首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cotyledons of tomato seedlings that germinated in a 20 µM AlK(SO4)2 solution remained chlorotic while those germinated in an aluminum free medium were normal (green) in color. Previously, we have reported the effect of aluminum toxicity on root proteome in tomato seedlings (Zhou et al.1). Two dimensional DIGE protein analysis demonstrated that Al stress affected three major processes in the chlorotic cotyledons: antioxidant and detoxification metabolism (induced), glyoxylate and glycolytic processes (enhanced), and the photosynthetic and carbon fixation machinery (suppressed).Key words: aluminum, cotyledons, proteome, tomatoDifferent biochemical processes occur depending on the developmental stages of cotyledons. During early seed germination, before the greening of the cotyledons, glyoxysomes enzymes are very active. Fatty acids are converted to glucose via the gluconeogenesis pathway.2,3 In greening cotyledons, chloroplast proteins for photosynthesis and leaf peroxisomal enzymes in the glycolate pathway for photorespiration are metabolized.24 Enzymes involved in regulatory mechanisms such as protein kinases, protein phosphatases, and mitochondrial enzymes are highly expressed.3,5,6The chlorotic cotyledons are similar to other chlorotic counterparts in that both contains lower levels of chlorophyll, thus the photosynthetic activities are not as active. In order to understand the impact of Al on tomato cotyledon development, a comparative proteome analysis was performed using 2D-DIGE following the as previously described procedure.1 Some proteins accumulated differentially in Al-treated (chlorotic) and untreated cotyledons (Fig. 1). Mass spectrometry of tryptic digestion fragments of the proteins followed by database search has identified some of the differentially expressed proteins (Open in a separate windowFigure 1Image of protein spots generated by Samspot analysis of Al treated and untreated tomato cotyledons proteomes separated on 2D-DIGE.

Table 1

Proteins identified from tomato cotyledons of seeds germinating in Al-solution
Spot No.Fold (treated/ctr)ANOVA (p value)AnnotationSGN accession
12.340.00137412S seed storages protein (CRA1)SGN-U314355
22.130.003651unidentified
32.00.006353lipase class 3 familySGN-U312972
41.960.002351large subunit of RUBISCOSGN-U346314
51.952.66E-05arginine-tRNA ligaseSGN-U316216
61.950.003343unidentified
71.780.009219Monodehydroascorbate reductase (NADH)SGN-U315877
81.780.000343unidentified
91.754.67E-05unidentified
121.700.002093unidentified
131.680.004522unidentified
151.660.019437Glutamate dehydrogenase 1SGN-U312368
161.660.027183unidentified
171.622.01E-08Major latex protein-related, pathogenesis-relatedSGN-U312368
18−1.610.009019RUBisCo activaseSGN-U312543
191.610.003876Cupin family proteinSGN-U312537
201.600.000376unidentified
221.590.037216unidentified
0.003147unidentified
29−1.560.001267RUBisCo activaseSGN-U312543
351.520.001955unidentified
401.470.007025unidentified
411.470.009446unidentified
451.450.001134unidentified
59−1.405.91E-0512 S seed storage proteinSGN-U314355
611.391.96E-05MD-2-related lipid recognition domain containing proteinSGN-U312452
651.370.000608triosephosphate isomerase, cytosolicSGN-U312988
681.360.004225unidentified
811.320.001128unidentified
82−1.310.00140833 kDa precursor protein of oxygen-evolving complexSGN-U312530
871.300.002306unidentified
89−1.30.000765unidentified
921.290.000125superoxide dismutaseSGN-U314405
981.280.000246triosephosphate isomerase, cytosolicSGN-U312988
Open in a separate window  相似文献   

3.
PrP genotypes at codons 136 and 171 in 120 Iranian Ghezel sheep breeds were studied using allele-specific PCR amplification and compared with the well-known sheep breeds in North America, the United States and Europe. The frequency of V allele and VV genotype at codon 136 of Ghezel sheep breed was significantly lower than AA and AV. At codon 171, the frequency of allele H was significantly lower than Q and R. Despite the similarities of PrP genotypes at codons 136 and 171 between Iranian Ghezel sheep breeds and some of the studied breeds, significant differences were found with others. Planning of effective breeding control and successful eradication of susceptible genotypes in Iranian Ghezel sheep breeds will not be possible unless the susceptibility of various genotypes in Ghezel sheep breeds to natural or experimental scrapie has been elucidated.Key words: scrapie, Ghezel sheep breed, PrP genotyping, allele specific amplification, codon 136, codon 171Scrapie was first described in England in 1732,1 and it is an infectious neurodegenerative fatal disease of sheep and goats belonging to the group of transmissible subacute spongiform encephalopathies (TSEs), along with bovine spongiform encephalopathy (BSE), chronic wasting disease and Creutzfeldt-Jakob disease.2,3 The term prion, proteinaceous infectious particles, coined by Stanley B. Prusiner, was introduced, and he presents the idea that the causal agent is a protein.4 Prion proteins are discovered in two forms, the wild-type form (PrPc) and the mutant form (PrPSc).5 Although scrapie is an infectious disease, the susceptibility of sheep is influenced by genotypes of the prion protein (PrP) gene.2,6 Researchers have found that the PrP allelic variant alanine/arginine/arginine (ARR) at codons 136, 154 and 171 is associated with resistance to scrapie in several breeds.714 Most of the sheep populations in the Near East and North African Region (84% of the total population of 255 million) are raised in Iran, Turkey, Pakistan, Sudan, Algeria, Morocco, Afghanistan, Syria and Somalia.15 In 2003, the Iranian sheep population was estimated at 54,000,000 head. The Ghezel sheep breed, which also is known as Kizil-Karaman, Mor-Karaman, Dugli, Erzurum, Chacra, Chagra, Chakra, Gesel, Gezel, Kazil, Khezel, Khizel, Kizil, Qezel, Qizil and Turkish Brown, originated in northwestern Iran and northeastern Turkey. By considering sheep breeds as one of the main sources of meat, dairy products and related products, a global screening attempt is started in different areas. In compliance with European Union Decision 2003/100/EC, each member state has introduced a breeding program to select for resistance to TSEs in sheep populations to increase the frequency of the ARR allele. A similar breeding program is established in United States and Canada. The Near East and North African Region still needs additional programs to help the global plan of eradication of scrapie-susceptible genotypes. The current study was the first to assess the geographical and molecular variation of codons 136 and 171 polymorphism between Iranian Ghezel sheep breed and well-known sheep breeds.Polymorphism at codon 136 is associated with susceptibility to scrapie in both experimental and natural models.10,11,13,16 17 and Austrian Carynthian sheep.18 Swiss White Alpine showed higher frequency of allele V at position 136 than Swiss Oxford Down, Swiss Black-Brown Mountain and Valais Blacknose.19 Comparison of polymorphism at codon 136 in the current study with some of other breeds (20 some flock of Hampshire sheep21 with current study, but the frequency of it is higher than that of some other breeds.

Table 1

Comparison of PrP allelic and genotype frequencies at codon 136 in different breeds
BreedA (%)V (%)AA (%)AV (%)VV (%)Reference
Iranian Ghezel breeds (n = 120)77.5022.565.0025.0010.00Current study
Oklahoma sheep (n = 334)De Silva, et al.27
Suffolk99.240.7698.481.520.00
Hampshire1000.001000.000.00
Dorset92.67.9487.309.523.17
Montadale77.6622.3459.5736.174.26
Hampshire (n = 48)93.756.2588.0012.000.00Youngs, et al.21
German Sheep Breeds (n = 660)92.897.1187.8010.471.73Kutzer, et al.28
Bleu du Maine83.4716.5369.5627.832.61
Friesian Milk S.1000.001000.000.00
Nolana90.139.8785.908.465.64
Suffolk1000.001000.000.00
Texel90.879.1382.1617.410.43
Swiss Sheep (n = 200)92.57.5Gmur, et al.19
Swiss Oxford Down93.007.00---
Swiss Black-Brown M.99.001.00---
Valais Blacknose1000.00---
Swiss White Alpine88.0022.00---
Austrian Sheep (n = 112)98.951.0598.950.001.05Sipos, et al.18
Tyrolean mountain sheep1000.001000.000.00
Forest sheep1000.001000.000.00
Tyrolean stone sheep1000.001000.000.00
Carynthian sheep95.804.2095.800.004.20
Open in a separate windowIt has been found that a polymorphism at codon 171 also is associated with susceptibility to experimental scrapie in Cheviot sheep16 and natural scrapie in Suffolk sheep.22 As shown in 23 They also found that different breeds show different predominant genotypes in ewes and rams.23 Different PrP genotypes were found at codon 171 in Austrian sheep breeds, but QQ has higher frequency than others.18 In some kinds of Swiss breeds, allelic frequencies of allele Q was higher than R.19 Distribution of prion protein codon 171 genotypes in Hampshire sheep revealed that different flocks shows different patterns.21 The frequency of PrP genotypes at codon 171 in Iranian Ghezel breeds was similar to some sheep breeds, like the Suffolk breed of Oklahoma sheep, but it was completely different from others (
PrP genotypes at codon 172
BreedAllelic frequencyGenotypesReference
QRHRRQRQQQHRHHH
Iranian Iranian Ghezel breeds (n = 120)55.0043.331.6723.3336.6736.670.003.330.00Current study
Oklahoma sheep (n = 334)De Silva, et al.20
Suffolk40.9559.050.0037.0743.9718.970.000.000.00
Hampshire51.8948.110.0021.7052.8325.470.000.000.00
Dorset67.7531.250.007.9546.5945.450.000.000.00
Montadale62.9637.040.0014.8144.4440.740.000.000.00
Hampshire (n = 201)72.1426.601.265.0042.0050.002.001.000.00Youngs, et al.21
German Sheep Breeds (n = 660)Kutzer, et al.28
Bleu du Maine37.862.20.0046.9630.4422.60.000.000.00
Friesian Milk S.90.458.90.651.2715.382.80.000.000.64
Nolana42.357.80.0036.6242.2621.130.000.000.00
Suffolk68.427.64.016.121.8455.174.61.151.15
Texel55.3529.714.912.5626.8336.3611.257.365.63
Swiss Sheep (n = 200)Gmur, et al.19
Swiss Oxford Down32.0068.00-------
Swiss Black-Brown M.70.0030.00-------
Valais Blacknose85.0015.00-------
Swiss White Alpine27.0073.00-------
Austrian Sheep (n = 112)Sipos, et al.18
Tyrolean mountain sheep74.3025.800.002.9045.7051.400.000.000.00
Forest sheep77.0019.203.8011.5015.4069.200.000.003.80
Tyrolean stone sheep81.5014.803.700.0029.6062.907.400.000.00
Carynthian sheep72.8023.004.204.2041.7013.008.400.000.00
Open in a separate windowThe association between scrapie susceptibility and polymorphism at codon154 is unclear, and fewer evidences were found that support it.24,25 So the frequency of different genotypes at codon 154 in Iranian Sheep breeds has not been included in the current study.In addition to difference in number of included animals and methodology of genotyping, the apparent discrepancies among reported allelic frequency might be caused by the difference in geographical dissemination of sheep breeds and related purity.26 The deviations from Hardy-Weinberg equilibrium, which were assumed in the current study, were checked using Pearson''s chi-squared test or Fisher''s exact test. Although the number of animals in this study is acceptable, a population study is still suggested. In conclusion, fairly different patterns of PrP genotypes in this common Near eastern sheep breed are an evidence for geographical variation of molecular susceptibility to scrapie. Because other report from Turkey also has shown a prevalence of genotypes, which is different from western countries,26 and no reports have been published yet to show which of the genotypes in that breed are actually resistant or susceptible to natural or experimental scrapie, our results is an authentic platform to motivate further studies. Actually, extrapolation of the existing general pattern of susceptibility or resistance for all breeds and current plan of elimination would not be successful unless the susceptible genotypes in the Near East with numerous breeds will be identified. Hence, the current study could be used as an important pilot study for further investigation.Genomic DNA was isolated from fresh EDTA-treated blood of 120 healthy, randomly chosen sheep of Iranian Ghezel sheep breeds using a mammalian blood DNA isolation kit (Bioflux, Japan). The allelic frequencies of prion protein codons 171 and 136 were determined by allele-specific PCR amplifications using scrapie susceptibility test kit (Elchrom Scientific AG). Primer sets were designed by manufacturer to amplify specific gene targets according to possible genotypes of positions 136 and 171.The amplification reactions were performed using iCycler™ (BioRad Inc.,), and PCR products (PositionGenotypeFragment size136A133136V139171H170171Q247171R155Open in a separate window  相似文献   

4.
Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice     
Pavan Umate 《Plant signaling & behavior》2011,6(3):335-338
The enzymes called lipoxygenases (LOXs) can dioxygenate unsaturated fatty acids, which leads to lipoperoxidation of biological membranes. This process causes synthesis of signaling molecules and also leads to changes in cellular metabolism. LOXs are known to be involved in apoptotic (programmed cell death) pathway, and biotic and abiotic stress responses in plants. Here, the members of LOX gene family in Arabidopsis and rice are identified. The Arabidopsis and rice genomes encode 6 and 14 LOX proteins, respectively, and interestingly, with more LOX genes in rice. The rice LOXs are validated based on protein alignment studies. This is the first report wherein LOXs are identified in rice which may allow better understanding the initiation, progression and effects of apoptosis, and responses to bitoic and abiotic stresses and signaling cascades in plants.Key words: apoptosis, biotic and abiotic stresses, genomics, jasmonic acid, lipidsLipoxygenases (linoleate:oxygen oxidoreductase, EC 1.13.11.-; LOXs) catalyze the conversion of polyunsaturated fatty acids (lipids) into conjugated hydroperoxides. This process is called hydroperoxidation of lipids. LOXs are monomeric, non-heme and non-sulfur, but iron-containing dioxygenases widely expressed in fungi, animal and plant cells, and are known to be absent in prokaryotes. However, a recent finding suggests the existence of LOX-related genomic sequences in bacteria but not in archaea.1 The inflammatory conditions in mammals like bronchial asthama, psoriasis and arthritis are a result of LOXs reactions.2 Further, several clinical conditions like HIV-1 infection,3 disease of kidneys due to the activation of 5-lipoxygenase,4,5 aging of the brain due to neuronal 5-lipoxygenase6 and atherosclerosis7 are mediated by LOXs. In plants, LOXs are involved in response to biotic and abiotic stresses.8 They are involved in germination9 and also in traumatin and jasmonic acid biochemical pathways.10,11 Studies on LOX in rice are conducted to develop novel strategies against insect pests12 in response to wounding and insect attack,13 and on rice bran extracts as functional foods and dietary supplements for control of inflammation and joint health.14 In Arabidopsis, LOXs are studied in response to natural and stress-induced senescence,15 transition to flowering,16 regulation of lateral root development and defense response.17The arachidonic, linoleic and linolenic acids can act as substrates for different LOX isozymes. A hydroperoxy group is added at carbons 5, 12 or 15, when arachidonic acid is the substrate, and so the LOXs are designated as 5-, 12- or 15-lipoxygenases. Sequences are available in the database for plant lipoxygenases (EC:1.13.11.12), mammalian arachidonate 5-lipoxygenase (EC:1.13.11.34), mammalian arachidonate 12-lipoxygenase (EC:1.13.11.31) and mammalian erythroid cell-specific 15-lipoxygenase (EC:1.13.11.33). The prototype member for LOX family, LOX-1 of Glycine max L. (soybean) is a 15-lipoxygenase. The LOX isoforms of soybean (LOX-1, LOX-2, LOX-3a and LOX-3b) are the most characterized of plant LOXs.18 In addition, five vegetative LOXs (VLX-A, -B, -C, -D, -E) are detected in soybean leaves.19 The 3-dimensional structure of soybean LOX-1 has been determined.20,21 LOX-1 was shown to be made of two domains, the N-terminal domain-I which forms a β-barrel of 146 residues, and a C-terminal domain-II of bundle of helices of 693 residues21 (Fig. 1). The iron atom was shown to be at the centre of domain-II bound by four coordinating ligands, of which three are histidine residues.22Open in a separate windowFigure 1Three-dimensional structure of soybean lipoxygenase L-1. The domain I (N-terminal) and domain II (C-terminal) are indicated. The catalytic iron atom is embedded in domain II (PDB ID-1YGE).21This article describes identification of LOX genes in Arabidopsis and rice. The Arabidopsis genome encodes for six LOX proteins23 (www.arabidopsis.org) (LocusAnnotationNomenclatureA*B*C*AT1G55020lipoxygenase 1 (LOX1)LOX185998044.45.2049AT1G17420lipoxygenase 3 (LOX3)LOX3919103725.18.0117AT1G67560lipoxygenase family proteinLOX4917104514.68.0035AT1G72520lipoxygenase, putativeLOX6926104813.17.5213AT3G22400lipoxygenase 5 (LOX5)LOX5886101058.86.6033AT3G45140lipoxygenase 2 (LOX2)LOX2896102044.75.3177Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.Interestingly, the rice genome (rice.plantbiology.msu.edu) encodes for 14 LOX proteins as compared to six in Arabidopsis (and22). Of these, majority of them are composed of ∼790–950 aa with the exception for loci, LOC_Os06g04420 (126 aa), LOC_Os02g19790 (297 aa) and LOC_Os12g37320 (359 aa) (Fig. 2).Open in a separate windowFigure 2Protein alignment of rice LOXs and vegetative lipoxygenase, VLX-B,28 a soybean LOX (AA B67732). The 14 rice LOCs are indicated on left and sequence position on right. Gaps are included to improve alignment accuracy. Figure was generated using ClustalX program.

Table 2

Genes encoding lipoxygenases in rice
ChromosomeLocus IdPutative functionA*B*C*
2LOC_Os02g10120lipoxygenase, putative, expressed9271035856.0054
2LOC_Os02g19790lipoxygenase 4, putative29733031.910.4799
3LOC_Os03g08220lipoxygenase protein, putative, expressed9191019597.4252
3LOC_Os03g49260lipoxygenase, putative, expressed86897984.56.8832
3LOC_Os03g49380lipoxygenase, putative, expressed87898697.57.3416
3LOC_Os03g52860lipoxygenase, putative, expressed87197183.56.5956
4LOC_Os04g37430lipoxygenase protein, putative, expressed79889304.610.5125
5LOC_Os05g23880lipoxygenase, putative, expressed84895342.97.6352
6LOC_Os06g04420lipoxygenase 4, putative12614054.76.3516
8LOC_Os08g39840lipoxygenase, chloroplast precursor, putative, expressed9251028196.2564
8LOC_Os08g39850lipoxygenase, chloroplast precursor, putative, expressed9421044947.0056
11LOC_Os11g36719lipoxygenase, putative, expressed86998325.45.3574
12LOC_Os12g37260lipoxygenase 2.1, chloroplast precursor, putative, expressed9231046876.2242
12LOC_Os12g37320lipoxygenase 2.2, chloroplast precursor, putative, expressed35940772.78.5633
Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.

Table 3

Percent homology of rice lipoxygenases against Arabidopsis
Loci (Os)Homolog (At)Identity/similarity (%)No. of aa compared
LOC_Os02g10120LOX260/76534
LOC_Os02g19790LOX554/65159
LOC_Os03g08220LOX366/79892
LOC_Os03g49260LOX556/73860
LOC_Os03g49380LOX560/75861
LOC_Os03g52860LOX156/72877
LOC_Os04g37430LOX361/75631
LOC_Os05g23880LOX549/66810
LOC_Os06g04420LOX549/62114
LOC_Os08g39840LOX249/67915
LOC_Os08g39850LOX253/70808
LOC_Os11g36719LOX552/67837
LOC_Os12g37260LOX253/67608
LOC_Os12g37320LOX248/60160
Open in a separate windowOs, Oryza sativa L.; At, Arabidopsis thaliana L.; aa, amino acids.In plants, programmed cell death (PCD) has been linked to different stages of development and senescence, germination and response to cold and salt stresses.24,25 To conclude, this study indicates that rice genome encodes for more LOX proteins as compared to Arabidopsis. The LOX members are not been thoroughly investigated in rice. The more advanced knowledge on LOXs function might spread light on the significant role of LOXs in PCD, biotic and abiotic stress responses in rice.  相似文献   

5.
Genome-wide analysis of thioredoxin fold superfamily peroxiredoxins in Arabidopsis and rice     
Pavan Umate 《Plant signaling & behavior》2010,5(12):1543-1546
A broad range of peroxides generated in subcellular compartments, including chloroplasts, are detoxified with peroxidases called peroxiredoxins (Prx). The Prx are ubiquitously distributed in all organisms including bacteria, fungi, animals and also in cyanobacteria and plants. Recently, the Prx have emerged as new molecules in antioxidant defense in plants. Here, the members which belong to Prx gene family in Arabidopsis and rice are been identified. Overall, the Prx members constitute a small family with 10 and 11 genes in Arabidopsis and rice respectively. The prx genes from rice are assigned to their functional groups based on homology search against Arabidopsis protein database. Deciphering the Prx functions in rice will add novel information to the mechanism of antioxidant defense in plants. Further, the Prx also forms the part of redox signaling cascade. Here, the Prx gene family has been described for rice.Key words: antioxidant defense, chloroplast, gene family, oxidative stress, reactive oxygen speciesThe formation of free radicals and reactive oxygen species (ROS) occur in several enzymatic and non-enzymatic reactions during cellular metabolism. The accumulation of these reactive and deleterious intermediates is suppressed by antioxidant defense mechanism comprised of low molecular weight antioxidants and enzymes. In photosynthetic organisms, the defense against the damage from free radicals and oxidative stress is crucial. For instance, the ROS production occurs in photosystem II with generation of singlet oxygen (1O2) and hydrogen peroxide (H2O2),1,2 photosystem I from superoxide anion radicals (O2),3 and during photorespiration with generation of H2O2.4 ROS production may exceed under environmental stress conditions like excess light, low temperature and drought.5The antioxidant defense mechanism is activated by antioxidant metabolities and enzymes which detoxify ROS and lipid peroxides. The detoxification of ROS can occur in various cellular compartments such as chloroplasts, mitochondria, peroxisomes and cytosol.6 The enzymes like ascorbate peroxidase, catalase, glutathione peroxidase and superoxide dismutase are prominent antioxidant enzymes.6 The peroxiredoxins (Prx) emerged as new components in the antioxidant defense network of barley.7,8 Later, Prx were studied in other plants.914Prx can be classified into four different functional groups, PrxQ, 1-Cys Prx, 2-Cys Prx and Type-2 Prx.15,16 They are members of the thioredoxin fold superfamily.17,18 In this study, the prx genes found in Arabidopsis and rice genomes are been identified. The Arabidopsis genome encodes 10 prx genes classified into four functional categories, 1-Cys Prx, 2-Cys Prx, PrxQ and Type-2 Prx.13 Of these, one each of 1-Cys Prx and PrxQ, two of 2-Cys Prx (2-Cys PrxA and 2-Cys PrxB) and six Type-2 Prx (PrxA–F) are identified13 (LocusAnnotationSynonymA*B*C*AT1G481301-Cysteine peroxiredoxin 1 (ATPER1)1-Cys Prx21624081.36.603AT1G60740Peroxiredoxin type 2Type-2 PrxD16217471.95.2297AT1G65970Thioredoxin-dependent peroxidase 2 (TPX2)Type-2 PrxC16217413.95.2297AT1G65980Thioredoxin-dependent peroxidase 1 (TPX1)Type-2 PrxB16217427.84.9977AT1G65990Type 2 peroxiredoxin-relatedType-2 PrxA55362653.66.4368AT3G06050Peroxiredoxin IIF (PRXIIF)Type-2 PrxF20121445.29.3905AT3G116302-Cys Peroxiredoxin A (2CPA, 2-Cys PrxA)2-Cys PrxA26629091.77.5686AT3G26060ATPRX Q, periredoxin QPrxQ21623677.810.0565AT3G52960Peroxiredoxin type 2Type-2 PrxE23424684.09.572AT5G062902-Cysteine Peroxiredoxin B (2CPB, 2-Cys PrxB)2-Cys PrxB27329779.55.414Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.In rice (rice.plantbiology.msu.edu/), there are 11 genomic loci which encode for Prx proteins (and33). Interestingly, a new prx gene (LOC_Os07g15670) annotated as “peroxiredoxin, putative, expressed” is identified making the tally of prx genes to eleven in rice as compared to ten in Arabidopsis (and22). The BLAST search has identified its counterpart in Arabidopsis which has been annotated as “antioxidant/oxidoreductase” (AT1G21350) in the TAIR database (www.arabidopsis.org). The rice LOC_Os07g15670 and Arabidopsis AT1G21350 share protein homology %68/78 for 236 amino acids (ChromosomeLocus IdPutative function/AnnotationA*B*C*1LOC_Os01g16152peroxiredoxin, putative, expressed19920873.68.22091LOC_Os01g24740peroxiredoxin-2E-1, chloroplast precursor, putative10711591.56.79061LOC_Os01g48420peroxiredoxin, putative, expressed16317290.85.68282LOC_Os02g09940peroxiredoxin, putative, expressed22623179.56.5352LOC_Os02g33450peroxiredoxin, putative, expressed26228096.95.77094LOC_Os04g339702-Cys peroxiredoxin BAS1, chloroplast precursor, putative, expressed12213410.24.37056LOC_Os06g09610peroxiredoxin, putative, expressed2662892610.50976LOC_Os06g42000peroxiredoxin, putative, expressed23323688.39.20597LOC_Os07g15670peroxiredoxin, putative, expressed25327684.69.85457LOC_Os07g44440peroxiredoxin, putative, expressed22124232.65.36187LOC_Os07g44430peroxiredoxin, putative25627785.36.8544Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.

Table 3

Identification of rice homologs of peroxiredoxins in A. thaliana
Locus Id (Os*)Homolog (At*)NomenclatureIdentitity/Similarity (%)No. of aa* compared
LOC_Os01g16152AT3G06050Type-2 PrxF73/84201
LOC_Os01g24740AT1G65980Type-2 PrxB42/5977
LOC_Os01g48420AT1G65970Type-2 PrxC74/86162
LOC_Os02g09940AT1G60740Type-2 PrxD56/72166
LOC_Os02g33450AT5G062902-Cys Prx B74/82272
LOC_Os04g33970AT3G116302-Cys PrxA92/9688
LOC_Os06g09610AT3G26060PrxQ78/89159
LOC_Os06g42000AT3G52960Type-2 PrxE61/74240
LOC_Os07g15670AT1G21350Antioxidant68/78236
LOC_Os07g44440AT1G65990Type-2 PrxA27/4483
LOC_Os07g44430AT1G481301-Cys Prx69/83221
Open in a separate window*Os, Oryza sativa L.; At, Arabidopsis thaliana L.; aa, amino acids.The protein alignment study of Prx members in rice with the canonical Prx2-B and Prx2-E of Arabidopsis is shown in Figure 1. The Type-2 Prx proteins are characterized by the presence of catalytic cysteine (Cys) residues (Fig. 1). The alignment of rice Prx proteins shows that the Cys residue is well conserved in members like LOC_Os02g09940 (Type-2 PrxD), LOC_Os06g42000 (Type-2 Prx E), LOC_Os01g48420 (Type-2 Prx C), LOC_Os01g16152 (Type-2 Prx F), LOC_Os02g33450 (2-Cys Prx B), LOC_Os07g44440 (Type-2 Prx A), LOC_Os07g44430 (1-Cys Prx) and LOC_Os06g09610 (PrxQ) (Fig. 1). However, LOC_Os01g24740 (Type-2 PrxB) and LOC_Os04g33970 (2-Cys PrxA) which contain a chloroplast precursor do not have the catalytic Cys residues (Fig. 1). The newly identified LOC_Os07g15670 and AT1G21350 with annotations “peroxiredoxin, putative, expressed” and “antioxidant/oxidoreductase” respectively do not have catalytic Cys residues as well (Fig. 1).Open in a separate windowFigure 1Amino acid alignment of peroxiredoxins (Prx) in rice. The rice proteins are aligned with the canonical Arabidopsis Prx2-B and Prx2-E. The conserved cysteine residues are indicated by arrows on top of the alignment. Note the sequence conservation between the newly identified LOC_Os07g15670 and AT1G21350. The rice locus Ids are identified on left and amino acid positions on right. The alignment was made with ClustalX.Taken together, the results demonstrate that like Arabidopsis, the Prx constitute a small gene family in rice. However, the functional role of Prx in rice is not clearly understood.  相似文献   

6.
Stress-induced flowering     
Kaede C Wada  Kiyotoshi Takeno 《Plant signaling & behavior》2010,5(8):944-947
Many plant species can be induced to flower by responding to stress factors. The short-day plants Pharbitis nil and Perilla frutescens var. crispa flower under long days in response to the stress of poor nutrition or low-intensity light. Grafting experiments using two varieties of P. nil revealed that a transmissible flowering stimulus is involved in stress-induced flowering. The P. nil and P. frutescens plants that were induced to flower by stress reached anthesis, fruited and produced seeds. These seeds germinated, and the progeny of the stressed plants developed normally. Phenylalanine ammonialyase inhibitors inhibited this stress-induced flowering, and the inhibition was overcome by salicylic acid (SA), suggesting that there is an involvement of SA in stress-induced flowering. PnFT2, a P. nil ortholog of the flowering gene FLOWERING LOCUS T (FT) of Arabidopsis thaliana, was expressed when the P. nil plants were induced to flower under poor-nutrition stress conditions, but expression of PnFT1, another ortholog of FT, was not induced, suggesting that PnFT2 is involved in stress-induced flowering.Key words: flowering, stress, phenylalanine ammonia-lyase, salicylic acid, FLOWERING LOCUS T, Pharbitis nil, Perilla frutescensFlowering in many plant species is regulated by environmental factors, such as night-length in photoperiodic flowering and temperature in vernalization. On the other hand, a short-day (SD) plant such as Pharbitis nil (synonym Ipomoea nil) can be induced to flower under long days (LD) when grown under poor-nutrition, low-temperature or high-intensity light conditions.19 The flowering induced by these conditions is accompanied by an increase in phenylalanine ammonia-lyase (PAL) activity.10 Taken together, these facts suggest that the flowering induced by these conditions might be regulated by a common mechanism. Poor nutrition, low temperature and high-intensity light can be regarded as stress factors, and PAL activity increases under these stress conditions.11 Accordingly, we assumed that such LD flowering in P. nil might be induced by stress. Non-photoperiodic flowering has also been sporadically reported in several plant species other than P. nil, and a review of these studies suggested that most of the factors responsible for flowering could be regarded as stress. Some examples of these factors are summarized in 1214

Table 1

Some cases of stress-induced flowering
Stress factorSpeciesFlowering responseReference
high-intensity lightPharbitis nilinduction5
low-intensity lightLemna paucicostatainduction29
Perilla frutescens var. crispainduction14
ultraviolet CArabidopsis thalianainduction23
droughtDouglas-firinduction30
tropical pasture Legumesinduction31
lemoninduction3235
Ipomoea batataspromotion36
poor nutritionPharbitis nilinduction3, 4, 13
Macroptilium atropurpureumpromotion37
Cyclamen persicumpromotion38
Ipomoea batataspromotion36
Arabidopsis thalianainduction39
poor nitrogenLemna paucicostatainduction40
poor oxygenPharbitis nilinduction41
low temperaturePharbitis nilinduction9, 12
high conc. GA4/7Douglas-firpromotion42
girdlingDouglas-firinduction43
root pruningCitrus sp.induction44
Pharbitis nilinduction45
mechanical stimulationAnanas comosusinduction46
suppression of root elongationPharbitis nilinduction7
Open in a separate window  相似文献   

7.
The interplay of lipid acyl hydrolases in inducible plant defense     
Etienne Grienenberger  Pierrette Geoffroy  Jérome Mutterer  Michel Legrand  Thierry Heitz 《Plant signaling & behavior》2010,5(10):1181-1186
  相似文献   

8.
Gene silencing to investigate the roles of receptor-like proteins in Arabidopsis     
Ursula Ellendorff  Zhao Zhang  Bart PHJ Thomma 《Plant signaling & behavior》2008,3(10):893-896
  相似文献   

9.
Nooks and Crannies in Type VI Secretion Regulation     
Christophe S. Bernard  Yannick R. Brunet  Erwan Gueguen  Eric Cascales 《Journal of bacteriology》2010,192(15):3850-3860
  相似文献   

10.
A Review of Principal Studies on the Development and Treatment of Epithelial Ovarian Cancer in the Laying Hen Gallus gallus     
Purab Pal  Kara Nicole Starkweather  Karen Held Hales  Dale Buchanan Hales 《Comparative medicine》2021,71(4):271
Often referred to as the silent killer, ovarian cancer is the most lethal gynecologic malignancy. This disease rarely shows any physical symptoms until late stages and no known biomarkers are available for early detection. Because ovarian cancer is rarely detected early, the physiology behind the initiation, progression, treatment, and prevention of this disease remains largely unclear. Over the past 2 decades, the laying hen has emerged as a model that naturally develops epithelial ovarian cancer that is both pathologically and histologically similar to that of the human form of the disease. Different molecular signatures found in human ovarian cancer have also been identified in chicken ovarian cancer including increased CA125 and elevated E-cadherin expression, among others. Chemoprevention studies conducted in this model have shown that decreased ovulation and inflammation are associated with decreased incidence of ovarian cancer development. The purpose of this article is to review the major studies performed in laying hen model of ovarian cancer and discuss how these studies shape our current understanding of the pathophysiology, prevention and treatment of epithelial ovarian cancer.

Ovarian cancer is the leading cause of death among female gynecologic malignancies, with a 47% 5 y relative survival rate.154 Early detection of the disease is necessary for decreasing the high mortality rate. However, early detection is difficult due to the lack of known specific biomarkers and clinically detectable symptoms until the tumor reaches at an advanced stage. The disease has multiple subtypes. Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer, accounting for about 90% of all reported cases.127,164 EOC is commonly subdivided into 5 histotypes: high-grade serous (HGSOC), low-grade serous, mucinous, endometroid (EC), and clear cell. The histotypes differ in terms of tumor cell morphology, severity, systemic effect, and response to treatment. Among the different subtypes, HGSOC accounts for about 70% of cases of EOC observed in women. HGSOC has a higher mitotic index and is a more aggressive form of cancer with a worse prognosis. HGSOC and low-grade serous histotypes exhibit distinctly different presentations of the disease82,166 and demand different treatment modalities. EC (10% to 20%), mucinous (5% to 20%), and clear cell (3% to 10%) histotypes are less common forms of the disease. The subtypes of EOC also differ in terms of 5 y survival rates of patients; that is, HGSOC (20% to 35%), EC (40% to 63%), mucinous (40% to 69%), and clear cell (35% to 50%).20,76,148Developing a representative animal model for EOC has been challenging due to the histologic and pathologic differences among different subtypes of EOC. While developing a reliable animal model is challenging due to the vast complexity and limited understanding of the origin of the disease, laying hens naturally develop EOC that is histopathologically very similar to the human form of the disease (Figure 1).15 All the different human ovarian cancer histotypes have been observed in laying hen ovarian cancer (Figure 2). In addition, the presentation of the disease in chickens is remarkably similar to the human form of the disease, with early-stage ovarian cancer in laying hens having similar precursor lesions as occur in women.15 The laying hen develops ovarian cancer spontaneously, allowing analysis of early events and investigation into the natural course of the disease, as tumors can be examined as they progress from normal to late-stage ovarian carcinoma. The gross appearance of these stages is shown in Figure 3.Open in a separate windowFigure 1.Gross pathologic presentation of chicken compared with human ovarian cancer. The remarkably similar presentation in hens (A,B) and women (C,D) at the gross anatomic level with profuse abdominal ascites and peritoneal dissemination of metastasis. A) Ascites in abdominal cavity chicken with advanced ovarian cancer (photo credit: DB Hales); (B) Chicken ovarian cancer with extensive peritoneal dissemination of metastasis (photo credit: DB Hales); (C) Distended abdomen from ascites fluid accumulation in woman with ovarian cancer (http://www.pathguy.com/bryanlee/ovca.html) (D) Human ovarian cancer with extensive peritoneal dissemination of metastasis (http://www.pathguy.com/bryanlee/ovca.html).Open in a separate windowFigure 2.Gross anatomic appearance of different stages of ovarian cancer in the chicken The progression from the normal hen ovary to late-stage metastatic ovarian cancer. (A) Normal chicken ovary showing hierarchal clutch of developing follicles and postovulatory follicle; (B) Stage 1 ovarian cancer, confined to ovary with vascularized follicles; (C) Stage 2/3 ovarian cancer, metastasis locally to peritoneal cavity with ascites; (D) Stage 4 ovarian cancer, late stage with metastasis to lung and liver with extensive ascites (photo credits: DB Hales).Open in a separate windowFigure 3.Histologic subtypes in chicken compared with human ovarian cancers. H and E staining of formalin fixed paraffin embedded tissues from hens with ovarian cancer (A through D) and women (E through G). (A) Chicken clear cell carcinoma; (B) Chicken endometrioid carcinoma; (C) Chicken mucinous adenocarcinoma; (D) Chicken serous papillary adenocarcinoma (photo credits: DB Hales). (E) Human clear cell carcinoma; (F) Human endometrioid carcinoma; (G) Human mucinous cystadenocarcinoma; (H) Human serous adenocarcinoma (https://www.womenshealthsection.com).Over the past 2 decades, the laying hen has emerged as a valuable experimental model for EOC, in addition to other in vivo models such as Patient-Derived Xenografts (PDX) and Genetically Engineered Mouse Models (GEMMs). Comparison of the hen model with other animal models has been reviewed elsewhere.72 Modern-day laying hens, such as the white leghorn, have been selected from their ancestor red jungle fowl57 for decreased broodiness and persistent ovulation, resulting in approximately one egg per day, if proper nutrition and light-dark cycles are maintained. Daily rupture and consequent repair of the ovarian surface epithelia (OSE) due to the persistent ovulation promotes potential error during rapid DNA replication. This increases the probability of oncogenic mutations, ultimately leading to neoplasia.137 Inflammation resulting from continuous ovulation also promotes the natural development of EOC.81 By the age of 2.5 to 3 y, laying hens have undergone a similar number of ovulations as a perimenopausal woman. The risk of ovarian cancer in white leghorn hens in this time (4%) is similar to the lifetime risk of ovarian cancer in women (0.35% to 8.8%).125 By the age of 4 to 6 y, the risk of ovarian cancer in hens rises to 30% to 60%.54 The incidence of ovarian carcinoma in the hens, however, depends on the age, genetic strain,80 and the egg-laying frequency of the specific breed.54 The common white leghorn hen has routinely been employed in chicken ovarian cancer studies. On average, hens are exposed to 17 h of light per day, with lights turned on at 0500 h and turned off at 2200 h. The laying hen model of EOC does present some considerable challenges. Despite its great utility for research, the model is still used mainly by agricultural poultry scientists and a small number of ovarian cancer researchers.Comprehensive and proper vivarium support is required to conduct large-scale cancer prevention studies. Only a few facilities are available for biomedical chicken research, including University of Illinois Urbana-Champaign, Cornell University, Penn State University, NC State, Auburn University, and MS State University. Another difficulty is a lack of available antibodies specific for chicken antigens. Because of the structural dissimilarities between most human proteins and murine antigens to their chicken counterparts, cross-reactivity of available antibodies is also limited. The entire chicken genome was sequenced in 2004;78 however, the chromosomal locus of many key genes, such as p53, are still unknown. Overall, humans and chickens share about 60% of genetic commonality, whereas humans and rats share about 88% of their genes. Specific pathway-mutated strains of chickens are not yet available, limiting the ability to study key pathways in carcinogenesis and prevention of cancer using this model. Although all 5 different subtypes of ovarian cancer are present in hens, their most predominant subtype is different from women. Close to 70% of women diagnosed with ovarian cancer have serous EOC, while the predominant subtype reported in hens is endometrioid.15 However, these comparisons are complicated because observations of cancer in hens consist of both early and late stages of the disease, wherein women, most of the data is from late stage and aggressive ovarian carcinoma.The spontaneous onset of ovarian cancer and the histologic and pathologic similarities to the human form of the disease make laying hens an excellent model for continued research on EOC. To date, a large number of studies have been performed on laying hens. Here we have divided the current studies into 2 groups— (A) studies that have described the molecular presentation of EOC to be similar to that in women; (AuthorYearSignificanceKey molecular targetsCitationHaritani and colleagues.1984Investigating ovarian tumors for key gene signaturesOvalbumin 71 Rodriguez-Burford and colleagues.2001Investigating expressions of clinically important prognostic markers in cancerous hensCA125, cytokeratin AE1/AE3, pan cytokeratin, Lewis Y, CEA, Tag 72, PCNA, EGFR, erbB-2, p27, TGF{α}, Ki-67, MUC1, and MUC2 135 Giles and colleagues.2004, 2006Investigating ovarian tumors for key gene signaturesOvalbumin, PR, PCNA, Vimentin62, 63Jackson and colleagues.2007CA125 expression in hen ovarian tumorsCA125 79 Stammer and colleagues.2008SELENBP1 downregulation in hen ovarian tumorsSELENBP1 149 Hales and colleagues.2008Cyclooxygenase expressions in hen ovarian tumorsCOX1, COX2, PGE2 67 Urick and colleagues.2008-2009VEGF expression in cultured ascites cells from hen ovarian tumorsVEGF160, 161Ansenberger and colleagues.2009Elevation of E-cadherin in hen ovarian tumorsE-cad 6 Hakim and colleagues.2009Investigating oncogenic mutations in hen ovarian tumorsp53, K-ras, H-ras 66 Zhuge and colleagues.2009CYP1B1 levels in chicken ovarian tumorsCYP1B1 175 Seo and colleagues.2010Upregulation of Claudin-10 in hen ovarian tumorsClaudin-10 145 Trevino and colleagues.2010Investigating ovarian tumors for key gene signaturesOvalbumin, Pax2, SerpinB3, OVM, LTF, RD 157 Choi and colleagues.2011Upregulation of MMP-3 in hen ovarian tumor stromaMMP-3 28 Barua and colleagues.2012Upregulation of DR6 in hen ovarian tumorsDR6 16 Lee and colleagues.2012-2014Upregulation of DNA methylation in hen ovarian tumorsDNMT1, DNMT3A, DNMT3B,
SPP1, SERPINB11, SERPINB1394, 101, 103, 104Lim and colleagues.2013-2014Key genes upregulated in endometrioid hen tumorsAvBD-11, CTNNB1, Wnt4102, 11, 100Bradaric and colleagues.2013Investigating immune cells in hen ovarian tumors 23 Ma and colleagues.2014Identifying unique proteins from proteomic profilingF2 thrombin, ITIH2 106 Hales and colleagues.2014Key genes upregulated in hen ovarian tumorsPAX2, MSX2, FOXA2, EN1 68 Parada and colleagues,2017Unique ganglioside expressed in hen ovarian tumorsNeuGcGM3 124 Open in a separate windowTable 2.Ovarian cancer prevention studies using laying hen model
AuthorYearSignificanceCitation
Barnes and colleagues.2002Medroxyprogesterone study 14
Johnson and colleagues.2006Different genetic strain of laying hens (C strain and K strain) 80
Urick and colleagues.2009Dietary aspirin in laying hens 161
Giles and colleagues.2010Restricted Ovulator strain 61
Carver and colleagues.2011Calorie-restricted hens 25
Eilati and colleagues.2012-2013Dietary flaxseed in laying hens43, 44, 45
Trevino and colleagues.2012Oral contraceptives in laying hens 156
Rodriguez and colleagues.2013Calorie-restricted hens with or without Vitamin D and progestin 136
Mocka and colleagues.2017p53 stabilizer CP-31398 in laying hens 112
Open in a separate window  相似文献   

11.
Snail: More than EMT     
Yadi Wu  Binhua P. Zhou 《Cell Adhesion & Migration》2010,4(2):199-203
  相似文献   

12.
Mouse Models of Osteoarthritis: A Summary of Models and Outcomes Assessment     
Sabine Drevet  Bertrand Favier  Emmanuel Brun  Gaëtan Gavazzi  Bernard Lardy 《Comparative medicine》2022,72(1):3
Osteoarthritis (OA) is a multidimensional health problem and a common chronic disease. It has a substantial impact on patient quality of life and is a common cause of pain and mobility issues in older adults. The functional limitations, lack of curative treatments, and cost to society all demonstrate the need for translational and clinical research. The use of OA models in mice is important for achieving a better understanding of the disease. Models with clinical relevance are needed to achieve 2 main goals: to assess the impact of the OA disease (pain and function) and to study the efficacy of potential treatments. However, few OA models include practical strategies for functional assessment of the mice. OA signs in mice incorporate complex interrelations between pain and dysfunction. The current review provides a comprehensive compilation of mouse models of OA and animal evaluations that include static and dynamic clinical assessment of the mice, merging evaluation of pain and function by using automatic and noninvasive techniques. These new techniques allow simultaneous recording of spontaneous activity from thousands of home cages and also monitor environment conditions. Technologies such as videography and computational approaches can also be used to improve pain assessment in rodents but these new tools must first be validated experimentally. An example of a new tool is the digital ventilated cage, which is an automated home-cage monitor that records spontaneous activity in the cages.

Osteoarthritis (OA) is a multidimensional health problem and a common chronic disease.36 Functional limitations, the absence of curative treatments, and the considerable cost to society result in a substantial impact on quality of life.76 Historically, OA has been described as whole joint and whole peri-articular diseases and as a systemic comorbidity.9,111 OA consists of a disruption of articular joint cartilage homeostasis leading to a catabolic pathway characterized by chondrocyte degeneration and destruction of the extracellular matrix (ECM). Low-grade chronic systemic inflammation is also actively involved in the process.42,92 In clinical practice, mechanical pain, often accompanied by a functional decline, is the main reason for consultations. Recommendations to patients provide guidance for OA management.22, 33,49,86 Evidence-based consensus has led to a variety of pharmacologic and nonpharmacologic modalities that are intended to guide health care providers in managing symptomatic patients. Animal-based research is of tremendous importance for the study of early diagnosis and treatment, which are crucial to prevent the disease progression and provide better care to patients.The purpose of animal-based OA research is 2-fold: to assess the impact of the OA disease (pain and function) and to study the efficacy of a potential treatment.18,67 OA model species include large animals such as the horse, goat, sheep, and dog, whose size and anatomy are expected to better reflect human joint conditions. However, small animals such as guinea pig, rabbit, mouse, and rat represent 77% of the species used.1,87 In recent years, mice have become the most commonly used model for studying OA. Mice have several advantageous characteristics: a short development and life span, easy and low-cost breeding and maintenance, easy handling, small joints that allow histologic analysis of the whole joint,32 and the availability of genetically modified lines.108 Standardized housing, genetically defined strains and SPF animals reduce the genetic and interindividual acquired variability. Mice are considered the best vertebrate model in terms of monitoring and controlling environmental conditions.7,14,15,87 Mouse skeletal maturation is reached at 10 wk, which theoretically constitutes the minimal age at which mice should be entered into an OA study.64,87,102 However, many studies violate this limit by testing mice at 8 wk of age.Available models for OA include the following (32,111 physical activity and exercise induced OA; noninvasive mechanical loading (repetitive mild loading and single-impact injury); and surgically induced (meniscectomy models or anterior cruciate ligament transection). The specific model used would be based on the goal of the study.7 For example, OA pathophysiology, OA progression, and OA therapies studies could use spontaneous, genetic, surgical, or noninvasive models. In addition, pain studies could use chemical models. Lastly, post-traumatic studies would use surgical or noninvasive models; the most frequently used method is currently destabilization of the medial meniscus,32 which involves transection of the medial meniscotibial ligament, thereby destabilizing the joint and causing instability-driven OA. An important caveat for mouse models is that the mouse and human knee differ in terms of joint size, joint biomechanics, and histologic characteristics (layers, cellularity),32,64 and joint differences could confound clinical translation.10 Table 1. Mouse models of osteoarthritis.
ModelsProsCons
SpontaneousWild type mice7,9,59,67,68,70,72,74,80,85,87,115,118,119,120- Model of aging phenotype
- The less invasive model
- Physiological relevance: mimics human pathogenesis
- No need for technical expertise
- No need for specific equipment
- Variability in incidence
- Large number of animals at baseline
- Long-term study: Time consuming (time of onset: 4 -15 mo)
- Expensive (husbandry)
Genetically modified mice2,7,25,40,50,52,67,72,79,80, 89,120- High incidence
- Earlier time of onset: 18 wk
- No need for specific equipment
- Combination with other models
- Time consuming for the strain development
- Expensive
Chemical- inducedMono-iodoacetate injection7,11,46,47,60,66,90,91,101,128- Model of pain-like phenotype
- To study mechanism of pain and antalgic drugs
- Short-term study: Rapid progression (2-7 wk)
- Reproducible
- Low cost
- Need for technical expertise
- Need for specific equipment
- Systemic injection is lethal
- Destructive effect: does not allow to study the early phase of pathogenesis
Papain injection66,67,120- Short-term study: rapid progression
- Low cost
- Need for technical expertise
- Need for specific equipment
- Does not mimic natural pathogenesis
Collagenase injection7,65,67,98- Short-term study: rapid progression (3 wk)
- Low cost
- Need for technical expertise
- Need for specific equipment
- Does not mimic natural pathogenesis
Non-invasiveHigh-fat diet (Alimentary induced obesity model)5,8,43,45,57,96,124Model of metabolic phenotype
No need for technical expertise
No need for specific equipment
Reproducible
Long-term study: Time consuming (8 wk–9 mo delay)
Expensive
Physical activity and exercise model45,73Model of post traumatic phenotype
No need for technical expertise
Long-term study: time consuming (18 mo delay)
Expensive
Disparity of results
Mechanical loading models Repetitive mild loading models Single-impact injury model7,16,23,24, 32,35,104,105,106Model of post traumatic phenotype
Allow to study OA development
Time of onset: 8-10 wk post injury
Noninvasive
Need for technical expertise
Need for specific equipment
Heterogeneity in protocol practices
Repetitive anesthesia required or ethical issues
SurgicalOvariectomy114Contested.
Meniscectomy model7,32,63,67,87 Model of post traumatic phenotype
High incidence
Short-term study: early time of onset (4 wk from surgery)
To study therapies
Need for technical expertise
Need for specific equipment
Surgical risks
Rapid progression compared to human
Anterior cruciate ligament transection (ACLT)7,39,40,61,48,67,70,87,126Model of posttraumatic phenotype
High incidence
Short-term study: early time of onset (3-10 wk from surgery)
Reproducible
To study therapies
Need for technical expertise
Need for specific equipment
Surgical risks
Rapid progression compared to human
Destabilization of medial meniscus (DMM)7,32,39,40Model of post traumatic phenotype
High incidence
Short-term study: early time of onset (4 wk from surgery)
To study therapies
The most frequently used method
Need for technical expertise
Need for specific equipment
Surgical risks
Rapid progression compared to human
Open in a separate windowSince all animal models have strengths and weaknesses, it is often best to plan using a number of models and techniques together to combine the results.In humans, the lack of correlation between OA imaging assessment and clinical signs highlights the need to consider the functional data and the quality of life to personalize OA management. Clinical outcomes are needed to achieve 2 main goals: to assess the impact of the OA in terms of pain and function and to study the efficacy of treatments.65 Recent reviews offer few practical approaches to mouse functional assessment and novel approaches to OA models in mice.7,32,67,75,79,83,87, 100,120 This review will focus on static and dynamic clinical assessment of OA using automatic and noninvasive emerging techniques (Test nameTechniquesKind of assessmentOutputSpecific equipment requiredStatic measurementVon Frey filament testingCalibrated nylon filaments of various thickness (and applied force) are pressed against the skin of the plantar surface of the paw in ascending order of forceStimulus- evoked pain-like behavior
Mechanical stimuli - Tactile allodynia
The most commonly used testLatency to paw withdrawal
and
Force exerted are recordedYesKnee extension testApply a knee extension on both the intact and affected knee
or
Passive extension range of the operated knee joint under anesthesiaStimulus-evoked pain-like behaviorNumber of vocalizations evoked in 5 extensionsNoneHotplateMouse placed on hotplate. A cutoff latency has been determined to avoid lesionsStimulus-evoked pain-like behavior
Heat stimuli- thermal sensitivityLatency of paw withdrawalYesRighting abilityMouse placed on its backNeuromuscular screeningLatency to regain its footingNoneCotton swab testBringing a cotton swab into contact with eyelashes, pinna, and whiskersStimulus-evoked pain-like behavior
Neuromuscular screeningWithdrawal or twitching responseNoneSpontaneous activitySpontaneous cage activityOne by one the cages must be laid out in a specific platformSpontaneous pain behavior
Nonstimulus evoked pain
ActivityVibrations evoked by animal movementsYesOpen field analysisExperiment is performed in a clear chamber and mice can freely exploreSpontaneous pain behavior
Nonstimulus evoked pain
Locomotor analysisPaw print assessment
Distance traveled, average walking speed, rest time, rearingYesGait analysisMouse is placed in a specific cage equipped with a fluorescent tube and a glass plate allowing an automated quantitative gait analysisNonstimulus evoked pain
Gait analysis
Indirect nociceptionIntensity of the paw contact area, velocity, stride frequency, length, symmetry, step widthYesDynamic weight bearing systemMouse placed is a specific cage. This method is a computerized capacitance meter (similar to gait analysis)Nonstimulus evoked pain
Weight-bearing deficits
Indirect nociceptionBody weight redistribution to a portion of the paw surfaceYesVoluntary wheel runningMouse placed is a specific cage with free access to stainless steel activity wheels. The wheel is connected to a computer that automatically record dataNonstimulus evoked pain
ActivityDistance traveled in the wheelYesBurrowing analysisMouse placed is a specific cage equipped with steel tubes (32 cm in length and 10 cm in diameter) and quartz sand in Plexiglas cages (600 · 340x200 mm)Nonstimulus evoked pain
ActivityAmount of sand burrowedYesDigital video recordingsMouse placed is a specific cage according to the toolNonstimulus evoked pain
Or
Evoked painScale of pain or specific outcomeYesDigital ventilated cage systemNondisrupting capacitive-based technique: records spontaneous activity 24/7, during both light and dark phases directly from the home cage rackSpontaneous pain behavior
Nonstimulus evoked pain
Activity-behaviorDistance walked, average speed, occupation front, occupation rear, activation density.
Animal locomotion index, animal tracking distance, animal tracking speed, animal running wheel distance and speed or rotationYesChallenged activityRotarod testGradual and continued acceleration of a rotating rod onto which mice are placedMotor coordination
Indirect nociceptionRotarod latency: riding time and speed with a maximum cut off.YesHind limb and fore grip strengthMouse placed over a base plate in front of a connected grasping toolMuscle strength of limbsPeak force, time resistanceYesWire hang analysisSuspension of the mouse on the wire and start the timeMuscle strength of limbs: muscle function and coordinationLatency to fall grippingNone
(self -constructed)
Open in a separate windowPain cannot be directly measured in rodents, so methods have been developed to quantify “pain-like” behaviors. The clinical assessment of mice should be tested both before and after the intervention (induced-OA ± administration of treatment) to take into account the habituation and establish a baseline to compare against.  相似文献   

13.
Proteomics of Saccharomyces cerevisiae Organelles     
Elena Wiederhold  Liesbeth M. Veenhoff  Bert Poolman    Dirk Jan Slotboom 《Molecular & cellular proteomics : MCP》2010,9(3):431-445
  相似文献   

14.
Focus on Chromatin/Epigenetics: Trans-Homolog Interactions Facilitating Paramutation in Maize     
Brian John Giacopelli  Jay Brian Hollick 《Plant physiology》2015,168(4):1226-1236
  相似文献   

15.
Arabidopsis thaliana overexpressing glycolate oxidase in chloroplasts: H2O2-induced changes in primary metabolic pathways     
Holger Fahnenstich  Ulf-Ingo Flügge  Verónica G Maurino 《Plant signaling & behavior》2008,3(12):1122-1125
Reactive oxygen species (ROS) represent both toxic by-products of aerobic metabolism as well as signaling molecules in processes like growth regulation and defense pathways. The study of signaling and oxidative-damage effects can be separated in plants expressing glycolate oxidase in the plastids (GO plants), where the production of H2O2 in the chloroplasts is inducible and sustained perturbations can reproducibly be provoked by exposing the plants to different ambient conditions. Thus, GO plants represent an ideal non-invasive model to study events related to the perception and responses to H2O2 accumulation. Metabolic profiling of GO plants indicated that under high light a sustained production of H2O2 imposes coordinate changes on central metabolic pathways. The overall metabolic scenario is consistent with decreased carbon assimilation, which results in lower abundance of glycolytic and tricarboxylic acid cycle intermediates, while simultaneously amino acid metabolism routes are specifically modulated. The GO plants, although retarded in growth and flowering, can complete their life cycle indicating that the reconfiguration of the central metabolic pathways is part of a response to survive and thus, to adapt to stress conditions imposed by the accumulation of H2O2 during the light period.Key words: Arabidopsis thaliana, H2O2, oxidative stress, reactive oxygen species, signalingReactive oxygen species (ROS) are key molecules in the regulation of plant development, stress responses and programmed cell death. Depending on the identity of ROS species or its subcellular production site, different cellular responses are provoked.1 To assess the effects of metabolically generated H2O2 in chloroplasts, we have recently generated Arabidopsis plants in which the peroxisomal GO was targeted to chloroplasts.2 The GO overexpressing plants (GO plants) show retardation in growth and flowering time, features also observed in catalase, ascorbate peroxidase and MnSOD deficient mutants.35 The analysis of GO plants indicated that H2O2 is responsible for the observed phenotype. GO plants represent an ideal non-invasive model system to study the effects of H2O2 directly in the chloroplasts because H2O2 accumulation can be modulated by growing the plants under different ambient conditions. By this, growth under low light or high CO2 concentrations minimizes the oxygenase activity of RubisCO and thus the flux through GO whereas the exposition to high light intensities enhances photorespiration and thus the flux through GO.Here, we explored the impact of H2O2 production on the primary metabolism of GO plants by assessing the relative levels of various metabolites by gas chromatography coupled to mass spectrometry (GC-MS)6 in rosettes of plants grown at low light (30 µmol quanta m−2 s−1) and after exposing the plants for 7 h to high light (600 µmol quanta m−2 s−1). The results obtained for the GO5 line are shown in After 1 h at 30 µEAfter 7 h at 600 µEAlanine0.88 ± 0.052.83 ± 0.68Asparagine1.39 ± 0.123.64 ± 0.21Aspartate0.88 ± 0.031.65 ± 0.10GABA1.14 ± 0.051.13 ± 0.05Glutamate0.97 ± 0.041.51 ± 0.07Glutamine1.06 ± 0.111.87 ± 0.06Glycine1.23 ± 0.070.30 ± 0.02Isoleucine3.52 ± 0.403.00 ± 0.15Leucine1.36 ± 0.220.57 ± 0.06Lysine1.49 ± 0.130.38 ± 0.02Methionine0.96 ± 0.054.54 ± 0.51Phenylalanine0.95 ± 0.030.94 ± 0.04Proline1.32 ± 0.221.60 ± 0.13Serine1.05 ± 0.041.49 ± 0.15Threonine4.74 ± 0.175.51 ± 0.34Valine0.91 ± 0.130.29 ± 0.02Citrate/Isocitrate0.65 ± 0.020.64 ± 0.022-oxoglutarate0.95 ± 0.110.76 ± 0.05Succinate0.78 ± 0.040.72 ± 0.02Fumarate0.64 ± 0.030.31 ± 0.01Malate0.74 ± 0.030.60 ± 0.02Pyruvate1.19 ± 0.280.79 ± 0.04Ascorbate1.13 ± 0.142.44 ± 0.45Galactonate-γ-lactone1.81 ± 0.401.62 ± 0.28Fructose1.20 ± 0.130.37 ± 0.01Glucose1.38 ± 0.170.30 ± 0.01Mannose0.90 ± 0.271.34 ± 0.28Sucrose1.04 ± 0.070.49 ± 0.02Fructose-6P0.82 ± 0.151.20 ± 0.15Glucose-6P0.87 ± 0.061.25 ± 0.183-PGA1.13 ± 0.110.35 ± 0.02DHAP1.38 ± 0.091.26 ± 0.08Glycerate0.99 ± 0.040.67 ± 0.01Glycerol1.07 ± 0.041.12 ± 0.05Shikimate1.18 ± 0.040.35 ± 0.01Salicylic acid1.04 ± 0.180.66 ± 0.18Open in a separate windowPlants were grown at 30 µmol m−2 sec−1 (30 µE). The samples were collected 1 h after the onset of the light period and after 7 h of exposure to 600 µmol m−2 sec−1 (600 µE), respectively. The values are relative to the respective wild-type (each metabolite = 1) and represent means ± SE of four determinations of eight plants. (*) indicates the value is significantly different from the respective wild-type as determined by the Student''s t test (p < 0.05).At the beginning of the light period in low light conditions, some significant deviations in the levels of metabolites tested were observed in GO plants when compared to the wild-type (2 the transgenic GO activity is sufficient to induce a characteristic metabolic phenotype (Fig. 1). The levels of the tricarboxylic acid (TCA) cycle intermediates, citrate/isocitrate, succinate, fumarate and malate were lower in the GO plants (7 In consequence, OAA might not freely enter the TCA cycle and is redirected to the synthesis of Lys, Thr and Ile, which accumulate in the GO plants (Open in a separate windowFigure 1Simplified scheme of the primary metabolism showing the qualitative variations in metabolite abundance in GO plants obtained by GC-MS analysis (2 Blue boxes indicate a significant increase in the content of the particular metabolite compared to the wild-type, while red boxes indicate a significant decrease. Metabolites without boxes have not been determined. The arrows do not always indicate single steps. Adapted from Baxter et al., 2007.High light treatment induced massive changes in the metabolic profile of GO plants (Fig. 1). The OAA-derived amino acids Asp, Asn, Thr, Ile and Met as well as the 2-oxoglutarate-derived amino acids Glu and Gln accumulated. On the contrary, the levels of the Pyr-derived amino acids Val and Leu and the OAA-derived amino acid Lys decreased. A rational explanation for these metabolic changes is difficult to assess, but these changes could be a consequence of a metabolic reconfiguration in response to high light leading to required physiological functions and thus ensuring continued cellular function and survival, e.g., production of secondary metabolites to mitigate photooxidative damage. The higher levels of Glu observed in the GO plants could be attributed to alternative pathways of glyoxylate metabolism that may occur during photorespiration.8 It has been shown earlier that isocitrate derived from glyoxylate and succinate is decarboxylated by cytosolic isocitrate dehydrogenase producing 2-oxoglutarate and further glutamate.8In GO plants grown under low light conditions (minimized photorespiratory conditions), the levels of Gly were similar to those of the wild-type whereas, after exposure to high light (photorespiratory conditions), the Gly levels were extremely low, indicating that the GO activity diverts a significant portion of flux from the photorespiratory pathway (7 and also the levels of the lipoic acid-containing subunits of the pyruvate- and 2-oxoglutarate dehydrogenases were shown to be significantly reduced under oxidative stress conditions.9,10 Similarly, the contents of the soluble sugars sucrose, fructose and glucose and those of 3-PGA and glycerate were lower. In addition, the GO plants showed an impairment in the accumulation of starch under high light conditions, a feature that was not observed if the plants were grown under non-photorespiratory conditions.2Together, these results indicate that the low photosynthetic carbon assimilation in the GO plants exposed to high light is most probably due to enhanced photoinhibition,2 the repression of genes encoding photosynthetic components by H2O2,1113 and the direct damage or inhibition of enzyme activities involved in CO2 assimilation and energy metabolism by H2O2.7,10,14,15 Moreover, Scarpeci and Valle13 showed that in plants treated with the superoxid anion radical producing methylviologen (MV) most of the genes involved in phosphorylytic starch degradation, e.g., the trioseP/Pi translocator and genes involved in starch and sucrose synthesis were repressed, while genes involved in hydrolytic starch breakdown and those involved in sucrose degradation were induced. In line with this, the contents of carbohydrates were also lower in MV-treated plants. Together, these observations can also explain the lower growth rates of the GO plants in conditions where the oxygenase activity of RubisCO becomes important and thus, the flux through GO increases.2The levels of shikimate were lower in GO plants (2,16 and the low levels of substrates available, as anthocyanins are ultimately synthesized from photosynthates and the GO plants showed a diminished photosynthetic performance.2As expected, the levels of ascorbate and its precursor, galactonate-γ-lactone, were enhanced in the GO plants clearly showing the activation of the cellular antioxidant machinery (10 described the metabolic response to oxidative stress of heterotrophic Arabidopsis cells treated with menadione, which also generates superoxide anion radicals. This oxidative stress was shown to induce metabolic inhibition of flux through the TCA cycle and sectors of amino acid metabolism together with a diversion of carbon into the oxidative pentose phosphate pathway.Signaling and oxidative-damage effects are difficult to separate by manipulating the enzymes of antioxidant systems. In this regard, the GO plants represent a challenging inducible model that avoid acclimatory and adaptative effects. Moreover, it is possible to control the H2O2 production in the chloroplasts of GO plants without inducing oxidative damage by changing the conditions of growth.2 Further exploration of metabolic changes imposed by different ROS at the cellular and whole organ levels will allow to address many intriguing questions on how plants can rearrange metabolism to cope with oxidative stresses.  相似文献   

16.
Comprehensive analysis of protein-protein interactions between Arabidopsis MAPKs and MAPK kinases helps define potential MAPK signalling modules     
Jin Suk Lee  Kyung Won Huh  Apurva Bhargava  Brian E Ellis 《Plant signaling & behavior》2008,3(12):1037-1041
The Arabidopsis genome encodes a 20-member gene family of mitogen-activated protein kinases (MPKs) but biological roles have only been identified for a small subset of these crucial signalling components. In particular, it is unclear how the MPKs may be organized into functional modules within the cell. To gain insight into their potential relationships, we used the yeast two-hybrid system to conduct a directed protein-protein interaction screen between all the Arabidopsis MPKs and their upstream activators (MAPK kinases; MKK). Novel interactions were also tested in vitro for enzyme-substrate functionality, using recombinant proteins. The resulting data confirm a number of earlier reported MKK-MPK relationships, but also reveal a more extensive pattern of interactions that should help to guide future analyses of MAPK signalling in plants.Key words: mitogen-activated protein kinase, mitogen-activated protein kinase kinase, yeast two-hybrid, phosphorylation, protein-protein interaction, ArabidopsisPlant genomes are notably rich in the number of protein kinase signalling components they encode13 and it can therefore be anticipated that the associated signal transduction networks will be highly specialized and complex. Within the plant protein kinase super-family, the highly conserved Arabidopsis mitogen-activated protein kinases (MAPKs; MPKs) are represented by a 20-member family that is most closely related to the ERK class of metazoan MAPKs.4 This family includes three sub-families of MPKs whose activation domain carries a -TEY- motif, as well as a fourth, evolutionarily distinct -TDY- sub-family.4,5 Dual-specificity MAPK kinases (MKK) serve as the canonical activators of MPKs through phosphorylation of both the threonine and tyrosine residues within the MPK activation loop -TXY- motif. The Arabidopsis genome encodes ten members of the MKK gene family, among which one (MKK10) lacks the fully conserved -S/T-X3-5-S/T- motif that typifies eukaryotic MAPK kinases.5Numerous reports have provided evidence for the involvement of plant MPKs in a wide range of biotic and abiotic stress responses, as well as phytohormone signalling and developmental patterning, as recently reviewed in.6 However, defining functional MKK-MPK module combinations by connecting a particular activated MPK to a specific upstream MKK remains a challenge. Since there are precedents for activation of multiple MPKs by one MKK, as well as evidence for more than one MKK having the capability of activating a given MPK, there are many possible ways in which MKK-MPK signalling modules might potentially be configured. Phenotype-based forward genetic screens in Arabidopsis have provided relatively little insight into these relationships, with only one MPK (MPK4) being recovered as a loss-of-function mutant.7 The failure to recover mutations in the other MPK loci, or in any of the MKKs, in such screens could indicate that there is considerable functional redundancy within the MAPK signalling network, that the phenotypic consequences of a loss-of-function mutation are subtle or conditional, or that loss-of-function genotypes are non-viable.Since the nature of protein kinase/phosphatase activities depends on direct physical encounters between the enzyme and its target protein, we hypothesized that the ability of particular proteins to interact effectively with each other would define one level of specificity within the global Arabidopsis MKK/MPK network. To test this idea, we conducted a comprehensive directed yeast two-hybrid screen using the ten Arabidopsis MKKs as individual bait proteins, and each of the twenty MPKs as prey proteins. Several of the protein-protein interactions detected in this Y2H screen were also tested in direct phosphorylation assays in vitro, using recombinant proteins.Nine of the ten Arabidopsis MKK proteins were found to interact with at least one MPK protein in our Y2H assays (https://www.genevestigator.ethz.ch/gv/index.jsp). Its putative orthologue in Populus trichocarpa is similarly silent,5,8 consistent with a gene that may be losing its biological functionality. Most other MKKs were found to interact with two or more MPK targets, and in several cases these results confirmed earlier reports of MKK-MPK interactions. For example, we found that MKK1 and MKK2, two closely related MAPKKs, both interacted with MPK 4 and with MPK11, a pair of paralogous MPKs. Interaction between MKK1 (MEK1) and MPK4 had already been observed in one of the first studies of plant MKK-MPK relationships,9 while a later study also found that MKK2 could interact with MPK4, among twelve MPKs surveyed.10 However, neither of these reports had examined MPK11. We could confirm by in vitro phosphorylation assays using “constitutively active” (CA) forms of recombinant MKK1 and MKK2 that both of these MKKs can phosphorylate recombinant MPK4, but, in contrast to the Y2H interaction pattern, both CAMKKs showed only very weak activity with MPK11 as a substrate (Fig. 2A and B).Open in a separate windowFigure 2Effects of incubation with recombinant GST-CAMKK proteins on protein phosphorylation of recombinant GST-MPKs. The constitutively active mutant forms of the MKKs were generated by QuickChange site-directed mutagenesis (Stratagene) and confirmed by sequencing. The conserved Ser or Thr residues in the activation loop in MKKs were replaced with acidic residues to create a “constitutively active” kinase (T218E and S224D for CAMKK1, T220D and T226E for CAMKK2, S221D and T227E for CAMKK6, S193E and S199D for CAMKK7, and S195E and S201E for CAMKK9). PCR amplicons of the full-length cDNAs corresponding to MPK2 (At1g59580), MPK4 (At4g01370), MPK6 (At2g43790), MPK10 (At3g59790), MPK11 (At1g01560), MPK13 (At1g07880), MPK17 (At2g01450), MPK20 (At2g42880), MKK1 (At4g26070), MKK2 (At4g29810), MKK6 (At5g56580), MKK7 (At1g18350) and MKK9 (At1g73500) were purified, digested with the appropriate restriction enzymes and subcloned in either the pGEX 4T-2 or pDEST15 vector, which expresses the recombinant protein with a N-terminal GST tag. Each of wild-type MAPK and mutant recombinant CAMKK1, CAMKK2, CAMKK6, CAMKK7 and CAMKK9 were expressed as glutathione S-transferase (GST) fusion proteins as previously described.19 For the in vitro phosphorylation assays, each GST-MPK (1 µg) was incubated in 25 µL of kinase reaction buffer (50 mM Tris-HCl, pH 7.5, 5 mM β-glycerolphosphate, 2 mM DTT, 10 mM MgCl2, 0.1 mM Na3VO4, 0.1 mM ATP and 3 µCi of [γ-32P] ATP) either with or without constitutively active GST-MKKs (0.3 µg) at 30°C for 30 min. The reaction was terminated by addition of concentrated SDS-PAGE sample buffer followed by boiling for 5 min. Reaction products were analyzed using SDS-PAGE, autoradiography, and CBB staining. (A) Phosphorylation of MPKs by incubation with CAMKK1. (B) Phosphorylation of MPKs by incubation with CAMKK2. (C) Phosphorylation of MPKs by incubation with CAMKK6. (D) Phosphorylation of MPK2 by incubation with CAMKK7. (E) Phosphorylation of MPKs by incubation with CAMKK9.

Table 1

Full-length cDNA clones corresponding to the open reading frame of each of the ten Arabidopsis MKK and twenty distinct MAPKs were isolated from Arabidopsis cDNA and cloned into a Gateway™ entry vector, either pENTR (Invitrogen) or pCR8 (Invitrogen)
MKK1MKK2MKK3MKK4MKK5MKK6MKK7MKK8MKK9MKK10
MPK1++
MPK2+++
MPK3+
MPK4+++++++++
MPK5
MPK6+++++++++++
MPK7+++
MPK8
MPK9
MPK10++++
MPK11+++++++++
MPK12
MPK13++
MPK14++
MPK15++
MPK16
MPK17++
MPK18
MPK19
MPK20+
Open in a separate windowEach cloned MKK and MAPK was sequence-verified to ensure integrity of the cloned gene prior to its transfer into Gateway™ compatible yeast two-hybrid bait and prey vectors (pDEST32 (Invitrogen) and pDEST22 (Invitrogen), respectively). Each MKK (in pDEST32 vector) and MPK (in pDEST22 vector) was introduced pairwise into the yeast strain, MaV203. Positive clones were isolated on the basis of their ability to activate HIS3 or URA3, according to the manufacturer''s instructions (ProQuest; Invitrogen). Interaction strength for HIS3 and URA3 activation assays was scored visually, from no interaction (−) to strong interaction (+++).MKK2 appears to have a wider range of interactions than its paralogue since, in addition to MPK4 and MPK11, it can bind with MPK6, MPK10, and considerably more weakly with MPK13 (Fig. 1, 10 and the quantitative Y2H assay in that study also detected a weak interaction between MKK2 and MPK13. However, we also observed a clear MKK2-MPK10 interaction, a combination which Teige et al., (2004) had not tested, whereas that previous study reported a MKK2-MPK5 interaction, which we do not see in our assays. In vitro phosphorylation assays demonstrated that, in addition to strongly phosphorylating MPK4 and MPK10, recombinant CAMKK2 displayed very weak activity against MPK6, MPK11 and MPK13 (Fig. 2B).Open in a separate windowFigure 1MKK2 interaction with Arabidopsis MAPKs in Yeast. MKK2 interacts specifically with MPK4, 6, 10, 11 and 13. The Y2H screen of MKK2 against each of the twenty Arabidopsis MPKs was conducted using bait and prey constructs prepared as described in the Table legend.MKK3 is a distinctive monophyletic plant MAPKK whose extended C-terminal region displays homology to yeast NTF2 proteins. It was recently reported that MKK3 could interact with MPKs1, 2, 7 and 14 in Y2H assays,11 and our survey fully confirmed this pattern (11 Interestingly, it has also been proposed that MKK3 forms a functional signalling pathway with a different MPK (MPK6), in the context of jasmonic acid signal transduction.12 Although this model appeared to be supported by genetic evidence, the ability of MKK3 to use MPK6 as a direct substrate was not demonstrated.MKK4 and MKK5 are paralogous Group C MAPKKs that appear to be important to the ability of plants to respond to a range of environmental stresses. Based on several in vitro and in vivo studies, the downstream targets of MKK4 are believed to be MPK3 and MPK6, and consistent with this model, MKK4 was found to interact only with MPK3 and MPK6 among the 20 MPKs tested in the Y2H screen (13 This pathway has been investigated most extensively in Nicotiana, where the putative orthologues of MKK6 and MPK13 have been named NQK1 and NRK1, respectively.13,14 Most of the evidence for the functionality of this pathway has come from genetic analysis, but combined ectopic expression of both Arabidopsis MKK6 and MPK13 in an mpk1 mutant yeast background was able to complement the mutant''s signal transduction deficiency, and MPK13 activation could be detected in the MKK6-expressing yeast.15 Interestingly, while MKK6 was found to interact with MPK13 in our Y2H screen (Fig. 2C). While no direct phosphorylation of MPK11 by CAMKK6 was observed, autophosphorylation suppression could not be assessed because recombinant MPK11 displays no autophosphorylation activity in vitro (Fig. 2C). Since the same recombinant CAMKK6 was found to be able to phosphorylate MPK12 in vitro (Lee JS and Ellis BE, unpublished data), the lack of direct kinase activity against MPK4, 6, 11 and 13 can presumably not be attributed to defective MKK6 protein.The phenotypes of MKK7-suppressed and overexpression mutants indicate that signalling through this MKK contributes to both disease resistance16 and polar auxin transport,17 but to date no MPK substrate has been reported for MKK7. In our Y2H screen, MKK7 was found to interact with both MPK2 and MPK15, but when using recombinant proteins we could detect no in vitro activity of CAMKK7 against MPK2 (Fig. 2D), although the CAMKK7, like CAMKK6, was able to phosphorylate MPK12 (Lee JS and Ellis BE, unpublished data). Our inability to produce high quality recombinant MPK15 precluded any test of the ability of CAMKK7 to phosphorylate MPK15.MKK9 was recently reported to play a role in regulation of ethylene signalling, where it operates downstream of the CTR1 MAPKKK, and upstream of MPK6.18 Curiously, unlike canonical MAPK cascades based on sequential activation events, this proposed signalling module appears to involve CTR1 inactivation of MKK9 through an undefined mechanism. However, in our Y2H screen, MKK9 did not interact with MPK6, but rather with MPK10, MPK17 and MPK20, three MPKs whose biological roles have yet to be determined. In vitro phosphorylation assays revealed that recombinant CAMKK9 can also phosphorylate MPK10 and MPK20, and that MPK6 serves as a substrate, as well, (Fig. 2E) in keeping with the previous report.18 However, CAMKK9 also catalyzed in vitro phosphorylation of MPK12 (Lee JS and Ellis BE, unpublished data), a MPK family member with which MKK9 did not interact in the Y2H system.Finally, MKK10, a family member that lacks part of the MKK consensus motif and may not be biologically functional,5,6 was found to interact with MPK17 in the Y2H screen; this potential relationship was not tested for in vitro activity.While most Arabidopsis MKKs could be shown to interact with and/or phosphorylate one or more putative target MPKs, it is notable that, for several of the 20 MPKs (MPK5, MPK8, MPK9, MPK16, MPK18 and MPK19), there were neither MKK interactions nor substrate relationships detected. While the yeast two-hybrid system is a powerful tool for exploring protein-protein interactions, both false positive and false negative results can be generated, and different Y2H formats can also result in different outcomes. Thus, although we failed to detect a MKK2-MPK5 interaction in the present work, that specific interaction was reported in another study10 in which a different version of the Y2H assay was used. Overall, however, the results of this comprehensive screen are very consistent with the data obtained in previous smaller studies, which gives confidence that the interactions reported here are reproducible.The biological interpretation of such interactions is, of course, ultimately reliant on additional information, such as demonstration of enzyme-substrate activity relationships and characterization of the molecular phenotypes of appropriate gain-of-function and loss-of-function genotypes. Our in vitro phosphorylation assays, together with other literature reports, confirm that some of the putative modular relationships defined by the Y2H data probably represent genuine kinase-substrate relationships. Interestingly, in other cases, our CAMKK constructs were able to phosphorylate MPK substrates that had failed to display corresponding Y2H interactions. This is most striking in the case of MPK12, which did not interact with any of the MKKs in our screen, but proved to be an in vitro substrate for four members of the family (MKK1, MKK6, MKK7 and MKK9) (Lee JS and Ellis BE, unpublished data).There are two caveats to be attached to this dataset. Since we did not attempt to assay all CAMKK proteins in vitro against all MPKs, there may well be other enzyme-substrate relationships that remain to be defined within the overall Arabidopsis MKK-MPK matrix. Second, we selected MPK cDNA clones for expression that were consistent with the current TAIR/NCBI reference sequences, but for several MPK genes we have observed that multiple splice forms are being expressed in Arabidopsis tissues, and the biological relevance of these has yet to be defined. If translated, such MPK isoforms could conceivably play important roles in modulating the structure and activity of Arabidopsis MAPK signalling modules, in part through their differential ability to interact with, and/or serve as substrates for, upstream MKKs.  相似文献   

17.
Variation in Adult Plant Phenotypes and Partitioning among Seed and Stem-Borne Roots across Brachypodium distachyon Accessions to Exploit in Breeding Cereals for Well-Watered and Drought Environments     
Vincent Chochois  John P. Vogel  Gregory J. Rebetzke  Michelle Watt 《Plant physiology》2015,168(3):953-967
Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brachypodium distachyon to adults in 50-cm-long tubes of soil with irrigation; a subset of 16 lines was droughted. Variation was large (total biomass, ×8; total root length [TRL], ×10; and root mass ratio, ×6), repeatable, and attributable to genetic factors (heritabilities ranged from approximately 50% for root growth to 82% for partitioning phenotypes). Lines were dissected into seed-borne tissues (stem and primary seminal axile roots) and stem-borne tissues (tillers and coleoptile and leaf node axile roots) plus branch roots. All lines developed one seminal root that varied, with branch roots, from 31% to 90% of TRL in the well-watered condition. With drought, 100% of TRL was seminal, regardless of line because nodal roots were almost always inhibited in drying topsoil. Irrigation stimulated nodal roots depending on genotype. Shoot size and tillers correlated positively with roots with irrigation, but partitioning depended on genotype and was plastic with drought. Adult root systems of B. distachyon have genetic variation to exploit to increase cereal yields through genes associated with partitioning among roots and their responsiveness to irrigation. Whole-plant phenotypes could enhance gain for droughted environments because root and shoot traits are coselected.Adult plant root systems are relevant to the size and efficiency of seed yield. They supply water and nutrients for the plant to acquire biomass, which is positively correlated to the harvest index (allocation to seed grain), and the stages of flowering and grain development. Modeling in wheat (Triticum aestivum) suggested that an extra 10 mm of water absorbed by such adult root systems during grain filling resulted in an increase of approximately 500 kg grain ha−1 (Manschadi et al., 2006). This was 25% above the average annual yield of wheat in rain-fed environments of Australia. This number was remarkably close to experimental data obtained in the field in Australia (Kirkegaard et al., 2007). Together, these modeling and field experiments have shown that adult root systems are critical for water absorption and grain yield in cereals, such as wheat, emphasizing the importance of characterizing adult root systems to identify phenotypes for productivity improvements.Most root phenotypes, however, have been described for seedling roots. Seedling roots are essential for plant establishment, and hence, the plant’s potential to set seed. For technical reasons, seedlings are more often screened than adult plants because of the ease of handling smaller plants and the high throughput. Seedling-stage phenotyping may also improve overall reproducibility of results because often, growth media are soil free. Seedling soil-free root phenotyping conditions are well suited to dissecting fine and sensitive mechanisms, such as lateral root initiation (Casimiro et al., 2003; Péret et al., 2009a, 2009b). A number of genes underlying root processes have been identified or characterized using seedlings, notably with the dicotyledonous models Arabidopsis (Arabidopsis thaliana; Mouchel et al., 2004; Fitz Gerald et al., 2006; Yokawa et al., 2013) and Medicago truncatula (Laffont et al., 2010) and the cereals maize (Zea mays; Hochholdinger et al., 2001) and rice (Oryza sativa; Inukai et al., 2005; Kitomi et al., 2008).Extrapolation from seedling to adult root systems presents major questions (Hochholdinger and Zimmermann, 2008; Chochois et al., 2012; Rich and Watt, 2013). Are phenotypes in seedling roots present in adult roots given developmental events associated with aging? Is expression of phenotypes correlated in seedling and adult roots if time compounds effects of growth rates and growth conditions on roots? Watt et al. (2013) showed in wheat seedlings that root traits in the laboratory and field correlated positively but that neither correlated with adult root traits in the field. Factors between seedling and adult roots seemed to be differences in developmental stage and the time that growing roots experience the environment.Seedling and adult root differences may be larger in grasses than dicotyledons. Grass root systems have two developmental components: seed-borne (seminal) roots, of which a number emerge at germination and continue to grow and branch throughout the plant life, and stem-borne (nodal or adventitious) roots, which emerge from around the three-leaf stage and continue to emerge, grow, and branch throughout the plant life. Phenotypes and traits of adult root systems of grasses, which include the major cereal crops wheat, rice, and maize, are difficult to predict in seedling screens and ideally identified from adult root systems first (Gamuyao et al., 2012).Phenotyping of adult roots is possible in the field using trenches (Maeght et al., 2013) or coring (Wasson et al., 2014). A portion of the root system is captured with these methods. Alternatively, entire adult root systems can be contained within pots dug into the ground before sowing. These need to be large; field wheat roots, for example, can reach depths greater than 1.5 m depending on genotype and environment. This method prevents root-root interactions that occur under normal field sowing of a plant canopy and is also a compromise.A solution to the problem of phenotyping adult cereal root systems is a model for monocotyledon grasses: Brachypodium distachyon. B. distachyon is a small-stature grass with a small genome that is fully sequenced (Vogel et al., 2010). It has molecular tools equivalent to those available in Arabidopsis (Draper et al., 2001; Brkljacic et al., 2011; Mur et al., 2011). The root system of B. distachyon reference line Bd21 is more similar to wheat than other model and crop grasses (Watt et al., 2009). It has a seed-borne primary seminal root (PSR) that emerges from the embryo at seed germination and multiple stem-borne coleoptile node axile roots (CNRs) and leaf node axile roots (LNRs), also known as crown roots or adventitious roots, that emerge at about three leaves through to grain development. Branch roots emerge from all root types. There are no known anatomical differences between root types of wheat and B. distachyon (Watt et al., 2009). In a recent study, we report postflowering root growth in B. distachyon line Bd21-3, showing that this model can be used to answer questions relevant to the adult root systems of grasses (Chochois et al., 2012).In this study, we used B. distachyon to identify adult plant phenotypes related to the partitioning among seed-borne and stem-borne shoots and roots for the genetic improvement of well-watered and droughted cereals (Fig. 1; Krassovsky, 1926; Navara et al., 1994), nitrogen, phosphorus (Tennant, 1976; Brady et al., 1995), oxygen (Wiengweera and Greenway, 2004), soil hardness (Acuna et al., 2007), and microorganisms (Sivasithamparam et al., 1978). Of note is the study by Krassovsky (1926), which was the first, to our knowledge, to show differences in function related to water. Krassovsky (1926) showed that seminal roots of wheat absorbed almost 2 times the water as nodal roots per unit dry weight but that nodal roots absorbed a more diluted nutrient solution than seminal roots. Krassovsky (1926) also showed by removing seminal or nodal roots as they emerged that “seminal roots serve the main stem, while nodal roots serve the tillers” (Krassovsky, 1926). Volkmar (1997) showed, more recently, in wheat that nodal and seminal roots may sense and respond to drought differently. In millet (Pennisetum glaucum) and sorghum (Sorghum bicolor), Rostamza et al. (2013) found that millet was able to grow nodal roots in a dryer soil than sorghum, possibly because of shoot and root vigor.Open in a separate windowFigure 1.B. distachyon plant scanned at the fourth leaf stage, with the root and shoot phenotypes studied indicated. Supplemental Table S1.
PhenotypeAbbreviationUnitRange of Variation
All Experiments (79 Lines and 582 Plants)Experiment 6 (36 Lines)
Whole plant
TDWTDWMilligrams88.6–773.8 (×8.7)285.6–438 (×1.5)
Shoot
SDWSDWMilligrams56.4–442.5 (×7.8)78.2–442.5 (×5.7)
 No. of tillersTillerNCount2.8–20.3 (×7.4)10–20.3 (×2)
Total root system
TRLTRLCentimeters1,050–10,770 (×10.3)2,090–5,140 (×2.5)
RDWRDWMilligrams28.9–312.17 (×10.8)62.2–179.1 (×2.9)
RootpcRootpcPercentage (of TDW)20.5–60.6 (×3)20.5–44.3 (×2.2)
R/SR/SUnitless ratio0.26–1.54 (×6)0.26–0.80 (×3.1)
PSRs
 Length (including branch roots)PSRLCentimeters549.1–4,024.6 (×7.3)716–2,984 (×4.2)
PSRpcPSRpcPercentage (of TRL)14.9–94.1 (×6.3)31.3–72.3 (×2.3)
 No. of axile rootsPSRcountCount11
 Length of axile rootPSRsumCentimeters17.45–52 (×3)17.45–30.3 (×1.7)
 Branch rootsPSRbranchCentimeters · (centimeters of axile root)−119.9–109.3 (×5.5)29.3–104.3 (×3.6)
CNRs
 Length (including branch roots)CNRLCentimeters0–3,856.70–2,266.5
CNRpcCNRpcPercentage (of TRL)0–57.10–49.8
 No. of axile rootsCNRcountCount0–20–2
 Cumulated length of axile rootsCNRsumCentimeters0–113.90–47.87
 Branch rootsCNRbranchCentimeters · (centimeters of axile root)−10–77.80–77.8
LNRs
 Length (including branch roots)LNRLCentimeters99.5–5,806.5 (×58.5)216.1–2,532.4 (×11.7)
LNRpcLNRpcPercentage (of TRL)4.2–72.7 (×17.5)6–64.8 (×10.9)
LNRcountLNRcountCount2–22.2 (×11.1)3.3–15.3 (×4.6)
LNRsumLNRsumCentimeters25.9–485.548–232 (×4.8)
 Branch rootsLNRbranchCentimeters · (centimeters of axile root)−12.1–25.4 (×12.1)3.2–15.9 (×5)
Open in a separate windowThe third reason for dissecting the different root types in this study was that they seem to have independent genetic regulation through major genes. Genes affecting specifically nodal root growth have been identified in maize (Hetz et al., 1996; Hochholdinger and Feix, 1998) and rice (Inukai et al., 2001, 2005; Liu et al., 2005, 2009; Zhao et al., 2009; Coudert et al., 2010; Gamuyao et al., 2012). Here, we also dissect branch (lateral) development on the seminal or nodal roots. Genes specific to branch roots have been identified in Arabidopsis (Casimiro et al., 2003; Péret et al., 2009a), rice (Hao and Ichii, 1999; Wang et al., 2006; Zheng et al., 2013), and maize (Hochholdinger and Feix, 1998; Hochholdinger et al., 2001; Woll et al., 2005).This study explored the hypothesis that adult root systems of B. distachyon contain genotypic variation that can be exploited through phenotyping and genotyping to increase cereal yields. A selection of 79 wild lines of B. distachyon from various parts of the Middle East (Fig. 2 shows the geographic origins of the lines) was phenotyped. They were selected for maximum genotypic diversity from 187 diploid lines analyzed with 43 simple sequence repeat markers (Vogel et al., 2009). We phenotyped shoots and mature root systems concurrently because B. distachyon is small enough to complete its life cycle in relatively small pots of soil with minimal influence of pot size compared with crops, such as wheat. We further phenotyped a subset of this population under irrigation (well watered) and drought to assess genotype response to water supply. By conducting whole-plant studies, we aimed to identify phenotypes that described partitioning among shoot and root components and within seed-borne and stem-borne roots. Phenotypes that have the potential to be beneficial to shoot and root components may speed up genetic gain in future.Open in a separate windowFigure 2.B. distachyon lines phenotyped in this study and their geographical origin. Capital letters in parentheses indicate the country of origin: Turkey (T), Spain (S), and Iraq (I; Vogel et al., 2009). a, Adi3, Adi7, Adi10, Adi12, Adi13, and Adi15; b, Bd21 and Bd21-3 are the reference lines of this study. Bd21 was the first sequenced line (Vogel et al., 2010) and root system (described in detail in Watt et al., 2009), and Bd21-3 is the most easily transformed line (Vogel and Hill, 2008) and parent of a T-DNA mutant population (Bragg et al., 2012); c, Gaz1, Gaz4, and Gaz7; d, Kah1, Kah2, and Kah3. e, Koz1, Koz3, and Koz5; f, Tek1 and Tek6; g, exact GPS coordinates are unknown for lines Men2 (S), Mur2 (S), Bd2.3 (I), Bd3-1 (I), and Abr1 (T).  相似文献   

18.
Antimicrobial Activity of Simulated Solar Disinfection against Bacterial,Fungal, and Protozoan Pathogens and Its Enhancement by Riboflavin     
Wayne Heaselgrave  Simon Kilvington 《Applied and environmental microbiology》2010,76(17):6010-6012
Riboflavin significantly enhanced the efficacy of simulated solar disinfection (SODIS) at 150 watts per square meter (W m−2) against a variety of microorganisms, including Escherichia coli, Fusarium solani, Candida albicans, and Acanthamoeba polyphaga trophozoites (>3 to 4 log10 after 2 to 6 h; P < 0.001). With A. polyphaga cysts, the kill (3.5 log10 after 6 h) was obtained only in the presence of riboflavin and 250 W m−2 irradiance.Solar disinfection (SODIS) is an established and proven technique for the generation of safer drinking water (11). Water is collected into transparent plastic polyethylene terephthalate (PET) bottles and placed in direct sunlight for 6 to 8 h prior to consumption (14). The application of SODIS has been shown to be a simple and cost-effective method for reducing the incidence of gastrointestinal infection in communities where potable water is not available (2-4). Under laboratory conditions using simulated sunlight, SODIS has been shown to inactivate pathogenic bacteria, fungi, viruses, and protozoa (6, 12, 15). Although SODIS is not fully understood, it is believed to achieve microbial killing through a combination of DNA-damaging effects of ultraviolet (UV) radiation and thermal inactivation from solar heating (21).The combination of UVA radiation and riboflavin (vitamin B2) has recently been reported to have therapeutic application in the treatment of bacterial and fungal ocular pathogens (13, 17) and has also been proposed as a method for decontaminating donor blood products prior to transfusion (1). In the present study, we report that the addition of riboflavin significantly enhances the disinfectant efficacy of simulated SODIS against bacterial, fungal, and protozoan pathogens.Chemicals and media were obtained from Sigma (Dorset, United Kingdom), Oxoid (Basingstoke, United Kingdom), and BD (Oxford, United Kingdom). Pseudomonas aeruginosa (ATCC 9027), Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Candida albicans (ATCC 10231), and Fusarium solani (ATCC 36031) were obtained from ATCC (through LGC Standards, United Kingdom). Escherichia coli (JM101) was obtained in house, and the Legionella pneumophila strain used was a recent environmental isolate.B. subtilis spores were produced from culture on a previously published defined sporulation medium (19). L. pneumophila was grown on buffered charcoal-yeast extract agar (5). All other bacteria were cultured on tryptone soy agar, and C. albicans was cultured on Sabouraud dextrose agar as described previously (9). Fusarium solani was cultured on potato dextrose agar, and conidia were prepared as reported previously (7). Acanthamoeba polyphaga (Ros) was isolated from an unpublished keratitis case at Moorfields Eye Hospital, London, United Kingdom, in 1991. Trophozoites were maintained and cysts prepared as described previously (8, 18).Assays were conducted in transparent 12-well tissue culture microtiter plates with UV-transparent lids (Helena Biosciences, United Kingdom). Test organisms (1 × 106/ml) were suspended in 3 ml of one-quarter-strength Ringer''s solution or natural freshwater (as pretreated water from a reservoir in United Kingdom) with or without riboflavin (250 μM). The plates were exposed to simulated sunlight at an optical output irradiance of 150 watts per square meter (W m−2) delivered from an HPR125 W quartz mercury arc lamp (Philips, Guildford, United Kingdom). Optical irradiances were measured using a calibrated broadband optical power meter (Melles Griot, Netherlands). Test plates were maintained at 30°C by partial submersion in a water bath.At timed intervals for bacteria and fungi, the aliquots were plated out by using a WASP spiral plater and colonies subsequently counted by using a ProtoCOL automated colony counter (Don Whitley, West Yorkshire, United Kingdom). Acanthamoeba trophozoite and cyst viabilities were determined as described previously (6). Statistical analysis was performed using a one-way analysis of variance (ANOVA) of data from triplicate experiments via the InStat statistical software package (GraphPad, La Jolla, CA).The efficacies of simulated sunlight at an optical output irradiance of 150 W m−2 alone (SODIS) and in the presence of 250 μM riboflavin (SODIS-R) against the test organisms are shown in Table Table1.1. With the exception of B. subtilis spores and A. polyphaga cysts, SODIS-R resulted in a significant increase in microbial killing compared to SODIS alone (P < 0.001). In most instances, SODIS-R achieved total inactivation by 2 h, compared to 6 h for SODIS alone (Table (Table1).1). For F. solani, C. albicans, ands A. polyphaga trophozoites, only SODIS-R achieved a complete organism kill after 4 to 6 h (P < 0.001). All control experiments in which the experiments were protected from the light source showed no reduction in organism viability over the time course (results not shown).

TABLE 1.

Efficacies of simulated SODIS for 6 h alone and with 250 μM riboflavin (SODIS-R)
OrganismConditionaLog10 reduction in viability at indicated h of exposureb
1246
E. coliSODIS0.0 ± 0.00.2 ± 0.15.7 ± 0.05.7 ± 0.0
SODIS-R1.1 ± 0.05.7 ± 0.05.7 ± 0.05.7 ± 0.0
L. pneumophilaSODIS0.7 ± 0.21.3 ± 0.34.8 ± 0.24.8 ± 0.2
SODIS-R4.4 ± 0.04.4 ± 0.04.4 ± 0.04.4 ± 0.0
P. aeruginosaSODIS0.7 ± 0.01.8 ± 0.04.9 ± 0.04.9 ± 0.0
SODIS-R5.0 ± 0.05.0 ± 0.05.0 ± 0.05.0 ± 0.0
S. aureusSODIS0.0 ± 0.00.0 ± 0.06.2 ± 0.06.2 ± 0.0
SODIS-R0.2 ± 0.16.3 ± 0.06.3 ± 0.06.3 ± 0.0
C. albicansSODIS0.2 ± 0.00.4 ± 0.10.5 ± 0.11.0 ± 0.1
SODIS-R0.1 ± 0.00.7 ± 0.15.3 ± 0.05.3 ± 0.0
F. solani conidiaSODIS0.2 ± 0.10.3 ± 0.00.2 ± 0.00.7 ± 0.1
SODIS-R0.3 ± 0.10.8 ± 0.11.3 ± 0.14.4 ± 0.0
B. subtilis sporesSODIS0.3 ± 0.00.2 ± 0.00.0 ± 0.00.1 ± 0.0
SODIS-R0.1 ± 0.10.2 ± 0.10.3 ± 0.30.1 ± 0.0
SODIS (250 W m−2)0.1 ± 0.00.1 ± 0.10.1 ± 0.10.0 ± 0.0
SODIS-R (250 W m−2)0.0 ± 0.00.0 ± 0.00.2 ± 0.00.4 ± 0.0
SODIS (320 W m−2)0.1 ± 0.10.1 ± 0.00.0 ± 0.14.3 ± 0.0
SODIS-R (320 W m−2)0.1 ± 0.00.1 ± 0.10.9 ± 0.04.3 ± 0.0
A. polyphaga trophozoitesSODIS0.4 ± 0.20.6 ± 0.10.6 ± 0.20.4 ± 0.1
SODIS-R0.3 ± 0.11.3 ± 0.12.3 ± 0.43.1 ± 0.2
SODIS, naturalc0.3 ± 0.10.4 ± 0.10.5 ± 0.20.3 ± 0.2
SODIS-R, naturalc0.2 ± 0.11.0 ± 0.22.2 ± 0.32.9 ± 0.3
A. polyphaga cystsSODIS0.4 ± 0.10.1 ± 0.30.3 ± 0.10.4 ± 0.2
SODIS-R0.4 ± 0.20.3 ± 0.20.5 ± 0.10.8 ± 0.3
SODIS (250 W m−2)0.0 ± 0.10.2 ± 0.30.2 ± 0.10.1 ± 0.2
SODIS-R (250 W m−2)0.4 ± 0.20.3 ± 0.20.8 ± 0.13.5 ± 0.3
SODIS (250 W m−2), naturalc0.0 ± 0.30.2 ± 0.10.1 ± 0.10.2 ± 0.1
SODIS-R (250 W m−2), naturalc0.1 ± 0.10.2 ± 0.20.6 ± 0.13.4 ± 0.2
Open in a separate windowaConditions are at an intensity of 150 W m−2 unless otherwise indicated.bThe values reported are means ± standard errors of the means from triplicate experiments.cAdditional experiments for this condition were performed using natural freshwater.The highly resistant A. polyphaga cysts and B. subtilis spores were unaffected by SODIS or SODIS-R at an optical irradiance of 150 W m−2. However, a significant reduction in cyst viability was observed at 6 h when the optical irradiance was increased to 250 W m−2 for SODIS-R only (P < 0.001; Table Table1).1). For spores, a kill was obtained only at 320 W m−2 after 6-h exposure, and no difference between SODIS and SODIS-R was observed (Table (Table1).1). Previously, we reported a >2-log kill at 6 h for Acanthamoeba cysts by using SODIS at the higher optical irradiance of 850 W m−2, compared to the 0.1-log10 kill observed here using the lower intensity of 250 W m−2 or the 3.5-log10 kill with SODIS-R.Inactivation experiments performed with Acanthamoeba cysts and trophozoites suspended in natural freshwater gave results comparable to those obtained with Ringer''s solution (P > 0.05; Table Table1).1). However, it is acknowledged that the findings of this study are based on laboratory-grade water and freshwater and that differences in water quality through changes in turbidity, pH, and mineral composition may significantly affect the performance of SODIS (20). Accordingly, further studies are indicated to evaluate the enhanced efficacy of SODIS-R by using natural waters of varying composition in the areas where SODIS is to be employed.Previous studies with SODIS under laboratory conditions have employed lamps delivering an optical irradiance of 850 W m−2 to reflect typical natural sunlight conditions (6, 11, 12, 15, 16). Here, we used an optical irradiance of 150 to 320 W m−2 to obtain slower organism inactivation and, hence, determine the potential enhancing effect of riboflavin on SODIS.In conclusion, this study has shown that the addition of riboflavin significantly enhances the efficacy of simulated SODIS against a range of microorganisms. The precise mechanism by which photoactivated riboflavin enhances antimicrobial activity is unknown, but studies have indicated that the process may be due, in part, to the generation of singlet oxygen, H2O2, superoxide, and hydroxyl free radicals (10). Further studies are warranted to assess the potential benefits from riboflavin-enhanced SODIS in reducing the incidence of gastrointestinal infection in communities where potable water is not available.  相似文献   

19.
Prion interference with multiple prion isolates     
Charles R Schutt  Jason C Bartz 《朊病毒》2008,2(2):61-63
Co-inoculation of prion strains into the same host can result in interference, where replication of one strain hinders the ability of another strain to cause disease. The drowsy (DY) strain of hamster-adapted transmissible mink encephalopathy (TME) extends the incubation period or completely blocks the hyper (HY) strain of TME following intracerebral, intraperitoneal or sciatic nerve routes of inoculation. However, it is not known if the interfering effect of the DY TME agent is exclusive to the HY TME agent by these experimental routes of infection. To address this issue, we show that the DY TME agent can block hamster-adapted chronic wasting disease (HaCWD) and the 263K scrapie agent from causing disease following sciatic nerve inoculation. Additionally, per os inoculation of DY TME agent slightly extends the incubation period of per os superinfected HY TME agent. These studies suggest that prion strain interference can occur by a natural route of infection and may be a more generalized phenomenon of prion strains.Key words: prion diseases, prion interference, prion strainsPrion diseases are fatal neurodegenerative diseases that are caused by an abnormal isoform of the prion protein, PrPSc.1 Prion strains are hypothesized to be encoded by strain-specific conformations of PrPSc resulting in strain-specific differences in clinical signs, incubation periods and neuropathology.27 However, a universally agreed upon definition of prion strains does not exist. Interspecies transmission and adaptation of prions to a new host species leads to the emergence of a dominant prion strain, which can be due to selection of strains from a mixture present in the inoculum, or produced upon interspecies transmission.8,9 Prion strains, when present in the same host, can interfere with each other.Prion interference was first described in mice where a long incubation period strain 22C extended the incubation period of a short incubation period strain 22A following intracerebral inoculation.10 Interference between other prion strains has been described in mice and hamsters using rodent-adapted strains of scrapie, TME, Creutzfeldt-Jacob disease and Gerstmannn-Sträussler-Scheinker syndrome following intracerebral, intraperitoneal, intravenous and sciatic nerve routes of inoculation.1015 We previously demonstrated the detection of PrPSc from the long incubation period DY TME agent correlated with its ability to extend the incubation period or completely block the superinfecting short incubation period HY TME agent from causing disease and results in a reduction of HY PrPSc levels following sciatic nerve inoculation.12 However, it is not known if a single long incubation period agent (e.g., DY TME) can interfere with more than one short incubation period agent or if interference can occur by a natural route of infection.To examine the question if one long incubation period agent can extend the incubation period of additional short incubation period agents, hamsters were first inoculated in the sciatic nerve with the DY TME agent 120 days prior to superinfection with the short-incubation period agents HY TME, 263K scrapie and HaCWD.1618 The HY TME and 263K scrapie agents have been biologically cloned and have distinct PrPSc properties.19,20 The HaCWD agent used in this study is seventh hamster passage that has not been biologically cloned and therefore will be referred to as a prion isolate. Sciatic nerve inoculations were performed as previously described.11,12 Briefly, hamsters were inoculated with 103.0 i.c. LD50 of the DY TME agent or equal volume (2 µl of a 1% w/v brain homogenate) of uninfected brain homogenate 120 days prior to superinfection of the same sciatic nerve with either 104.6 i.c. LD50 of the HY TME agent, 105.2 i.c. LD50 of the HaCWD agent or 104.6 i.c. LD50/g 263K scrapie agent (Bartz J, unpublished data).16,18,21 Animals were observed three times per week for the onset of clinical signs of HY TME, 263K and HaCWD based on the presence of ataxia and hyperexcitability, while the clinical diagnosis of DY TME was based on the appearance of progressive lethargy.1618 The incubation period was calculated as the number of days between the onset of clinical signs of the agent strain that caused disease and the inoculation of that strain. The Student''s t-test was used to compare incubation periods.12 We found that sciatic nerve inoculation of both the HaCWD agent and 263K scrapie agent caused disease with a similar incubation period to animals infected with the HY TME agent (12 In hamsters inoculated with the DY TME agent 120 days prior to superinfection with the HaCWD or 263K agents, the animals developed clinical signs of DY TME with an incubation period that was not different from the DY TME agent control group (12 The PrPSc migration properties were consistent with the clinical diagnosis and all co-infected animals had PrPSc that migrated similar to PrPSc from the DY TME agent infected control animal (Fig. 1, lanes 1–10). This data indicates that the DY TME agent can interfere with more than one isolate and that interference in the CNS may be a more generalized phenomenon of prion strains.Open in a separate windowFigure 1The strain-specific properties of PrPSc correspond to the clinical diagnosis of disease. Western blot analysis of 250 µg brain equivalents of proteinase K digested brain homogenate from prion-infected hamsters following intracerebral (i.c.), sciatic nerve (i.sc.) or per os inoculation with either the HY TME (HY), DY TME (DY), 263K scrapie (263K), hamster-adapted CWD (CWD) agents or mock-infected (UN). The unglycoyslated PrPSc glycoform of HY TME, 263K scrapie and hamster-adapted CWD migrates at 21 kDa. The unglycosylated PrPSc glycoform of DY PrPSc migrates at 19 kDa. Migration of 19 and 21 kDa PrPSc are indicated by the arrows on the left of the figure. n.a., not applicable.

Table 1

Clinical signs and incubation periods of hamsters inoculated in the sciatic nerve with either the HY TME, HaCWD or 263K scrapie agents, or co-infected with the DY TME agent 120 days prior to superinfection of hamsters with the HY TME, HaCWD or 263K agents
Onset of clinical signs
First inoculationInterval between inoculationsSecond inoculationClinical signsPrP-res migrationA/IaAfter 1st inoculationAfter 2nd inoculation
Mock120 daysHY TMEHY TME21 kDa5/5n.a.72 ± 3b
Mock120 daysHaCWDHaCWD21 kDa5/5n.a.73 ± 3
Mock120 days263K263K21 kDa5/5n.a.72 ± 3
DY TME120 daysMockDY TME19 kDa4/4224 ± 2n.a.
DY TME120 daysHY TMEDY TME19 kDa5/5222 ± 2c102 ± 2
DY TME120 daysHaCWDDY TME19 kDa5/5223 ± 3c103 ± 3
DY TME120 days263KDY TME19 kDa5/5222 ± 2c102 ± 2
Open in a separate windowaNumber affected/number inoculated;bAverage days postinfection ± standard deviation;cIncubation period similar compared to control animals inoculated with the DY TME agent alone (p > 0.05). n.a., not applicable.To examine the question if prion interference can occur following a natural route of infection, hamsters were first inoculated per os with the DY TME agent and then superinfected per os with the HY TME agent at various time points post DY TME agent infection. Hamsters were per os inoculated by drying the inoculum on a food pellet and feeding this pellet to an individual animal as described previously.22 For the per os interference experiment, 105.7 i.c. LD50 of the DY TME agent or an equal volume of uninfected brain homogenate (100 µl of a 10% w/v brain homogenate) was inoculated 60, 90 or 120 days prior to per os superinfection of hamsters with 107.3 i.c. LD50 of the HY TME agent. A 60 or 90 day interval between DY TME agent infection and HY TME agent superinfection resulted in all of the animals developing clinical signs of HY TME with incubation periods that are similar to control hamsters inoculated with the HY TME agent alone (Fig. 1, lanes 11–16). The eight-day extension in the incubation period of HY TME in the 120 day interval co-infected group is consistent with a 1 log reduction in titer.21 This is the first report of prion interference by the per os route of infection, a likely route of prion infection in natural prion disease and provides further evidence that prion strain interference could occur in natural prion disease.2325

Table 2

Clinical signs and incubation periods of hamsters per os inoculated with either the HY TME or DY TME agent, or per os co-infected with the DY TME agent 60, 90 or 120 days prior to superinfection of hamsters with the HY TME agent
Onset of clinical signs
First inoculationInterval between inoculationsSecond inoculationClinical signsPrP-res migrationA/IaAfter 1st inoculationAfter 2nd inoculation
Mock120 daysHY TMEHY TME21 kDa5/5n.a.140 ± 5b
DY TME60 daysHY TMEHY TME21 kDa5/5195 ± 6135 ± 6
DY TME90 daysHY TMEHY TME21 kDa5/5230 ± 5140 ± 5
DY TME120 daysHY TMEHY TME21 kDa5/5269 ± 3149 ± 3c
Open in a separate windowaNumber affected/number inoculated;bAverage days postinfection ± standard deviation;cIncubation period extended compared to control animals inoculated with the HY TME agent alone (p < 0.01); n.a., not applicable.The capacity of the DY TME agent to replicate modulates its ability to interfere with the HY TME agent. TME interference, following sciatic nerve inoculation, occurs in the lumbar spinal cord and DY PrPSc abundance in this structure correlates with the ability of the DY TME agent to interfere with the HY TME agent.12 Following extraneural routes of infection, DY TME agent replication and PrPSc deposition are not detected in spleen or lymph nodes, which is the major site of extraneural HY TME agent replication.11,21,26 The DY TME agent can interfere with the HY TME agent following intraperitoneal and per os infection, suggesting that the DY TME agent is replicating in other locations that are involved in HY TME agent neuroinvasion (11  相似文献   

20.
Distribution of Shiga-Toxigenic Escherichia coli O157 in the Gastrointestinal Tract of Naturally O157-Shedding Cattle at Necropsy     
James E. Keen  William W. Laegreid  Carol G. Chitko-McKown  Lisa M. Durso  James L. Bono 《Applied and environmental microbiology》2010,76(15):5278-5281
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号