共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(7):912-921
T cell receptor activation induces inositol 1,4,5 trisphosphate (IP3)-mediated calcium signaling that is essential for cell metabolism and survival. Moreover, inhibitors of IP3 or pharmacological agents that disrupt calcium homeostasis readily induce autophagy. Using a glucocorticoid-sensitive CD4/CD8 positive T cell line, we found that dexamethasone prevented both IP3-mediated and spontaneous calcium signals within a timeframe that correlated with the induction of autophagy. We determined that this loss in IP3-mediated calcium signaling was dependent upon the downregulation of the Src kinase Fyn at the mRNA and protein level. Because it has previously been shown that Fyn positively regulates IP3-mediated calcium release by phosphorylating Type I IP3 receptors (IP3R1), we investigated the effect of glucocorticoids on IP3R1 phosphorylation at Tyr353. Accordingly, glucocorticoid-mediated downregulation of Fyn prevented IP3R1 phosphorylation at Tyr353. Moreover, selective knockdown of Fyn or treatment with a Src inhibitor also attenuated IP3-mediated calcium release and induced autophagy. Collectively, these data indicate that glucocorticoids promote autophagy by inhibiting IP3-dependent calcium signals. These findings carry important therapeutic implications given the widespread use of dexamethasone as both a chemotherapeutic and immunosuppressive agent. 相似文献
2.
Glucocorticoids inhibit serum depletion-induced apoptosis in T lymphocytes expressing Bcl-2. 总被引:4,自引:0,他引:4
Depletion of growth factors and glucocorticoids are known to induce apoptosis and inhibit growth in T lymphocytes. We have examined the effect of Bcl-2 expression on the cellular response to growth factor depletion in the presence or absence of glucocorticoids. Cell growth was determined by cell counting and viability was quantitated by dye exclusion. Apoptosis was evaluated by flow cytometry, analysis of DNA integrity, and enzymatic determination of caspase-3-like activity. Serum depletion and glucocorticoid administration inhibited cell growth and stimulated apoptosis in Bcl-2 negative cells. Cotreatment with both stimuli had additive effects on apoptosis but not on inhibition of cell growth. Bcl-2 expression abrogated the repressive effect of glucocorticoids on apoptosis but not on cell growth. In contrast, neither apoptosis nor growth inhibition induced by serum depletion of cells was blocked by Bcl-2 expression. However, glucocorticoid treatment of Bcl-2-overexpressing cells protected them from apoptosis induced by serum depletion. Glucocorticoid protection of Bcl-2-overexpressing cells from serum depletion-induced apoptosis was mimicked by other inducers of apoptosis, which act to inhibit protein synthesis. These data suggest that Bcl-2 expression can switch the effect of glucocorticoids from proapoptotic to antiapoptotic when lymphocytes expressing Bcl-2 are exposed to other apoptotic stimuli. 相似文献
3.
《Channels (Austin, Tex.)》2013,7(3):129-138
In rabbit atrial myocytes Ca signaling has unique features due to the lack of transverse (t) tubules, the spatial arrangement of mitochondria and the contribution of inositol-1,4,5-trisphosphate (IP3) receptor-induced Ca release (IICR). During excitation-contraction coupling action potential-induced elevation of cytosolic [Ca] originates in the cell periphery from Ca released from the junctional sarcoplasmic reticulum (j-SR) and then propagates by Ca-induced Ca release from non-junctional (nj-) SR toward the cell center. The subsarcolemmal region between j-SR and the first array of nj-SR Ca release sites is devoid of mitochondria which results in a rapid propagation of activation through this domain, whereas the subsequent propagation through the nj-SR network occurs at a velocity typical for a propagating Ca wave. Inhibition of mitochondrial Ca uptake with the Ca uniporter blocker Ru360 accelerates propagation and increases the amplitude of Ca transients (CaTs) originating from nj-SR. Elevation of cytosolic IP3 levels by rapid photolysis of caged IP3 has profound effects on the magnitude of subcellular CaTs with increased Ca release from nj-SR and enhanced CaTs in the nuclear compartment. IP3 uncaging restricted to the nucleus elicites ‘mini’-Ca waves that remain confined to this compartment. Elementary IICR events (Ca puffs) preferentially originate in the nucleus in close physical association with membrane structures of the nuclear envelope and the nucleoplasmic reticulum. The data suggest that in atrial myocytes the nucleus is an autonomous Ca signaling domain where Ca dynamics are primarily governed by IICR. 相似文献
4.
Peter Koulen Christian Madry R Scott Duncan Ji-Yeon Hwang Everett Nixon Nathalie McClung Elaine V Gregg Meharvan Singh 《Cellular physiology and biochemistry》2008,21(1-3):161-172
The activity of cells critically depends on the control of their cytosolic free calcium ion (Ca(2+)) concentration. The objective of the present study was to identify mechanisms of action underlying the control of the gain of intracellular Ca(2+) release by circulating gonadal steroid hormones. Acute stimulation of isolated neurons with progesterone led to IP(3)R-mediated Ca(2+) transients that depend on the activation of the PI3 kinase/Akt/PKB signaling pathway. These results were confirmed at the molecular level and phosphorylation of IP(3)R type 1 by Akt/PKB was identified as the mechanism of action. Hence, it is likely that circulating gonadal steroid hormones control neuronal activity including phosporylation status through receptor- and kinase-mediated signaling. With a direct control of the gain of the Ca(2+) second messenger system as a signaling gatekeeper for neuronal activity the present study identifies a novel pathway for interaction of the endocrine and central nervous system. 相似文献
5.
Phosphoprotein associated with glycolipid-enriched membranes (PAG), also named Csk-binding protein (Cbp), is a transmembrane adaptor associated with lipid rafts. It is phosphorylated on multiple tyrosines located in the cytoplasmic domain. One tyrosine, tyrosine 314 (Y314) in the mouse, interacts with Csk, a protein tyrosine kinase that negatively regulates Src kinases. This interaction enables PAG to inhibit T-cell antigen receptor (TCR)-mediated T-cell activation. PAG also associates with the Src-related kinase FynT. Genetic studies indicated that FynT was required for PAG tyrosine phosphorylation and binding of PAG to Csk in T cells. Herein, we investigated the function and regulation of PAG-associated FynT. Our data showed that PAG was constitutively associated with FynT in unstimulated T cells and that this association was rapidly lost in response to TCR stimulation. Dissociation of the PAG-FynT complex preceded PAG dephosphorylation and PAG-Csk dissociation after TCR engagement. Interestingly, in anergic T cells, the association of PAG with FynT, but not Csk, was increased. Analyses of PAG mutants provided evidence that PAG interacted with FynT by way of tyrosines other than Y314. Enforced expression of a PAG variant interacting with FynT, but not Csk, caused a selective enhancement of TCR-triggered calcium fluxes in normal T cells. Furthermore, it promoted T-cell anergy. Both effects were absent in mice lacking FynT, implying that the effects were mediated by PAG-associated FynT. Hence, besides enabling PAG tyrosine phosphorylation and the PAG-Csk interaction, PAG-associated FynT can stimulate calcium signals and favor T-cell anergy. These data improve our comprehension of the function of PAG in T cells. They also further implicate FynT in T-cell anergy. 相似文献
6.
Tsuyoshi Uchiyama Fumio Yoshikawa Akira Hishida Teiichi Furuichi Katsuhiko Mikoshiba 《The Journal of biological chemistry》2002,277(10):8106-8113
We have developed a novel recombinant hyperaffinity inositol 1,4,5-trisphosphate (IP(3)) absorbent, called the "IP(3) sponge," which we constructed on the basis of the ligand-binding site of the mouse type 1 IP(3) receptor (IP(3)R1). The IP(3) sponge exhibited approximately 1000-fold higher affinity for IP(3) than the parental IP(3)R1 and specifically competed with the endogenous IP(3)R for binding to IP(3). Trapping IP(3) with the IP(3) sponge inhibited IP(3)-induced Ca(2+) release (IICR) from cerebellar microsomes in a dose-dependent manner. The IP(3) sponge expressed in HEK293 cells also inhibited IICR in response to stimulation with carbachol or ATP. Its inhibitory effects were dependent upon the level of its expression over the increased IP(3) contents. Moreover, the IP(3) sponge significantly reduced the carbachol-induced phosphorylation of cAMP-response element-binding protein in HEK293 cells, indicating that the activation of cAMP-response element-binding protein by Ca(2+)-dependent phosphorylation may be partly attributable to IICR. 相似文献
7.
8.
Calcium signaling is essential for all the functions of T lymphocytes, including those of Th2 cells. Th2 lymphocytes producing interleukins 4, 5 and 13 orchestrate allergic diseases including asthma. T-cell activation induces an influx of Ca(2+) from the external medium through ORAI calcium channels although other calcium channels are likely to be involved. Among them, voltage-gated calcium (Ca(v)1) channels have been reported in some T-cell subsets including Th2 cells. The inhibition of Ca(v)1 channels abrogates T-cell receptor-driven calcium influx and interleukin production by Th2 cells. From a therapeutic point of view, the inhibition of Ca(v)1 channels prevents Th2-dependent experimental allergic asthma. In this review, we will discuss the singularities of calcium responses depending upon the T-cell subset and its state of activation. 相似文献
9.
Mini-dystrophin expression down-regulates IP3-mediated calcium release events in resting dystrophin-deficient muscle cells
下载免费PDF全文

Balghi H Sebille S Mondin L Cantereau A Constantin B Raymond G Cognard C 《The Journal of general physiology》2006,128(2):219-230
We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)-mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(-)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium (release site density [RSD]) was quantified and found more elevated in SolC1(-) than in SolD(+) myotubes. Variations of membrane potential had no significant effect on this difference, and higher resting [Ca2+]i in SolC1(-) (Marchand, E., B. Constantin, H. Balghi, M.C. Claudepierre, A. Cantereau, C. Magaud, A. Mouzou, G. Raymond, S. Braun, and C. Cognard. 2004. Exp. Cell Res. 297:363-379) cannot explain alone higher RSD. The exposure with SR Ca(2+) channel inhibitors (ryanodine and 2-APB) and phospholipase C inhibitor (U73122) significantly reduced RSD in both cell types but with a stronger effect in dystrophin-deficient SolC1(-) myotubes. Immunocytochemistry allowed us to localize ryanodine receptors (RyRs) as well as IP3 receptors (IP3Rs), IP3R-1 and IP3R-2 isoforms, indicating the presence of both RyRs-dependent and IP3-dependent release systems in both cells. We previously reported evidence for the enhancement, through a Gi protein, of the IP3-mediated calcium signaling pathway in SolC1(-) as compared to SolD(+) myotubes during a high K(+) stimulation (Balghi, H., S. Sebille, B. Constantin, S. Patri, V. Thoreau, L. Mondin, E. Mok, A. Kitzis, G. Raymond, and C. Cognard. 2006. J. Gen. Physiol. 127:171-182). Here we show that, at rest, these regulation mechanisms are also involved in the modulation of calcium release activities. The enhancement of resting release activity may participate in the calcium overload observed in dystrophin-deficient myotubes, and our findings support the hypothesis of the regulatory role of mini-dystrophin on intracellular signaling. 相似文献
10.
Fian R Grasser E Treiber F Schmidt R Niederl P Rosker C 《Journal of receptor and signal transduction research》2007,27(2-3):113-124
A large variety of cation transport systems are involved in the regulation of calcium homeostasis in endothelial cells. The focus of the present study is to determine the contribution of nonselective cation channels from the TRP (transient receptor potential) family to cellular calcium homeostasis of porcine aortic endothelial cells (PAEC). One member of the TRPV (vanniloid) subfamily, TRPV4, has previously been shown to be involved in cation transport induced by a large variety of stimulations including osmolarity, temperature, mechanical stress, and phosphorylation. Here, we demonstrate the existence of several TRP proteins, including TRPV4, in PAEC using RT-PCR. To test whether this channel is functional, we performed FURA-2 calcium measurements and whole-cell patch-clamp experiments. We observed the induction of large calcium signals following mechanical stress, altered extracellular temperature, and the selective TRPV4 activator 4-alpha -PDD. These effects were diminished in the presence of the TRPV4 inhibitor miconazole, suggesting the involvement of this channel in mediating endothelial calcium signals. The large amounts of transported calcium and the short signaling ways suggest a potentially important role of this channel in many physiological processes. 相似文献
11.
The target of rapamycin (TOR) kinase is a conserved regulator of cell growth and functions within 2 different protein complexes, TORC1 and TORC2, where TORC2 positively controls macroautophagy/autophagy during amino acid starvation. Under these conditions, TORC2 signaling inhibits the activity of the calcium-regulated phosphatase calcineurin and promotes the general amino acid control (GAAC) response and autophagy. Here we demonstrate that TORC2 regulates calcineurin by controlling the respiratory activity of mitochondria. In particular, we find that mitochondrial oxidative stress affects the calcium channel regulatory protein Mid1, which we show is an essential upstream activator of calcineurin. Thus, these findings describe a novel regulation for autophagy that involves TORC2 signaling, mitochondrial respiration, and calcium homeostasis. 相似文献
12.
Meng-Meng Ji Li Wang Qin Zhan Wen Xue Yan Zhao Xia Zhao Peng-Peng Xu Yang Shen Han Liu Anne Janin Shu Cheng Wei-Li Zhao 《Autophagy》2015,11(12):2160-2171
Autophagy is closely related to tumor cell sensitivity to anticancer drugs. The HDAC (histone deacetylase) inhibitor valproic acid (VPA) interacted synergistically with chemotherapeutic agents to trigger lymphoma cell autophagy, which resulted from activation of AMPK (AMP-activated protein kinase) and inhibition of downstream MTOR (mechanistic target of rapamycin [serine/threonine kinase]) signaling. In an HDAC-independent manner, VPA potentiated the effect of doxorubicin on lymphoma cell autophagy via reduction of cellular inositol 1,4,5 trisphosphate (IP3), blockade of calcium into mitochondria and modulation of PRKAA1/2-MTOR cascade. In murine xenograft models established with subcutaneous injection of lymphoma cells, dual treatment of VPA and doxorubicin initiated IP3-mediated calcium depletion and PRKAA1/2 activation, induced in situ autophagy and efficiently retarded tumor growth. Aberrant genes involving mitochondrial calcium transfer were frequently observed in primary tumors of lymphoma patients. Collectively, these findings suggested an HDAC-independent chemosensitizing activity of VPA and provided an insight into the clinical application of targeting autophagy in the treatment of lymphoma. 相似文献
13.
14.
Distinct intracellular localization of Lck and Fyn protein tyrosine kinases in human T lymphocytes 总被引:9,自引:8,他引:9
下载免费PDF全文

《The Journal of cell biology》1994,125(3):639-649
Two src family kinases, lck and fyn, participate in the activation of T lymphocytes. Both of these protein tyrosine kinases are thought to function via their interaction with cell surface receptors. Thus, lck is associated with CD4, CD8, and Thy-1, whereas fyn is associated with the T cell antigen receptor and Thy-1. In this study, the intracellular localization of these two protein tyrosine kinases in T cells was analyzed by immunofluorescence and confocal microscopy. Lck was present at the plasma membrane, consistent with its proposed role in transmembrane signalling, and was also associated with pericentrosomal vesicles which co-localized with the cation-independent mannose 6- phosphate receptor. Surprisingly, fyn was not detected at the plasma membrane in either Jurkat T cells or T lymphoblasts but was closely associated with the centrosome and to microtubule bundles radiating from the centrosome. In mitotic cells, fyn co-localized with the mitotic spindle and poles. The essentially non-overlapping intracellular distributions of lck and fyn suggest that these kinases may be accessible to distinct regulatory proteins and substrates and, therefore, may regulate different aspects of T cell activation. Anti- phosphotyrosine antibody staining at the plasma membrane increases dramatically after CD3 cross-linking of Jurkat T cells. The localization of lck to the plasma membrane suggests that it may participate in mediating this increase in tyrosine phosphorylation, rather than fyn. Furthermore, the distribution of fyn in mitotic cells raises the possibility that it functions at the M phase of the cell cycle. 相似文献
15.
16.
Numata T Araya J Fujii S Hara H Takasaka N Kojima J Minagawa S Yumino Y Kawaishi M Hirano J Odaka M Morikawa T Nishimura SL Nakayama K Kuwano K 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(1):510-519
TLR3, one of the TLRs involved in the recognition of infectious pathogens for innate and adaptive immunity, primarily recognizes viral-associated dsRNA. Recognition of dsRNA byproducts released from apoptotic and necrotic cells is a recently proposed mechanism for the amplification of toxicity, suggesting a pivotal participation of TLR3 in viral infection, as well as in lung diseases where apoptosis plays a critical role, such as asthma and chronic obstructive pulmonary disease. In addition to metabolic control, insulin signaling was postulated to be protective by inhibiting apoptosis. Therefore, we explored the role of insulin signaling in protecting against TLR3-mediated apoptosis of human bronchial epithelial cells. Significant TLR3-mediated apoptosis was induced by polyinosinic-polycytidylic acid, a dsRNA analog, via caspase-8-dependent mechanisms. However, insulin efficiently inhibited TLR3/polyinosinic-polycytidylic acid-induced human bronchial epithelial cell apoptosis via PI3K/Akt and ERK pathways, at least in part, via upregulation of cellular FLIPs and through protein synthesis-independent mechanisms. These results indicate the significance of TLR3-mediated dsRNA-induced apoptosis in the pathogenesis of apoptosis-driven lung disease and provide evidence for a novel protective role of insulin. 相似文献
17.
Hypoxia is associated with many pathological conditions as well as the normal physiology of metazoans. We identified a lactate-dependent signaling pathway in hypoxia, mediated by the oxygen- and lactate-regulated protein NDRG family member 3 (NDRG3). Oxygen negatively regulates NDRG3 expression at the protein level via the PHD2/VHL system, whereas lactate, produced in excess under prolonged hypoxia, blocks its proteasomal degradation by binding to NDRG3. We also found that the stabilized NDRG3 protein promotes angiogenesis and cell growth under hypoxia by activating the Raf-ERK pathway. Inhibiting cellular lactate production abolishes NDRG3-mediated hypoxia responses. The NDRG3-Raf-ERK axis therefore provides the genetic basis for lactate-induced hypoxia signaling, which can be exploited for the development of therapies targeting hypoxia-induced diseases in addition to advancing our understanding of the normal physiology of hypoxia responses. [BMB Reports 2015; 48(6): 301-302] 相似文献
18.
Lu SP Lin Feng MH Huang HL Huang YC Tsou WI Lai MZ 《Free radical biology & medicine》2007,42(7):936-944
Lipid rafts are involved in many cell biology events, yet the molecular mechanisms on how rafts are formed are poorly understood. In this study we probed the possible requirement of reactive oxygen species (ROS) for T-cell receptor (TCR)-induced lipid raft formation. Microscopy and biochemical analyses illustrated that blockage of ROS production, by superoxide dismutase-mimic MnTBAP, significantly reduced partitioning of LAT, phospho-LAT, and PLC-gamma in lipid rafts. Another antioxidant N-acetylcysteine (NAC) displayed a similar suppressive effect on the entry of phospho-LAT into raft microdomains. The involvement of ROS in TCR-mediated raft assembly was observed in T-cell hybridomas, T leukemia cells, and normal T cells. Removal of ROS was accompanied by an attenuated activation of LAT and PKCtheta, with reduced production of IL-2. Consistently, treating T cells with the ROS-producer tert-butyl hydrogen peroxide (TBHP) greatly enhanced membrane raft formation, distribution of phospho-LAT into lipid rafts, and increased IL-2 production. Our results indicate for the first time that ROS contribute to TCR-induced membrane raft formation. 相似文献
19.
Brain-derived neurotrophic factor regulates AMPA receptor trafficking to post-synaptic densities via IP3R and TRPC calcium signaling 总被引:4,自引:0,他引:4
The change in the number of post-synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamatergic receptors (AMPARs) by neuronal activity is recognized as a molecular basis of synaptic plasticity. Here, we show that Ca(2+) transients evoked by brain-derived neurotrophic factor (BDNF) induce translocation of a subunit of AMPAR, GluR1, but not NMDAR, to the post-synaptic membrane in cultured cortical pyramidal neurons. Among BDNF-induced Ca(2+) transients, that dependent on IP3R was fully required, while store-operated calcium influx through the non-selective cation channel TRPC (transient receptor potential canonical) was partially required for the GluR1 up-regulation, suggesting that spatial and temporal calcium signaling regulate translocation of GluR1 to the polarized membrane domain. 相似文献
20.
Decuypere JP Monaco G Bultynck G Missiaen L De Smedt H Parys JB 《Biochimica et biophysica acta》2011,1813(5):1003-1013
The amount of Ca(2+) taken up in the mitochondrial matrix is a crucial determinant of cell fate; it plays a decisive role in the choice of the cell between life and death. The Ca(2+) ions mainly originate from the inositol 1,4,5-trisphosphate (IP(3))-sensitive Ca(2+) stores of the endoplasmic reticulum (ER). The uptake of these Ca(2+) ions in the mitochondria depends on the functional properties and the subcellular localization of the IP(3) receptor (IP(3)R) in discrete domains near the mitochondria. To allow for an efficient transfer of the Ca(2+) ions from the ER to the mitochondria, structural interactions between IP(3)Rs and mitochondria are needed. This review will focus on the key proteins involved in these interactions, how they are regulated, and what are their physiological roles in apoptosis, necrosis and autophagy. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. 相似文献