首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Piwi proteins specify an animal-specific subclass of the Argonaute family that, in vertebrates, is specifically expressed in germ cells. We demonstrate that zebrafish Piwi (Ziwi) is expressed in both the male and the female gonad and is a component of a germline-specifying structure called nuage. Loss of Ziwi function results in a progressive loss of germ cells due to apoptosis during larval development. In animals that have reduced Ziwi function, germ cells are maintained but display abnormal levels of apoptosis in adults. In mammals, Piwi proteins associate with approximately 29-nucleotide-long, testis-specific RNA molecules called piRNAs. Here we show that zebrafish piRNAs are present in both ovary and testis. Many of these are derived from transposons, implicating a role for piRNAs in the silencing of repetitive elements in vertebrates. Furthermore, we show that piRNAs are Dicer independent and that their 3' end likely carries a 2'O-Methyl modification.  相似文献   

3.
4.
5.
6.
A role for mammalian Sin3 in permanent gene silencing   总被引:1,自引:0,他引:1  
  相似文献   

7.
Induced pluripotent stem cells (iPSCs) have fewer and immature mitochondria than somatic cells and mainly rely on glycolysis for energy source. During somatic cell reprogramming, somatic mitochondria and other organelles get remodeled. However, events of organelle remodeling and interaction during somatic cell reprogramming have not been extensively explored. We show that both SKP/SKO (Sox2, Klf4, Pou5f1/Oct4) and SKPM/SKOM (SKP/SKO plus Myc/c-Myc) reprogramming lead to decreased mitochondrial mass but with different kinetics and by divergent pathways. Rapid, MYC/c-MYC-induced cell proliferation may function as the main driver of mitochondrial decrease in SKPM/SKOM reprogramming. In SKP/SKO reprogramming, however, mitochondrial mass initially increases and subsequently decreases via mitophagy. This mitophagy is dependent on the mitochondrial outer membrane receptor BNIP3L/NIX but not on mitochondrial membrane potential (ΔΨm) dissipation, and this SKP/SKO-induced mitophagy functions in an important role during the reprogramming process. Furthermore, endosome-related RAB5 is involved in mitophagosome formation in SKP/SKO reprogramming. These results reveal a novel role of mitophagy in reprogramming that entails the interaction between mitochondria, macroautophagy/autophagy and endosomes.  相似文献   

8.
Metabolite changes in plant leaves during exposure to low temperatures involve re‐allocation of a large number of metabolites between sub‐cellular compartments. Therefore, metabolite determination at the whole cell level may be insufficient for interpretation of the functional significance of cellular compounds. To investigate the cold‐induced metabolite dynamics at the level of individual sub‐cellular compartments, an integrative platform was developed that combines quantitative metabolite profiling by gas chromatography coupled to mass spectrometry (GC‐MS) with the non‐aqueous fractionation technique allowing separation of cytosol, vacuole and the plastidial compartment. Two mutants of Arabidopsis thaliana representing antipodes in the diversion of carbohydrate metabolism between sucrose and starch were compared to Col‐0 wildtype before and after cold acclimation to investigate interactions of cold acclimation with subcellular re‐programming of metabolism. A multivariate analysis of the data set revealed dominant effects of compartmentation on metabolite concentrations that were modulated by environmental condition and genetic determinants. While for both, the starchless mutant of plastidial phospho‐gluco mutase (pgm) and a mutant defective in sucrose‐phosphate synthase A1, metabolic constraints, especially at low temperature, could be uncovered based on subcellularly resolved metabolite profiles, only pgm had lowered freezing tolerance. Metabolic profiles of pgm point to redox imbalance as a possible reason for reduced cold acclimation capacity.  相似文献   

9.
A two-element Enhancer-Inhibitor transposon system in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
The Enhancer-Inhibitor (En-I), also known as Suppressor-mutator (Spm-dSpm), transposable element system of maize was modified and introduced into Arabidopsis by Agrobacterium tumefaciens transformation. A stable En/Spm transposase source under control of the CaMV 35S promoter mediated frequent transposition of I/dSpm elements. Transposition occurred continuously throughout plant development over at least seven consecutive plant generations after transformation. New insertions were found at both linked and unlinked positions relative to a transposon donor site. The independent transposition frequency was defined as a transposition parameter, which quantified the rate of unique insertion events and ranged from 7.8% to 29.2% in different populations. An increase as well as a decrease in I/dSpm element copy number was seen at the individual plant level, but not at the population level after several plant generations. The continuous, frequent transposition observed for this transposon system makes it an attractive tool for use in gene tagging in Arabidopsis.  相似文献   

10.
Ninety-eight independent transformed (T1) Arabidopsis plants were generated, containing additional copies of the chalcone synthase (CHS) gene. Three T2 generation families (A, B and C) were found that showed reduced anthocyanin biosynthesis, consistent with homology- dependent gene silencing of CHS. Clonal sectors of tissue showing CHS silencing were seen in the early generations. Affected individuals in family A showed only slight silencing, in family C such plants were almost completely silenced, and in family B affected individuals were intermediate. Plants homozygous for a single silencing insert were isolated from each family. Plants homozygous or hemizygous for insert A showed variable penetrance and expressivity of silencing. Self-fertilization of plants hemizygous for the B and C-inserts suggested that these CHS-silencing inserts each behave as single Mendelian dominant traits. The CHS mRNA of the C-insert homozygotes was reduced to undetectable levels. Outcrosses of B- and C-insert homozygotes to wild-type plants resulted in F1 plants that were variegated. This variegation appears to be due to expression of the CHS allele from the wild-type parent, since use of a CHS mutant, tt4, as untransformed parent resulted in uniform green F1 plants. Southern blots revealed a correlation between DNA methylation and CHS silencing. In addition, derivative plants were generated from C-insert homozygotes that had lost the silencing inserts, and these showed a partial reversion towards wild-type phenotype and methylation of the cellular CHS gene at the TT4 locus. This result suggests that the TT4 copy of CHS became methylated during the C-insert-induced silencing and retained methylation and partial silencing after the silencing T-DNA was lost.  相似文献   

11.
A role for protein kinase C during rat egg activation   总被引:2,自引:0,他引:2  
Upon sperm-egg interaction, an increase in intracellular calcium concentration ([Ca(2+)](i)) is observed. Several studies reported that cortical reaction (CR) can be triggered not only by a [Ca(2+)](i) rise but also by protein kinase C (PKC) activation. Because the CR is regarded as a Ca(2+)-dependent exocytotic process and because the calcium-dependent conventional PKCs (cPKC) alpha and beta II are considered as exocytosis mediators in various cell systems, we chose to study activation of the cPKC in the rat egg during in vivo fertilization and parthenogenetic activation. By using immunohistochemistry and confocal microscopy techniques, we demonstrated, for the first time, the activation of the cPKC alpha, beta I, and beta II during in vivo fertilization. All three isozymes examined presented translocation to the egg's plasma membrane as early as the sperm-binding stage. However, the kinetics of their translocation was not identical. Activation of cPKC alpha was obtained by the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) or by 1-oleoyl-2-acetylglycerol (OAG) but not by the calcium ionophore ionomycin. PKC alpha translocation was first detected 5-10 min after exposure to TPA and reached a maximum at 20 min, whereas in eggs activated by OAG, translocation of PKC alpha was observed almost immediately and reached a maximum within 5 min. These results suggest that, although [Ca(2+)](i) elevation on its own does not activate PKC alpha, it may accelerate OAG-induced PKC alpha activation. We also demonstrate a successful inhibition of the CR by a myristoylated PKC pseudosubstrate (myrPKCPsi), a specific PKC inhibitor. Our study suggests that exocytosis can be triggered independently either by a [Ca(2+)](i) rise or by PKC.  相似文献   

12.
13.

Key message

SOS3 mediates calcium dependent actin filament reorganization that plays important roles in plant responses to salt stress.

Abstract

Arabidopsis salt overly sensitive 3 (SOS3) plays an important role in plant salt tolerance by regulation of Na+/K+ homeostasis. Plants lacking SOS3 are hypersensitive to salt stress and this phenomenon can be partially rescued by the addition of calcium. However the mechanism underlying remains elusive. We here report that the organization of actin filaments in sos3 mutant differs from that in wild-type plant. Under salt stress abnormal actin assembly and arrangement in sos3 are more pronounced, which can be partially complemented by addition of external calcium or low concentration of latrunculin A, an actin monomer-sequestering agent. The effects of calcium and Lat A on actin filament organization of sos3 mutant are accordant with their effects on sos3 salt sensitivity under salt stress. These findings indicate that the salt-hypersensitivity of sos3 mutant partially results from its disordered actin filaments, and SOS3 mediated actin filament reorganization plays important roles in plant responses to salt stress.  相似文献   

14.
Chen X 《Developmental cell》2008,14(6):811-812
RNA silencing is a genome defense mechanism used by many eukaryotic organisms to fight viruses and to control transposable elements. Work by Gregory et al. on Arabidopsis thaliana (in this issue of Developmental Cell) revealed a mechanism whereby the plant protects its endogenous messenger RNAs from undergoing RNA silencing and uncovered an unexpected role of the cap-binding protein ABH1 in miRNA biogenesis.  相似文献   

15.
Geminivirus-based vectors for gene silencing in Arabidopsis   总被引:13,自引:0,他引:13  
Gene silencing, or RNA interference, is a powerful tool for elucidating gene function in Caenorhabditis elegans and Drosophila melanogaster. The vast genetic, developmental and sequence information available for Arabidopsis thaliana makes this an attractive organism in which to develop reliable gene-silencing tools for the plant world. We have developed a system based on the bipartite geminivirus cabbage leaf curl virus (CbLCV) that allows silencing of endogenous genes singly or in combinations in Arabidopsis. Two vectors were tested: a gene-replacement vector derived from the A component; and an insertion vector derived from the B component. Extensive silencing was produced in new growth from the A component vectors, while only minimal silencing and symptoms were seen in the B component vector. Two endogenous genes were silenced simultaneously from the A component vector and silencing of the genes was maintained throughout new growth. Because the CbLCV vectors are DNA vectors they can be inoculated directly from plasmid DNA. Introduction of these vectors into intact plants bypasses transformation and extends the kinds of silencing studies that can be carried out in Arabidopsis.  相似文献   

16.
Cigarette smoke and smokeless tobacco extracts contain multiple carcinogenic compounds, but little is known about the mechanisms by which tumors develop and progress upon chronic exposure to carcinogens such as those present in tobacco products. Here, we examine the effects of smokeless tobacco extracts on human oral fibroblasts. We show that smokeless tobacco extracts elevated the levels of intracellular reactive oxygen, oxidative DNA damage, and DNA double-strand breaks in a dose-dependent manner. Extended exposure to extracts induced fibroblasts to undergo a senescence-like growth arrest, with striking accompanying changes in the secretory phenotype. Using cocultures of smokeless tobacco extracts-exposed fibroblasts and immortalized but nontumorigenic keratinocytes, we further show that factors secreted by extracts-modified fibroblasts increase the proliferation and invasiveness of partially transformed epithelial cells, but not their normal counterparts. In addition, smokeless tobacco extracts-exposed fibroblasts caused partially transformed keratinocytes to lose the expression of E-cadherin and ZO-1, as well as involucrin, changes that are indicative of compromised epithelial function and commonly associated with malignant progression. Together, our results suggest that fibroblasts may contribute to tumorigenesis indirectly by increasing epithelial cell aggressiveness. Thus, tobacco may not only initiate mutagenic changes in epithelial cells but also promote the growth and invasion of mutant cells by creating a procarcinogenic stromal environment.  相似文献   

17.
A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis   总被引:1,自引:0,他引:1  
Salicylic acid (SA) plays a key role in activating defenses and cell death during plant-pathogen interactions. In response to some pathogens, SA also limits the extent of cell death, indicating that it acts positively or negatively depending on the host-pathogen interaction. In addition, we previously showed that SA affects cell growth in the Arabidopsis defense-related mutants accelerated cell death 6-1 (acd6-1) and aberrant growth and death 2 (agd2). Using acd6-1, agd2 and two other defense-related mutants, lesion simulating disease 6 (lsd6), suppressor of SA-insensitivity (ssi1), we show here in detail that SA regulates cell growth by specifically affecting cell enlargement, endoreduplication and/or cell division. We find that SA can act either positively or negatively to regulate cell growth depending on the context in which signaling occurs. Additionally, Nonexpressor of PR 1 (NPR1), a key SA signaling protein important for regulating defenses and cell death, also acts to promote cell division and/or suppress endoreduplication during leaf development. We propose that SA interacts with multiple receptors or signaling pathways to control cellular alterations during normal development, pathogen attack and/or stress situations. We suggest that SA and NPR1 play broader roles in cell fate control than has previously been understood.  相似文献   

18.
Each cyclin-dependent kinase a;1 mutant pollen grain contains a single sperm-like cell that can fertilize egg cells, similar to sperm cells. Pollination assays with mutant pollen demonstrated that the egg cell is preferentially fertilized in Arabidopsis.  相似文献   

19.
20.
SU(VAR)3-9 like histone methyltransferases control heterochromatic domains in eukaryotes. In Arabidopsis, 10 SUVH genes encode SU(VAR)3-9 homologues where SUVH1, SUVH2 and SUVH4 (KRYPTONITE) represent distinct subgroups of SUVH genes. Loss of SUVH1 and SUVH4 causes weak reduction of heterochromatic histone H3K9 dimethylation, whereas in SUVH2 null plants mono- and dimethyl H3K9, mono- and dimethyl H3K27, and monomethyl H4K20, the histone methylation marks of Arabidopsis heterochromatin are significantly reduced. Like animal SU(VAR)3-9 proteins SUVH2 displays strong dosage-dependent effects. Loss of function suppresses, whereas overexpression enhances, gene silencing, causes ectopic heterochromatization and significant growth defects. Furthermore, modification of transgene silencing by SUVH2 is partially transmitted to the offspring plants. This epigenetic stability correlates with heritable changes in DNA methylation. Mutational dissection of SUVH2 indicates an implication of its N-terminus and YDG domain in directing DNA methylation to target sequences, a prerequisite for consecutive histone methylation. Gene silencing by SUVH2 depends on MET1 and DDM1, but not CMT3. In Arabidopsis, SUVH2 with its histone H3K9 and H4K20 methylation activity has a central role in heterochromatic gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号