共查询到20条相似文献,搜索用时 0 毫秒
1.
《Autophagy》2013,9(8):1184-1186
The membrane origin of autophagosomes has long been a mystery and it may involve multiple sources. In this punctum, we discuss our recent finding that the plasma membrane contributes to the formation of pre-autophagic structures via clathrin-mediated endocytosis. Our study suggests that Atg16L1 interacts with clathrin heavy-chain/AP2 and is also localized on vesicles (positive for clathrin or cholera toxin B) close to the plasma membrane. Live-cell imaging studies revealed that the plasma membrane contributes to Atg16L1-positive structures and that this process and autophagosome formation are impaired by knockdowns of genes regulating clathrin-mediated endocytosis. 相似文献
2.
<正>Introduction Macroautophagy (hereafter referred as autophagy) is a process of cellular self-degradation. In response to nutrient deprivation or other stimuli, a nascent double-membrane autophagosome, encapsulating intracellular materials or damaged organelles, is generated. The autophagosome is transported toward and eventually fuses with the lysosome (or the vacuole in yeast and plant cells), 相似文献
3.
Autophagy - the degradation of organelles and cytoplasmic material - occurs through dynamic rearrangements of cellular membrane structures. Following the induction of autophagy, newly formed autophagosomes transfer cytosolic materials to the lysosome or vacuole for degradation. The autophagosome is an organelle destined for degradation, suggesting that the membrane structure is formed de novo many times. The autophagosome is formed through the nucleation, assembly and elongation of membrane structures. The concerted action of several Apg/Aut/Cvt proteins around a characteristic subcellular structure (the preautophagosomal structure) is the key to understanding this novel type of membrane-formation process. 相似文献
4.
J. Wolff 《生物化学与生物物理学报:生物膜》2009,1788(7):1415-1433
The association of tubulin with the plasma membrane comprises multiple levels of penetration into the bilayer: from integral membrane protein, to attachment via palmitoylation, to surface binding, and to microtubules attached by linker proteins to proteins in the membrane. Here we discuss the soundness and weaknesses of the chemical and biochemical evidence marshaled to support these associations, as well as the mechanisms by which tubulin or microtubules may regulate functions at the plasma membrane. 相似文献
5.
6.
7.
Plasma membrane microdomains 总被引:13,自引:0,他引:13
Maxfield FR 《Current opinion in cell biology》2002,14(4):483-487
Several lines of evidence indicate that the lipids in the plasma membrane of animal cells are inhomogeneously distributed, and that various types of specialized lipid domains play an important role in many biological processes. The characteristics of these domains, such as size, composition and dynamics, are currently under active investigation. It appears that there are many different types of membrane domains in the plasma membrane, and perhaps the entire membrane should be viewed as a mosaic of microdomains. 相似文献
8.
9.
10.
11.
Plasma membrane receptor complexes 总被引:3,自引:2,他引:1
12.
13.
The conjugation of the small ubiquitin (Ub)-like protein Atg8 to autophagic membranes is a key step during the expansion of phagophores. This reaction is driven by 2 interconnected Ub-like conjugation systems. The second system conjugates the Ub-like protein Atg12 to Atg5. The resulting conjugate catalyzes the covalent attachment of Atg8 to membranes. Atg12–Atg5, however, constitutively associates with the functionally less well-characterized coiled-coil protein Atg16. By reconstituting the conjugation of Atg8 to membranes in vitro, we showed that after Atg8 has been attached to phosphatidylethanolamine (PE), it recruits Atg12–Atg5 to membranes by recognizing a noncanonical Atg8-interacting motif (AIM) within Atg12. Atg16 crosslinks Atg8–PE-Atg12–Atg5 complexes to form a continuous 2-dimensional membrane scaffold with meshwork-like architecture. Apparently, scaffold formation is required to generate productive autophagosomes and to deliver autophagic cargo to the vacuole in vivo. 相似文献
14.
During mitosis, microtubules (MTs), aided by motors and associated proteins, assemble into a mitotic spindle. Recent evidence supports the notion that a membranous spindle matrix aids spindle formation; however, the mechanisms by which the matrix may contribute to spindle assembly are unknown. To search for a mechanism by which the presence of a mitotic membrane might help spindle morphology, we built a computational model that explores the interactions between these components. We show that an elastic membrane around the mitotic apparatus helps to focus MT minus ends and provides a resistive force that acts antagonistically to plus-end-directed MT motors such as Eg5. 相似文献
15.
Freeze-fracture replica immunolabelling reveals human WIPI-1 and WIPI-2 as membrane proteins of autophagosomes 总被引:1,自引:0,他引:1
Autophagy defines the lifespan of eukaryotic organisms by ensuring cellular survival through regulated bulk clearance of proteins, organelles and membranes. Pathophysiological consequences of improper autophagy give rise to a variety of age-related human diseases such as cancer and neurodegeneration. Rational therapeutic implementation of autophagy modulation remains problematic, as fundamental molecular details such as the generation of autophagosomes, unique double-membrane vesicles formed to permit the process of autophagy, are insufficiently understood. Here, freeze-fracture replica immunolabelling reveals WD-repeat protein interacting with phosphoinositides 1 and 2 (WIPI-1 and WIPI-2) as membrane components of autophagosomes and the plasma membrane (PM). In addition, WIPI-1 is also present in membranes of the endoplasmic reticulum (ER) and WIPI-2 was further detected in membranes close to the Golgi cisternae. Our results identify WIPI-1 and WIPI-2 as novel protein components of autophagosomes, and of membrane sites from which autophagosomes might originate (ER, PM, Golgi area). Hence therapeutic modulation of autophagy could involve approaches that functionally target human WIPI proteins. 相似文献
16.
17.
A membrane fraction enriched with magnesium-dependent ATPase activity was isolated from sugarbeet (Beta vulgaris L.) taproot by a combination of differential centrifugation, extraction with KI and sucrose density gradient centrifugation. This activity was inhibited by vanadate, N,N′-dicyclohexylcarbodiimide and diethylstilbestrol, but was insensitive to molybdate, azide, oligomycin, ouabain, and nitrate, suggesting enrichment in plasma membrane ATPase. The enzyme was substrate specific for ATP, had a pH optimum of 7.0, but showed little stimulation by 50 mM KCl. The sugarbeet ATPase preparation contained endogenous protein kinase activity which could be reduced by extraction of the membranes with 0.1% (w/v) sodium deoxycholate. Reduction of protein kinase activity allowed the demonstration of a rapidly turning over phosphorylated intermediate on a Mr 105000 polypeptide, most likely representing the catalytic subunit of the ATPase. Phosphorylation was magnesium dependent, sensitive to diethylstilbestrol and vanadate but insensitive to oligomycin and azide. Neither the ATPase activity nor phosphoenzyme level were affected by combinations of sodium and potassium in the assay. These results argue against the presence of a synergistically stimulated NaK-ATPase at the plasma membrane of sugarbeet. 相似文献
18.
Plasma membrane proteins in Dictyostelium 总被引:2,自引:0,他引:2
Roger W. Parish 《Molecular and cellular biochemistry》1983,50(1):75-95
19.
20.
Amal O. Amer 《Autophagy》2013,9(5):633-634
Autophagy has emerged as a significant innate immune response to pathogens. Typically, autophagosomes deliver their contents to lysosomes for degradation. Some pathogens such as Salmonella enterica serovar Typhimurium succumb to autophagy and are transported to lysosomes for degradation. Yet, many professional pathogens, including Legionella pneumophila and Burkholderia cenocepacia, subvert this pathway exploiting autophagy to their advantage. 相似文献