellular localization of prelamin A are modulated during myoblast activation. Similar changes of lamin A-binding proteins emerin and LAP2α were observed. Furthermore, prelamin A was found in a complex with LAP2α in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affected LAP2α and PCNA amount and increased caveolin 3 mRNA and protein levels, while accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor appeared to inhibit caveolin 3 expression. Our data provide evidence for a critical role of the lamin A precursor in the early steps of muscle cell differentiation.  相似文献   

8.
目的:探讨A型核纤层蛋白前体( prelamin A)在细胞内堆积造成细胞早老的机理,筛选了prelamin A相互作用蛋白并研究其在早老细胞中的表达情况.方法:以prelamin A的C末端区域为诱饵蛋白,采用酵母双杂交方法从人骨骼肌cDNA文库中筛选prelamin A相互作用蛋白.构建了prelaminA识别因子(Narf)与绿色荧光蛋白融合表达载体pEGFP - Narf,与红色荧光蛋白- prelamin A融合表达质粒pDsRed - PLA共转染HEK293细胞,激光共聚焦显微观察共定位情况.Western blotting检测Narf在衰老表型HEK293PLA细胞的表达情况.结果:筛选得到包括Narf在内的7个候选相互作用蛋白.Narf与prelamin A能相互作用并共定位于核纤层,在prelamin A过表达的HEK293PLA细胞中Narf表达没有升高.结论:Narf在细胞内与prelamin A相互作用,且表达量不受后者影响.  相似文献   

9.
Prelamin A is the precursor protein of lamin A, a major constituent of the nuclear lamina in higher eukaryotes. Increasing attention to prelamin A processing and function has been given after the discovery, from 2002 to 2004, of diseases caused by prelamin A accumulation. These diseases, belonging to the group of laminopathies and mostly featuring LMNA mutations, are characterized, at the clinical level, by different degrees of accelerated aging, and adipose tissue, skin and bone abnormalities. The outcome of studies conducted in the last few years consists of three major findings. First, prelamin A is processed at different rates under physiological conditions depending on the differentiation state of the cell. This means that, for instance, in muscle cells, prelamin A itself plays a biological role, besides production of mature lamin A. Secondly, prelamin A post-translational modifications give rise to different processing intermediates, which elicit different effects in the nucleus, mostly by modification of the chromatin arrangement. Thirdly, there is a threshold of toxicity, especially of the farnesylated form of prelamin A, whose accumulation is obviously linked to cell and organism senescence. The present review is focused on prelamin A-mediated nuclear envelope modifications that are upstream of chromatin dynamics and gene expression mechanisms regulated by the lamin A precursor.  相似文献   

10.
11.
Urinary incontinence (UI) is known as a distressing condition particularly among older adults, and negatively associated with health-related quality of life in both males and females. Prelamin A accumulation has been found in all progeroid laminopathies and is obviously linked to cell and organism aging. Therefore, this study was expected to investigate the effect of prelamin A on detrusor on UI. Prelamin A expression in clinical and animal samples was detected. To investigate the degree of prelamin A accumulation and detrusor calcification/aging, the detrusor cells were subcultured separately into low and high passage. The low-passage subculture cells were treated with transfection of overexpressed prelamin A plasmid, and transfection of overexpressed prelamin A plasmid and application of farnesyl transferase inhibitor (FTIs) H-9279, respectively. Zmpste24, Icmt and lamin A/C expression were detected to explore how prelamin A affected detrusor calcification/aging. Prelamin A was overexpressed in aged detrusor cells, indicating prelamin A expression was positively related to the age of subjects. The degree of prelamin A accumulation and detrusor calcification/aging was higher in aged rats and high passage subculture cells. Zmpste24, Icmt and lamin A/C were poorly expressed in cells transfected with overexpressed prelamin A, as well as cell proliferation activity decreased and calcium deposition and apoptotic rate increased. Furthermore, we also found that the effect of overexpressed prelamin A was lost when cells were treated with H-9279. These findings provide evidence that prelamin A overexpression impairs degradation of its farnesylated form, thus causing prelamin A accumulation which induces detrusor calcification/aging in UI.  相似文献   

12.
The nuclear lamina is essential for the proper structure and organization of the nucleus. Deregulation of A‐type lamins can compromise genomic stability, alter chromatin organization and cause premature vascular aging. Here, we show that accumulation of the lamin A precursor, prelamin A, inhibits 53BP1 recruitment to sites of DNA damage and increases basal levels of DNA damage in aged vascular smooth muscle cells. We identify that this genome instability arises through defective nuclear import of 53BP1 as a consequence of abnormal topological arrangement of nucleoporin NUP153. We show for the first time that this nucleoporin is important for the nuclear localization of Ran and that the deregulated Ran gradient is likely to be compromising the nuclear import of 53BP1. Importantly, many of the defects associated with prelamin A expression were significantly reduced upon treatment with Remodelin, a small molecule recently reported to reverse deficiencies associated with abnormal nuclear lamina.  相似文献   

13.
Both orbitofrontal cortex (OFC) and ventral striatum (vStr) have been identified as key structures that represent information about value in decision-making tasks. However, the dynamics of how this information is processed are not yet understood. We recorded ensembles of cells from OFC and vStr in rats engaged in the spatial adjusting delay-discounting task, a decision-making task that involves a trade-off between delay to and magnitude of reward. Ventral striatal neural activity signalled information about reward before the rat''s decision, whereas such reward-related signals were absent in OFC until after the animal had committed to its decision. These data support models in which vStr is directly involved in action selection, but OFC processes decision-related information afterwards that can be used to compare the predicted and actual consequences of behaviour.  相似文献   

14.
Brain is an expert in producing the same output from a particular set of inputs, even from a very noisy environment. In this article a model of neural circuit in the brain has been proposed which is composed of cyclic sub-circuits. A big loop has been defined to be consisting of a feed forward path from the sensory neurons to the highest processing area of the brain and feed back paths from that region back up to close to the same sensory neurons. It has been mathematically shown how some smaller cycles can amplify signal. A big loop processes information by contrast and amplify principle. How a pair of presynaptic and postsynaptic neurons can be identified by an exact synchronization detection method has also been mentioned. It has been assumed that the spike train coming out of a firing neuron encodes all the information produced by it as output. It is possible to extract this information over a period of time by Fourier transforms. The Fourier coefficients arranged in a vector form will uniquely represent the neural spike train over a period of time. The information emanating out of all the neurons in a given neural circuit over a period of time can be represented by a collection of points in a multidimensional vector space. This cluster of points represents the functional or behavioral form of the neural circuit. It has been proposed that a particular cluster of vectors as the representation of a new behavior is chosen by the brain interactively with respect to the memory stored in that circuit and the amount of emotion involved. It has been proposed that in this situation a Coulomb force like expression governs the dynamics of functioning of the circuit and stability of the system is reached at the minimum of all the minima of a potential function derived from the force like expression. The calculations have been done with respect to a pseudometric defined in a multidimensional vector space.  相似文献   

15.
The fatty acid transport protein family is a group of evolutionarily conserved proteins that are involved in the cellular uptake and metabolism of long and very long chain fatty acids. However, little is known about their respective physiological roles. To analyze the functional significance of fatty acid transport protein 4 (Fatp4, Slc27a4), we generated mice with a targeted disruption of the Fatp4 gene. Fatp4-null mice displayed features of a neonatally lethal restrictive dermopathy. Their skin was characterized by hyperproliferative hyperkeratosis with a disturbed epidermal barrier, a flat dermal-epidermal junction, a reduced number of pilo-sebaceous structures, and a compact dermis. The rigid skin consistency resulted in an altered body shape with facial dysmorphia, generalized joint flexion contractures, and impaired movement including suckling and breathing deficiencies. Lipid analysis demonstrated a disturbed fatty acid composition of epidermal ceramides, in particular a decrease in the C26:0 and C26:0-OH fatty acid substitutes. These findings reveal a previously unknown, essential function of Fatp4 in the formation of the epidermal barrier.  相似文献   

16.
Categorization is essential to all cognitive processes, but identifying the neural substrates underlying categorization processes is a real challenge. Among animals that have been shown to be able of categorization, songbirds are particularly interesting because they provide researchers with clear examples of categories of acoustic signals allowing different levels of recognition, and they possess a system of specialized brain structures found only in birds that learn to sing: the song system. Moreover, an avian brain nucleus that is analogous to the mammalian secondary auditory cortex (the caudo-medial nidopallium, or NCM) has recently emerged as a plausible site for sensory representation of birdsong, and appears as a well positioned brain region for categorization of songs. Hence, we tested responses in this non-primary, associative area to clear and distinct classes of songs with different functions and social values, and for a possible correspondence between these responses and the functional aspects of songs, in a highly social songbird species: the European starling. Our results clearly show differential neuronal responses to the ethologically defined classes of songs, both in the number of neurons responding, and in the response magnitude of these neurons. Most importantly, these differential responses corresponded to the functional classes of songs, with increasing activation from non-specific to species-specific and from species-specific to individual-specific sounds. These data therefore suggest a potential neural substrate for sorting natural communication signals into categories, and for individual vocal recognition of same-species members. Given the many parallels that exist between birdsong and speech, these results may contribute to a better understanding of the neural bases of speech.  相似文献   

17.
18.
  相似文献   

19.
Lamin A, a key component of the nuclear lamina, is generated from prelamin A by four post-translational processing steps: farnesylation, endoproteolytic release of the last three amino acids of the protein, methylation of the C-terminal farnesylcysteine, and finally, endoproteolytic release of the last 15 amino acids of the protein (including the farnesylcysteine methyl ester). The last cleavage step, mediated by ZMPSTE24, releases mature lamin A. This processing scheme has been conserved through vertebrate evolution and is widely assumed to be crucial for targeting lamin A to the nuclear envelope. However, its physiologic importance has never been tested. To address this issue, we created mice with a “mature lamin A-only” allele (LmnaLAO), which contains a stop codon immediately after the last codon of mature lamin A. Thus, LmnaLAO/LAO mice synthesize mature lamin A directly, bypassing prelamin A synthesis and processing. The levels of mature lamin A in LmnaLAO/LAO mice were indistinguishable from those in “prelamin A-only” mice (LmnaPLAO/PLAO), where all of the lamin A is produced from prelamin A. LmnaLAO/LAO exhibited normal body weights and had no detectable disease phenotypes. A higher frequency of nuclear blebs was observed in LmnaLAO/LAO embryonic fibroblasts; however, the mature lamin A in the tissues of LmnaLAO/LAO mice was positioned normally at the nuclear rim. We conclude that prelamin A processing is dispensable in mice and that direct synthesis of mature lamin A has little if any effect on the targeting of lamin A to the nuclear rim in mouse tissues.  相似文献   

20.
Post-translational modification, cleavage and processing of circulating hormones are common themes in the control of hormone activities. Full-length ghrelin is a 28 amino acid protein that exists in several modified and processed forms, including addition of an acyl moiety at the third serine of the N-terminus. When modified with octanoic acid, the first five N-terminal residues of ghrelin can modulate a signaling pathway via the ghrelin receptor GHSR1a. Although modification via a lipid moiety is essential for binding and activation of GHSR1a by ghrelin, many reports suggest that a desacyl form of ghrelin exists and has synergistic, opposing and distinct properties as compared to the acyl form. Therefore, it is important to clarify the physiological relevance of ghrelin derivatives. Based on lines of evidence from various studies, we propose that a larger proportion of secreted ghrelin is present in the deacylated form and furthermore, that circulating acyl and desacyl forms of ghrelin may be hydrolyzed to form short peptide fragments. Here, we summarize the results of studies aimed at understanding ghrelin processing and its implications for physiological function, as well as our recent findings regarding enzymes in the blood capable of generating processed forms of ghrelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号