共查询到20条相似文献,搜索用时 15 毫秒
1.
Until recently, most scientists have tacitly assumed that individual stomata respond independently and similarly to stimuli, showing minor random variation in aperture and behaviour. This implies that stomatal behaviour should not depend on the scale of observation. However, it is now clear that these assumptions are often incorrect. Leaves frequently exhibit dramatic spatial and temporal heterogeneity in stomatal behaviour. This phenomenon, in which small 'patches' of stomata respond differently from those in adjacent regions of the leaf, is called 'patchy stomatal conductance'. It appears to represent a hitherto unknown type of emergent collective behaviour that manifests itself in populations of stomata in intact leaves. 相似文献
2.
3.
4.
A specific signaling role for H2O2 in Chlamydomonas reinhardtii was demonstrated by the definition of a promoter that specifically responded to this ROS. Expression of a nuclear-encoded
reporter gene driven by this promoter was shown to depend not only on the level of exogenously added H2O2 but also on light. In the dark, the induction of the reporter gene by H2O2 was much lower than in the light. This lower induction was correlated with an accelerated disappearance of H2O2 from the culture medium in the dark. Due to a light-induced reduction in catalase activity, H2O2 levels in the light remained higher. Photosynthetic electron transport mediated the light-controlled down-regulation of the
catalase activity since it was prevented by 3-(3′4′-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II.
In the presence of light and DCMU, expression of the reporter gene was low while the addition of aminotriazole, a catalase
inhibitor, led to a higher induction of the reporter gene by H2O2 in the dark. The role of photosynthetic electron transport and thioredoxin in this regulation was investigated by using mutants
deficient in photosynthetic electron flow and by studying the correlation between NADP-malate dehydrogenase and catalase activities.
It is proposed that, contrary to expectations, a controlled down-regulation of catalase activity occurs upon a shift of cells
from dark to light. This down-regulation apparently is necessary to maintain a certain level of H2O2 required to activate H2O2-dependent signaling pathways. 相似文献
5.
J. A. BUNCE 《Plant, cell & environment》1985,8(1):55-57
Abstract. Leaf conductance responses to leaf to air water vapour partial pressure difference (VPD) have been measured at air speeds of 0.5 and 3.0 ms−1 in single attached leaves of three species in order to test the hypothesis that leaf conductance response to VPD is controlled by evaporation from the outer surface of the epidermis, rather than by evaporation through stomata. Total conductance decreased linearly with increassing VPD at both air speeds, but was decreased 1.6 3.0 times as much as by a given incrase in VPD at high than at low air speed. depending on species. In all species the relationship between leaf conductance and the gradient for evaporation from the epidermis was the same at both values of boundary layer conductance, supporting the hypothesis that direct epidermal evaporation controls stomatal guard cell behaviour in responses of stomata to VPD in these species. 相似文献
6.
Fourier transform infrared transmission spectra have been obtained of the enzyme ribonuclease in both H2O and 2H2O. The resolution of the spectra have been enhanced by Fourier self-deconvolution procedures. The infrared spectrum of ribonuclease changes during exchange of the enzyme's amide hydrogens for deuterium and the exchange has been followed in the amide I and amide II spectral regions. The amide I band shifts towards lower wavenumbers during both the fast and slow phases of hydrogen exchange and the interpretation of these shifts has aided the band assignments. In particular these studies have allowed an assignment to be made for the high frequency component of the β-strand absorption that differs from that proposed previously. This paper represents the first example of the use of deconvoluted Fourier transform infrared spectra in conjunction with hydrogen-deuterium exchange in order to aid in the assignment of a proteins's infrared bands. 相似文献
7.
Sticozzi C Belmonte G Pecorelli A Arezzini B Gardi C Maioli E Miracco C Toscano M Forman HJ Valacchi G 《PloS one》2012,7(3):e33592
Scavenger Receptor B1 (SR-B1), also known as HDL receptor, is involved in cellular cholesterol uptake. Stratum corneum (SC), the outermost layer of the skin, is composed of more than 25% cholesterol. Several reports support the view that alteration of SC lipid composition may be the cause of impaired barrier function which gives rise to several skin diseases. For this reason the regulation of the genes involved in cholesterol uptake is of extreme significance for skin health. Being the first shield against external insults, the skin is exposed to several noxious substances and among these is cigarette smoke (CS), which has been recently associated with various skin pathologies. In this study we first have shown the presence of SR-B1 in murine and human skin tissue and then by using immunoblotting, immunoprecipitation, RT-PCR, and confocal microscopy we have demonstrated the translocation and the subsequent lost of SR-B1 in human keratinocytes (cell culture model) after CS exposure is driven by hydrogen peroxide (H(2)O(2)) that derives not only from the CS gas phase but mainly from the activation of cellular NADPH oxidase (NOX). This effect was reversed when the cells were pretreated with NOX inhibitors or catalase. Furthermore, CS caused the formation of SR-B1-aldheydes adducts (acrolein and 4-hydroxy-2-nonenal) and the increase of its ubiquitination, which could be one of the causes of SR-B1 loss. In conclusion, exposure to CS, through the production of H(2)O(2), induced post-translational modifications of SR-B1 with the consequence lost of the receptor and this may contribute to the skin physiology alteration as a consequence of the variation of cholesterol uptake. 相似文献
8.
Contrary to what is widely believed, recent published results show that H2O2 does not freely diffuse across biomembranes. The fast removal of H2O2 by antioxidant enzymes is able to generate a gradient if H2O2 is produced in a different compartment from that containing the enzymes (Antunes, F., and Cadenas, E. (2000) FEBS Lett. 475, 121-126). In this work, we extended these studies and tested whether an active regulation of biomembranes permeability characteristics is part of the cell response to oxidative stress. Using Saccharomyces cerevisiae as a model, we showed that: (a) H2O2 gradients across the plasma membrane are formed upon exposure to external H2O2; (b) there is a correlation between the magnitude of the gradients and the resistance to H2O2; (c) there is not a correlation between the intracellular capacity to remove H2O2 and the resistance to H2O2; (d) the plasma membrane permeability to H2O2 decreases by a factor of two upon acquisition of resistance to this agent by pre-exposing cells either to nonlethal doses of H2O2 or to cycloheximide, an inhibitor of protein synthesis; and (e) erg3Delta and erg6Delta mutants, which have impaired ergosterol biosynthesis pathways, show higher plasma membrane permeability to H2O2 and are more sensitive to H2O2. Altogether, the regulation of the plasma membrane permeability to H2O2 emerged as a new mechanism by which cells respond and adapt to H2O2. The consequences of the results to cellular redox compartmentalization and to the origin and evolution of the eukaryotic cell are discussed. 相似文献
9.
Night-time stomatal opening in C3 plants may result in significant water loss when no carbon gain is possible. The objective of this study was to determine if endogenous patterns of night-time stomatal opening, as reflected in leaf conductance, in Vicia faba are affected by photosynthetic conditions the previous day. Reducing photosynthesis with low light or low CO2 resulted in reduced night-time stomatal opening the following night, irrespective of the effects on daytime stomatal conductance. Likewise, increasing photosynthesis with enriched CO2 levels resulted in increased night-time stomatal opening the following night. Reduced night-time stomatal opening was not the result of an inability to regulate stomatal aperture as leaves with reduced night-time stomatal opening were capable of greater night-time opening when exposed to low CO2 . After acclimating plants to long or short days, it was found that night-time leaf conductance was greater in plants acclimated to short days, and associated with greater leaf starch and nitrate accumulation, both of which may affect night-time guard cell osmotic potential. Direct measurement of guard cell contents during endogenous night-time stomatal opening will help identify the mechanism of the effect of daytime photosynthesis on subsequent night-time stomatal regulation. 相似文献
10.
Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. 总被引:7,自引:0,他引:7 下载免费PDF全文
We investigated how salicylic acid (SA) enhances H2O2 and the relative significance of SA-enhanced H2O2 in Arabidopsis thaliana. SA treatments enhanced H2O2 production, lipid peroxidation, and oxidative damage to proteins, and resulted in the formation of chlorophyll and carotene isomers. SA-enhanced H2O2 levels were related to increased activities of Cu,Zn-superoxide dismutase and were independent of changes in catalase and ascorbate peroxidase activities. Prolonging SA treatments inactivated catalase and ascorbate peroxidase and resulted in phytotoxic symptoms, suggesting that inactivation of H2O2-degrading enzymes serves as an indicator of hypersensitive cell death. Treatment of leaves with H2O2 alone failed to invoke SA-mediated events. Although leaves treated with H2O2 accumulated in vivo H2O2 by 2-fold compared with leaves treated with SA, the damage to membranes and proteins was significantly less, indicating that SA can cause greater damage than H2O2. However, pretreatment of leaves with dimethylthiourea, a trap for H2O2, reduced SA-induced lipid peroxidation, indicating that SA requires H2O2 to initiate oxidative damage. The relative significance of the interaction among SA, H2O2, and H2O2-metabolizing enzymes with oxidative damage and cell death is discussed. 相似文献
11.
M I Liff 《International journal of biological macromolecules》2001,29(1):1-4
D2O absorbed by intact wool fibers was studied by solid-state 2H nuclear magnetic resonance (NMR) spectroscopy. In wool fibers swollen in D2O, the deuteron transverse magnetization and the spin-locked magnetization revealed a non-exponential decay. At least two NMR phases with different sets of the NMR relaxation parameters, T(1rho) (2H) and T2 2H, have been detected that may be a manifestation of two different morphological phases of the cortex of the fiber. 相似文献
12.
Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer 总被引:1,自引:0,他引:1
Warren CR 《Journal of experimental botany》2008,59(7):1475-1487
Internal conductance describes the movement of CO(2) from substomatal cavities to sites of carboxylation. Internal conductance has now been measured in approximately 50 species, and in all of these species it is a large limitation of photosynthesis. It accounts for somewhat less than half of the decrease in CO(2) concentrations from the atmosphere to sites of carboxylation. There have been two major findings in the past decade. First, the limitation due to internal conductance (i.e. C(i)-C(c)) is not fixed but varies among species and functional groups. Second, internal conductance is affected by some environmental variables and can change rapidly, for example, in response to leaf temperature, drought stress or CO(2) concentration. Biochemical factors such as carbonic anhydrase or aquaporins are probably responsible for these rapid changes. The determinants of internal conductance remain elusive, but are probably a combination of leaf anatomy, morphology, and biochemical factors. In most plants, the gas phase component of internal conductance is negligible with the majority of resistance resting in the liquid phase from cell walls to sites of carboxylation. The internal conductance story is far from complete and many exciting challenges remain. Internal conductance ought to be included in models of canopy photosynthesis, but before this is feasible additional data on the variation in internal conductance among and within species are urgently required. Future research should also focus on teasing apart the different steps in the diffusion pathway (intercellular spaces, cell wall, plasmalemma, cytosol, and chloroplast envelope) since it is likely that this will provide clues as to what determines internal conductance. 相似文献
13.
SB202190 调节蚕豆保卫细胞中SA 诱导H2O2 产生 总被引:1,自引:0,他引:1
运用激光共聚焦扫描技术, 在p38 MAP激酶专一抑制剂SB202190处理下, 探索植物促分裂原活化蛋白激酶(mitogenactivated protein kinase, MAP激酶)介导蚕豆(Vicia faba)保卫细胞中H2O2为代表的活性氧(reactive oxygen species, ROS)信号机制, 发现: p38 MAP激酶专一抑制剂SB202190处理没有导致蚕豆保卫细胞中H2O2和Ca2+探针荧光强度增强, 与水杨酸 (salicylic acid, SA) 或脱落酸 (abscisic acid, ABA) 迅速加强2种探针荧光强度形成鲜明对比; 而该抑制剂分别与SA和ABA共同处理, 前者H2O2探针荧光强度没有增加, 而后者荧光强度仍然能够增加; 而进一步使用Ca2+螯合剂BAPTA和SB202190
+SA共同处理, H2O2探针荧光强度没有增加。这些结果初步表明: 无论胞质Ca2+浓度高低, SB202190调节蚕豆保卫细胞中SA诱导H2O2产生, 但是不调节植物逆境信使分子ABA 此类的反应。因此推测, 植物细胞中可能有类似动物和酵母细胞中的p38MAP激酶类, 并可能专一调节植物保卫细胞中H2O2信号通路。据我们所知, 这是首次报道SB202190和SA共同调节植物保卫细胞中ROS信号过程。 相似文献
14.
Toshio Mikami Kayoko Kita Seiji Tomita Gang-Jian Qu Yousuke Tasaki Akira Ito 《Free radical research》2013,47(3):235-244
To assess whether allantoin levels in serum and urine are influenced by exhaustive and moderate exercise and whether allantoin is a useful indicator of exercise-induced oxidative stress in humans, we made subjects perform exhaustive and moderate (100% and 40% VO2max) cycling exercise and examined the levels of allantoin, thiobarbituric acid reactive substances (TBARS) and urate in serum and urine. Immediately after exercise at 100% VO2max, the serum allantoin/urate ratio was significantly elevated compared with the resting levels while the serum urate levels was significantly elevated 30 min after exercise. The serum TBARS levels did not increase significantly compared with the resting levels. Urinary allantoin excretion significantly increased during 60 min of recovery after exercise, however, urinary urate excretion decreased significantly during the same period. The urinary allantoin/urate ratio also rapidly increased during 60 min of recovery after exercise. Urinary TBARS excretion decreased during the first 60 min of the recovery period and thereafter significantly increased during the latter half of the recovery period. On the contrary, after 40% VO2max of exercise, no significant changes in the levels of urate, allantoin and TBARS in serum or urine were observed. These findings suggest that allantoin levels in serum and urine may reflect the extent of oxidative stress in vivo and that the allantoin which appeared following exercise may have originated not from urate formed as a result of exercise but from urate that previously existed in the body. Furthermore, these findings support the view that allantoin in serum and urine is a more sensitive and reliable indicator of in vivo oxidative stress than lipid peroxidation products measured as TBARS. 相似文献
15.
Plant defense is based on a complex response triggered by unfavorable external impacts. The redox state of the cells and its temporal alteration, the oxidative burst, is an important regulatory element of this defense response. Data collected during the last years have caused us to change the previous, strongly simplified theory on signaling which had been based on a speculative, rather sequential mechanism. In the framework of signal transduction, H2O2 signaling pathway(s) is/are only a special part of signal transduction but interacting with other pathways it/they influence the whole transducting system in several points. Our results show that in complexity and in basic regulatory mechanisms (transients, oscillation, tuning, signaling pattern) H2O2 signaling is comparable with other pathways, of which we have more detailed cognition, and our present knowledge makes developing a new theory on this aspect necessary.Key Words: oxidative burst, elicitors, hydrogen peroxide, location, timing, long term monitoring, signal transduction 相似文献
16.
Oxygen and ribulose-1,5-bisphosphate dependent, H(2)O(2) production was observed with several wild type Rubisco enzymes using a sensitive assay. H(2)O(2) and d-glycero-2,3-pentodiulose-1,5-bisphosphate, a known and potent inhibitor of Rubisco activity, are predicted products arising from elimination of H(2)O(2) from a peroxyketone intermediate, specific to oxygenase activity. Parallel assays using varying CO(2) and O(2) concentrations revealed that the partitioning to H(2)O(2) during O(2) consumption by spinach Rubisco was constant at 1/260-1/270. High temperature (38 degrees C), which reduces Rubisco specificity for CO(2) versus O(2), increased the rates of H(2)O(2) production and O(2) consumption, resulting in a small increase in partitioning to H(2)O(2) (1/210). Two Rubiscos with lower specificity than spinach exhibited greater partitioning to H(2)O(2) during catalysis: Chlamydomonas reinhardtii (1/200); and Rhodospirillum rubrum (1/150). 相似文献
17.
In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the stability of globular protein structure is determined in a systematic way. The differential scanning calorimetry technique is applied to allow for a thermodynamic analysis of two types of globular proteins: hen's egg lysozyme (LSZ) with relatively strong internal cohesion ("hard" globular protein) and bovine serum albumin (BSA), which is known for its conformational adaptability ("soft" globular protein). Both proteins tend to be more stable in D2O compared to H2O. We explain the increase of protein stability in D2O by the observation that D2O is a poorer solvent for nonpolar amino acids than H2O, implying that the hydrophobic effect is larger in D2O. In case of BSA the transitions between different isomeric forms, at low pH values the Nm and F forms, and at higher pH values Nm and B, were observed by the presence of a supplementary peak in the DSC thermogram. It appears that the pH-range for which the Nm form is the preferred one is wider in D2O than in H2O. 相似文献
18.
The molecular mechanisms of nickel-induced malignant cell transformation include effects altering the structure and covalent modifications of core histones. Previously, we found that exposure of cells to Ni(II) resulted in truncation of histones H2A and H2B and thus elimination of some modification sites. Here, we investigated the effect of Ni(II) on one such modification, ubiquitination, of histones H2B and H2A in nuclei of cultured 1HAEo- and HPL1D human lung cells. After 1-5 days of exposure, Ni(II) up to 0.25 mM stimulated mono-ubiquitination of both histones, while at higher concentrations a suppression was found. Di-ubiquitination of H2A was not affected except for a drop after 5 days at 0.5 mM Ni(II). The decrease in mono-ubiquitination coincided with the appearance of truncated H2B that lacks the K120 ubiquitination site. However, prevention of truncation did not avert the decrease of H2B ubiquitination, indicating mechanistic independence of these effects. The changes in H2B ubiquitination did not fully coincide with concurrent changes in the nuclear levels of the ubiquitin-conjugating enzymes Rad6 and UbcH6. Overall, our results suggest that dysregulation of H2B ubiquitination is a part of Ni(II) adverse effects on gene expression and DNA repair which may assist in cell transformation. 相似文献
19.
Gudrun C. Hartmann Elena Santamaria Victor M. Fernández R. K. Thauer 《Journal of biological inorganic chemistry》1996,1(5):446-450
H2–forming N 5,N 10 –methylenetetrahydromethanopterin dehydrogenase is a novel type of hydrogenase that contains neither nickel nor iron-sulfur clusters. Evidence has been presented that the reaction mechanism catalyzed by the enzyme is very similar to that of the formation of carbocations and H2 from alkanes under superacidic conditions. We present here further results in support of this mechanism. It was found that the purified enzyme per se did not catalyze the conversion of para H2 to ortho H2, a reaction catalyzed by all other hydrogenases known to date. However, it catalyzed the conversion in the presence of the substrate N 5,N 10 –methenyltetrahydromethanopterin (CH≡H4MPT+), indicating that for heterolytic cleavage of H2 the enzyme-CH≡H4MPT+ complex is required. In D2O, the formation of HD and D2 from H2 rather than a para–ortho H2 conversion was observed, indicating that after heterolytic cleavage of H2 the dissociation of the proton from the enzyme-substrate complex is fast relative to the re-formation of free H2. 相似文献
20.
The purpose of our study was to investigate underlying basic mechanisms of hypothermia-induced cardioprotection during oxidative stress in a cardiomyocyte cell culture model. For hypothermic treatment we cooled H9c2 cardiomyocytes to 20 °C, maintained 20 min at 20 °C during which short-term oxidative damage was inflicted with 2 mM H2O2, followed by rewarming to 37 °C. Later on, we analyzed lactate dehydrogenase (LDH), caspase-3 cleavage, reactive oxygen species (ROS), mitochondrial activity, intracellular ATP production, cytoprotective signal molecules as well as DNA damage. Hypothermia decreased H2O2 damage in cardiomyocytes as demonstrated in a lower LDH release, less caspase-3 cleavage and less M30 CytoDeath staining. After rewarming H2O2 damaged cells demonstrated a significantly higher reduction rate of intracellular ROS compared to normothermic H2O2 damaged cardiomyocytes. This was in line with a significantly greater mitochondrial dehydrogenase activity and higher intracellular ATP content in cooled and rewarmed cells. Moreover, hypothermia preserved cell viability by up-regulation of the anti-apoptotic protein Bcl-2 and a reduction of p53 phosphorylation. DNA damage, proven by PARP-1 cleavage and H2AX phosphorylation, was significantly reduced by hypothermia. In conclusion, we could demonstrate that hypothermia protects cardiomyocytes during oxidative stress by preventing apoptosis via inhibiting mitochondrial dysfunction and DNA damage. 相似文献