首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple and sensitive procedure for testing various chemicals affecting DNA repair is presented. Cells, either labelled with [3H]thymidine or [14C]thymidine, were drug-treated or used as references cells. Both cell populations were irradiated with 5 Gy. The number of DNA breaks were determined, after mixing of drug-treated and reference cells of different labelling, at various intervals by the DNA unwinding technique and the drug-dependent DNA breaks were calculated. The drugs benzamide, 3-aminobenzamide, novobiocin and 9-beta-D-arabinofuranosyladenine (araA), all known to affect DNA repair, were used to study their effect on the number of DNA strand breaks with the presented technique. It was found that the assay improved the accuracy in determining the influence of DNA repair inhibitors compared to indirect measurements.  相似文献   

2.
BACKGROUND: Key steps crucial to the process of tumor progression are genomic instability and escape from apoptosis. Nitric oxide and its interrelated reactive intermediates (collectively denoted as NOX) have been implicated in DNA damage and mutational events leading to cancer development, while also being implicated in the inhibition of apoptosis through S-nitrosation of key apoptotic enzymes. The purpose of this study was to explore the interrelationship between NOX-mediated DNA strand breaks (DSBs) and apoptosis in cultured tumor cell lines. METHODS: Two well-characterized cell lines were exposed to increasing concentrations of exogenous NOX via donor compounds. Production of NOX was quantified by the Greiss reaction and spectrophotometery, and confirmed by nitrotyrosine immunostaining. DSBs were measured by the alkaline single-cell gel electrophoresis assay (the COMET assay), and correlated with cell viability by the MTT assay. Apoptosis was analyzed both by TUNEL staining and Annexin V/propidium iodine FACS. Finally, caspase enzymatic activity was measured using an in-vitro fluorogenic caspase assay. RESULTS: Increases in DNA strand breaks in our tumor cells, but not in control fibroblasts, correlated with the concentration as well as rate of release of exogenously administered NOX. This increase in DSBs did not correlate with an increase in cell death or apoptosis in our tumor cell line. Finally, this lack of apoptosis was found to correlate with inhibition of caspase activity upon exposure to thiol- but not NONOate-based NOX donor compounds. CONCLUSIONS: Genotoxicity appears to be highly interrelated with both the concentration and kinetic delivery of NOX. Moreover, alterations in cell apoptosis can be seen as a consequence of the explicit mechanisms of NOX delivery. These findings lend credence to the hypothesis that NOX may play an important role in tumor progression, and underscores potential pitfalls which should be considered when developing NOX-based chemotherapeutic agents.  相似文献   

3.
4.
A rapid, sensitive and reliable gravity-flow alkaline elution assay was developed to detect DNA strand breaks in cultured Madin-Darby bovine kidney epithelial cells. Elution was completed within 2 h without the use of pumps. The system was validated by exposing the cells to X-irradiation (25-1500 R) which resulted in a significant dose dependent response (p less than 0.05) with excellent correlation (r-0.93). The assay reliably detected the DNA damage of seven genotoxic carcinogens. In general, the measured DNA damage was dose dependent and significantly different from control values for all genotoxic carcinogens tested. Six non-genotoxic compounds were tested and showed no detectable DNA damage.  相似文献   

5.
Genome stability in eukaryotic cells is maintained through efficient DNA damage repair pathways, which have to access and utilize chromatin as their natural template. Here we investigate the role of chromatin assembly factor 1 (CAF-1) and its interacting protein, PCNA, in the response of quiescent human cells to DNA double-strand breaks (DSBs). The expression of CAF-1 and PCNA is dramatically induced in quiescent cells upon the generation of DSBs by the radiomimetic drug bleocin (a bleomycin compound) or by ionizing radiation. This induction depends on DNA-PK. CAF-1 and PCNA are recruited to damaged chromatin undergoing DNA repair of single- and double-strand DNA breaks by the base excision repair and nonhomologous end-joining pathways, respectively, in the absence of extensive DNA synthesis. CAF-1 prepared from repair-proficient quiescent cells after induction by bleocin mediates nucleosome assembly in vitro. Depletion of CAF-1 by RNA interference in bleocin-treated quiescent cells in vivo results in a significant loss of cell viability and an accumulation of DSBs. These results support a novel and essential role for CAF-1 in the response of quiescent human cells to DSBs, possibly by reassembling chromatin following repair of DNA strand breaks.  相似文献   

6.
A second class II AP endonuclease, APEX2, possesses strong 3'-5' exonuclease and 3'-phosphodiesterase activities but only very weak AP-endonuclease activity. APEX2 associates with proliferating cell nuclear antigen (PCNA), and the progression of S phase of the cell cycle is accompanied by its expression. APEX2-null mice exhibit severe dyslymphopoiesis in thymus as well as moderate dyshematopoiesis and growth retardation. Comparative gene expression profiling of wild-type and APEX2-null mice using an oligonucleotide microarray revealed that APEX2-null thymus has significantly altered gene expression profiles, reflecting its altered populations of thymocytes. Beyond these altered populations, APEX2-null thymus exhibits significant alterations in expression of genes involved in DNA replication, recombination and repair, including Apex1, Exo1 and Fen1 as well as master genes for the DNA damage response, such as E2f1, Chek1, and proapoptotic genes. We therefore examined the extent of DNA strand breakage, and found that both of single-strand breaks detected as comets and double-strand breaks detected as gammaH2AX foci were significantly higher in frequency in most APEX2-null thymocytes compared to wild-type thymocytes. This higher frequency of DNA breaks was accompanied by increased expression of PCNA and increased phosphorylation of p53 at Ser23 and to a lesser extent, at Ser18. The present study clearly demonstrates that APEX2-null lymphocytes have a higher frequency of DNA breaks, indicating that APEX2 may play an important role(s) during their generation and/or repair.  相似文献   

7.
8.
Ionizing radiation can lead to DNA double-strand breaks (DSBs) which belong to the most dangerous forms of damage to the DNA. Cells possess elaborate repair mechanisms and react in a complex manner to the emergence of DSBs. Experiments have shown that gene expression levels in irradiated cells are changed, and thousands of radiation-responsive genes have been identified. On the other hand, recent studies have shown that gene expression is tightly connected to the three-dimensional organization of the genome. In this work, we analyzed the chromatin organization in the cell nuclei before and after exposure to ionizing radiation with an expression-dependent folding model. Our results indicate that the alteration of the chromosome organization on the scale of a complete chromosome is rather limited despite the expression level change of a large number of genes. We further modelled breaks within sub-compartments of the model chromosomes and showed that entropic changes caused by a break lead to increased mobility of the break sites and help to locate break ends further to the periphery of the sub-compartments. We conclude that the changes in the chromatin structure after irradiation are limited to local scales and demonstrate the importance of entropy for the behaviour of break ends.  相似文献   

9.
Gastroesophageal reflux disease has been implicated in the pathogenesis of adenocarcinoma of the oesophagus. The same applies to laryngopharyngeal reflux (LPR) and squamous cell cancer of the head and neck, but so far, this link has not been proven. The impact of low pH and bile acids has not been studied extensively in cells other than oesophageal cancer cell lines and tissue. The aims of this study were to investigate the pathogenic potential of reflux and its single components on the mucosa of the upper respiratory tract. We measured DNA stability in human miniorgan cultures (MOCs) and primary epithelial cell cultures (EpCs) in response to reflux by the alkaline comet assay. As matrix metalloproteinases (MMPs) are involved in extracellular matrix remodelling processes and may contribute to cancer progression, we studied the expression of MMP1, -9, and -14 in MOCs, EpC, UM-SCC-22B, and FADUDD. DNA strand breaks (DNA-SBs) increased significantly at low pH and after incubation with human or artificial gastric juice. Single incubation with glycochenodeoxycholic acid also showed a significant increase in DNA-SBs. In epithelial cell cultures, human gastric juice increased the number of DNA-SBs at pH 4.5 and 5.5. Artificial gastric juice significantly up regulated the gene expression of MMP9. Western blot analysis confirmed the results of gene expression analysis, but the up regulation of MMP1, -9, and -14 was donor-specific. Reflux has the ability to promote genomic instability and may contribute to micro environmental changes suitable for the initiation of malignancy. Further functional gene analysis may elucidate the role of laryngopharyngeal reflux in the development of head neck squamous cell carcinoma (HNSCC).  相似文献   

10.
Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant with potential carcinogenicity. It has been shown that BaP, upon UVA irradiation, synergistically induced oxidative DNA damage, but other DNA damage was not confirmed. In this study, we examined whether coexposure to BaP plus UVA induces double strand breaks (DSBs) using xrs-5 cells, deficient in the repair of DSBs (Ku80 mutant), and whether Ku translocates involving the formation of DSBs. BaP plus UVA had a significant cytotoxic effect on CHO-K1 cells and an even more drastic effect on Ku80-deficient, xrs-5 cells, suggesting that the DSBs were generated by coexposure to BaP plus UVA. The DSBs were repaired in CHO-K1 cells within 30 min, but not in xrs-5 cells, indicating the involvement of a non-homologous end joining, which needs Ku proteins. Furthermore, we succeeded in visualizing that Ku80 rapidly assembled to the exposed region, in which DSBs might be generated, and clarified that the presence of both Ku70 and Ku80 was important for their accumulation.  相似文献   

11.
Antigenic variation is an immune evasion strategy used by Trypanosoma brucei that results in the periodic exchange of the surface protein coat. This process is facilitated by the movement of variant surface glycoprotein genes in or out of a specialized locus known as bloodstream form expression site by homologous recombination, facilitated by blocks of repetitive sequence known as the 70-bp repeats, that provide homology for gene conversion events. DNA double strand breaks are potent drivers of antigenic variation, however where these breaks must fall to elicit a switch is not well understood. To understand how the position of a break influences antigenic variation we established a series of cell lines to study the effect of an I-SceI meganuclease break in the active expression site. We found that a DNA break within repetitive regions is not productive for VSG switching, and show that the break position leads to a distinct gene expression profile and DNA repair response which dictates how antigenic variation proceeds in African trypanosomes.  相似文献   

12.
Ionizing radiation induces both isolated DNA lesions and clustered damages-multiple closely spaced lesions (strand breaks, oxidized purines, oxidized pyrimidines, or abasic sites within a few helical turns). Such clusters are postulated to be difficult to repair and thus potentially lethal or mutagenic lesions. Using highly purified enzymes that cleave DNA at specific classes of damage and electrophoretic assays developed for quantifying isolated and clustered damages in high molecular length genomic DNAs, we determined the relative frequencies of total lesions and of clustered damages involving both strands, and the composition and origin of such clusters. The relative frequency of isolated vs clustered damages depends on the identity of the lesion, with approximately 15-18% of oxidized purines, pyrimidines, or abasic sites in clusters recognized by Fpg, Nth, or Nfo proteins, respectively, but only about half that level of frank single strand breaks in double strand breaks. Oxidized base clusters and abasic site clusters constitute about 80% of complex damages, while double strand breaks comprise only approximately 20% of the total. The data also show that each cluster results from a single radiation (track) event, and thus clusters will be formed at low as well as high radiation doses.  相似文献   

13.
The neutral filter elution assay, for measurement of DNA double strand breakage, has been calibrated using mouse L cells and Chinese hamster V79 cells labelled with [125I]dUrd and then held at liquid nitrogen temperature to accumulate decays. The basis of the calibration is the observation that each 125I decay, occurring in DNA, produces a DNA double strand break. Linear relationships between 125I decays per cell and lethal lesions per cell (minus natural logarithm survival) and the level of elution, were found. Using the calibration data, it was calculated that the yield of DNA double strand breaks after X-irradiation of both cell types was from 6 to 9 X 10(-12) DNA double strand breaks per Gy per dalton of DNA, for doses greater than 6 Gy. Neutral filter elution and survival data for X-irradiated and 125I-labelled cells suggested that the relationships between lethal lesions and DNA double strand breakage were significantly different for both cell types. An attempt was made to study the repair kinetics for 125I-induced DNA double strand breaks, but was frustrated by the rapid DNA degradation which occurs in cells that have been killed by the freezing-thawing process.  相似文献   

14.
1. In this study, DNA from haemolymph cells of Mytilus galloprovincialis Lam., as well as from L1210 (murine leukemia) mouse cells was investigated utilizing the technique of the alkaline unwinding of the double stranded DNA molecule. 2. The data show that DNA of haemolymph cells from the marine invertebrate has an unwinding time and, therefore, a molecular weight considerably lower than that of DNA of mammalian cells. 3. The exposure of the cells from mussel haemolymph and from mouse L1210 to a genotoxic compound such as dimethylsulfate results in DNA damage and consequently in a reduction of the unwinding time. 4. These results suggest that the fluorimetric DNA unwinding assay can be used in studies concerning the damage of DNA of marine organisms induced by genotoxic compounds or environmental factors.  相似文献   

15.
Ataxia telangiectasia (ATM) mutated and Artemis, the proteins defective in ataxia telangiectasia and a class of Radiosensitive-Severe Combined Immunodeficiency (RS-SCID), respectively, function in the repair of DNA double strand breaks (DSBs), which arise in heterochromatic DNA (HC-DSBs) following exposure to ionizing radiation (IR). Here, we examine whether they have protective roles against oxidative damage induced and/or endogenously induced DSBs. We show that DSBs generated following acute exposure of G0/G1 cells to the oxidative damaging agent, tert-butyl hydroperoxide (TBH), are repaired with fast and slow components of similar magnitude to IR-induced DSBs and have a similar requirement for ATM and Artemis. Strikingly, DSBs accumulate in ATM(-/-) mouse embryo fibroblasts (MEFs) and in ATM or Artemis-defective human primary fibroblasts maintained for prolonged periods under confluence arrest. The accumulated DSBs localize to HC-DNA regions. Collectively, the results provide strong evidence that oxidatively induced DSBs arise in HC as well as euchromatic DNA and that Artemis and ATM function in their repair. Additionally, we show that Artemis functions downstream of ATM and is dispensable for HC-relaxation and for pKAP-1 foci formation. These findings are important for evaluating the impact of endogenously arising DNA DSBs in ATM and Artemis-deficient patients.  相似文献   

16.
Genome integrity is maintained by a network of DNA damage response pathways, including checkpoints and DNA repair processes. In Saccharomyces cerevisiae, the BRCT domain-containing protein Rtt107/Esc4 is required for the restart of DNA replication after successful repair of DNA damage and for cellular resistance to DNA-damaging agents. In addition to its well characterized interaction with the endonuclease Slx4, Rtt107 interacts with a number of other DNA repair and recombination proteins. These include the evolutionarily conserved SMC5/6 complex, which is involved in numerous chromosome maintenance activities, such as DNA repair, chromosome segregation, and telomere function. The interaction between Rtt107 and the SMC5/6 complex was mediated through the N-terminal BRCT domains of Rtt107 and the Nse6 subunit of SMC5/6 and was independent of methyl methane sulfonate-induced damage and Slx4. Supporting a shared function in the DNA damage response, Rtt107 was required for recruitment of SMC5/6 to DNA double strand breaks. However, this functional relationship did not extend to other types of DNA lesions such as protein-bound nicks. Interestingly, Rtt107 was phosphorylated when SMC5/6 function was compromised in the absence of DNA-damaging agents, indicating a connection beyond the DNA damage response. Genetic analyses revealed that, although a subset of Rtt107 and SMC5/6 functions was shared, these proteins also contributed independently to maintenance of genome integrity.  相似文献   

17.
Double strand break (DSB) recognition is the first step in the DSB damage response and involves activation of ataxia telangiectasia-mutated (ATM) and phosphorylation of targets such as p53 to trigger cell cycle arrest, DNA repair, or apoptosis. It was reported that activation of ATM- and Rad3-related (ATR) kinase by DSBs also occurs in an ATM-dependent manner. On the other hand, Ku70/80 is known to participate at a later time point in the DSB response, recruiting DNA-PKcs to facilitate non-homologous end joining. Because Ku70/80 has a high affinity for broken DNA ends and is abundant in nuclei, we examined their possible involvement in other aspects of the DSB damage response, particularly in modulating the activity of ATM and other phosphatidylinositol (PI) 3-related kinases during DSB recognition. We thus analyzed p53(Ser18) phosphorylation in irradiated Ku-deficient cells and observed persistent phosphorylation in these cells relative to wild type cells. ATM or ATR inhibition revealed that this phosphorylation is mainly mediated by ATM-dependent ATR activity at 2 h post-ionizing radiation in wild type cells, whereas in Ku-deficient cells, this occurs mainly through direct ATM activity, with a secondary contribution from ATR via a novel ATM-independent mechanism. Using ATM/Ku70 double-null cell lines, which we generated, we confirmed that ATM-independent ATR activity contributed to persistent phosphorylation of p53(Ser18) in Ku-deficient cells at 12 h post-ionizing radiation. In summary, we discovered a novel role for Ku70/80 in modulating ATM-dependent ATR activation during DSB damage response and demonstrated that these proteins confer a protective effect against ATM-independent ATR activation at later stages of the DSB damage response.  相似文献   

18.
Acute (2 h) exposure of rats to a 60 Hz magnetic field (flux densities 0.1, 0.25, and 0.5 mT) caused a dose-dependent increase in DNA strand breaks in brain cells of the animals (assayed by a microgel electrophoresis method at 4 h postexposure). An increase in single-strand DNA breaks was observed after exposure to magnetic fields of 0.1, 0.25, and 0.5 mT, whereas an increase in double-strand DNA breaks was observed at 0.25 and 0.5 mT. Because DNA strand breaks may affect cellular functions, lead to carcinogenesis and cell death, and be related to onset of neurodegenerative diseases, our data may have important implications for the possible health effects of exposure to 60 Hz magnetic fields. Bioelectromagnetics 18:156–165, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Lin W  Wei X  Xue H  Kelimu M  Tao R  Song Y  Zhou Z 《Mutation research》2000,466(2):187-195
Nitric oxide (NO) as well as its donors has been shown to generate mutation and DNA damage in in vitro assays. The objective of this study was to identify that DNA single-strand breaks (SSBs) could be elicited by NO, not only in vitro but also in vivo. The alkaline single-cell gel electrophoresis (SCGE) was performed to examine the DNA damage in g12 cells and the cells isolated from the organs of mice exposed to sodium nitroprusside (SNP). A modified method, in which neither collagenase nor trypsin was necessary, was used to prepare the single-cell suspension isolated from organs of mice. Results showed that the exposure of g12 cells to 0.13-0.5 micromol/ml SNP with S9 for 1 h induced a concentration-dependent increase in DNA SSBs in g12 cells. The significant increase in DNA migration and comet frequency has appeared in the cells isolated from the spleen, thymus, and peritoneal macrophages of mice after injecting i.p. SNP in the dosage range of 0.67-6.0 mg/kg b.wt for 1 h. However, no obvious increase in DNA strand breaks was observed in the cells isolated from the liver, kidney, lung, brain and heart obtained from the same treated mice. These results suggested that DNA SSBs could be induced by NO in some cells both in vivo and in vitro. There were organ differences in sensitivity in the mice exposed to NO. Spleen, thymus, and macrophages might be the important targets of NO.  相似文献   

20.
Cadmium (Cd) is a toxic heavy metal of continuing occupational and environmental concern with a wide variety of adverse effects. Several studies have shown that cadmium produces DNA strand breaks, DNA-protein cross-links, oxidative DNA damage, chromosomal aberrations, dysregulation of gene expression resulting in enhanced proliferation, depressed apoptosis and/or altered DNA repair. This study was undertaken to investigate the ability of cadmium chloride (CdCl(2)) and cadmium sulphate (CdSO(4)) to induce point mutations in codon 12 of the K-ras protooncogene assessed by polymerase chain reaction-single strand conformation polymorphisms (PCR-SSCP) and RFLP-enriched PCR methods. Also their genotoxic effects were analyzed by the comet assay and sister chromatid exchanges test. The human lung fibroblast cell line MRC-5 was used for the experiments. Sister chromatid exchanges assay (SCEs) frequencies were significantly increased in cells exposed to cadmium salts in relation to controls (p<0.001). Despite the slow increment observed in the three comet parameters considered when cells were treated with cadmium chloride, significant differences between groups were only found in the variable comet moment (CM) (p<0.005). On the other hand, when cells were exposed to cadmium sulphate, the Kruskal-Wallis test showed highly significant differences between groups for migration, tail moment and comet moment parameters (p<0.001). Nevertheless, a null or weak point mutation induction in K-ras protooncogene was detected using polymerase chain reaction-low ionic strength-single strand conformation polymorphisms (PCR-LIS-SSCP) and RFLP-enriched PCR methods when cells were treated with cadmium salts. Thus, inorganic cadmium produces genotoxicity in human lung fibroblast MRC-5 cells, in the absence of significant point mutation of the K-ras gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号