首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The newly defined phytohormones strigolactones (SLs) were recently shown to act as regulators of root development. Their positive effect on root-hair (RH) elongation enabled examination of their cross talk with auxin and ethylene. Analysis of wild-type plants and hormone-signaling mutants combined with hormonal treatments suggested that SLs and ethylene regulate RH elongation via a common regulatory pathway, in which ethylene is epistatic to SLs. The SL and auxin hormonal pathways were suggested to converge for regulation of RH elongation; this convergence was suggested to be mediated via the ethylene pathway, and to include regulation of auxin transport.Key words: strigolactone, auxin, ethylene, root, root hair, lateral rootStrigolactones (SLs) are newly identified phytohormones that act as long-distance shoot-branching inhibitors (reviewed in ref. 1). In Arabidopsis, SLs have been shown to be regulators of root development and architecture, by modulating primary root elongation and lateral root formation.2,3 In addition, they were shown to have a positive effect on root-hair (RH) elongation.2 All of these effects are mediated via the MAX2 F-box.2,3In addition to SLs, two other plant hormones, auxin and ethylene, have been shown to affect root development, including lateral root formation and RH elongation.46 Since all three phytohormones (SLs, auxin and ethylene) were shown to have a positive effect on RH elongation, we examined the epistatic relations between them by examining RH length.7 Our results led to the conclusion that SLs and ethylene are in the same pathway regulating RH elongation, where ethylene may be epistatic to SLs.7 Moreover, auxin signaling was shown to be needed to some extent for the RH response to SLs: the auxin-insensitive mutant tir1-1,8 was less sensitive to SLs than the wild type under low SL concentrations.7On the one hand, ethylene has been shown to induce the auxin response,912 auxin synthesis in the root apex,11,12 and acropetal and basipetal auxin transport in the root.4,13 On the other, ethylene has been shown to be epistatic to SLs in the SL-induced RH-elongation response.7 Therefore, it might be that at least for RH elongation, SLs are in direct cross talk with ethylene, whereas the cross talk between SL and auxin pathways may converge through that of ethylene.7 The reduced response to SLs in tir1-1 may be derived from its reduced ethylene sensitivity;7,14 this is in line with the notion of the ethylene pathway being a mediator in the cross talk between the SL and auxin pathways.The suggested ethylene-mediated convergence of auxin and SLs may be extended also to lateral root formation, and may involve regulation of auxin transport. In the root, SLs have been suggested to affect auxin efflux,3,15 whereas ethylene has been shown to have a positive effect on auxin transport.4,13 Hence, it might be that in the root, the SLs'' effect on auxin flux is mediated, at least in part, via the ethylene pathway. Ethylene''s ability to increase auxin transport in roots was associated with its negative effect on lateral root formation: ethylene was suggested to enhance polar IAA transport, leading to alterations in the quantity of auxin that unloads into the tissues to drive lateral root formation.4 Under conditions of sufficient phosphate, SL''s effect was similar to that of ethylene: SLs reduced the appearance of lateral roots; this was explained by their ability to change auxin flux.3 Taken together, one possibility is that the SLs'' ability to affect auxin flux and thereby lateral root formation in the roots is mediated by induction of ethylene synthesis.To conclude, root development may be regulated by a network of auxin, SL and ethylene cross talk.7 The possibility that similar networks exist elsewhere in the SLs'' regulation of plant development, including shoot architecture, cannot be excluded.  相似文献   

7.
The conserved eukaryotic protein SGT1 (suppressor of G2 allele of skp1) participates in diverse physiological processes such as cell cycle progression in yeast, plant immunity against pathogens and plant hormone signalling. Recent genetic and biochemical studies suggest that SGT1 functions as a novel co-chaperone for cytosolic/nuclear HSP90 and HSP70 molecular chaperones in the folding and maturation of substrate proteins. Since proteins containing the leucine-rich repeat (LRR) protein-protein interaction motif are overrepresented in SGT1-dependent phenomena, we consider whether LRR-containing proteins are preferential substrates of an SGT1/HSP70/HSP90 complex. Such a chaperone organisation is reminiscent of the HOP/HSP70/HSP90 machinery which controls maturation and activation of glucocorticoid receptors in animals. Drawing on this parallel, we discuss the possible contribution of an SGT1-chaperone complex in the folding and maturation of LRR-containing proteins and its evolutionary consequences for the emergence of novel LRR interaction surfaces.Key words: heat shock protein, SGT1, co-chaperone, HSP90, HSP70, leucine-rich repeat, LRR, resistance, SCF, ubiquitinThe proper folding and maturation of proteins is essential for cell viability during de novo protein synthesis, translocation, complex assembly or under denaturing stress conditions. A complex machinery composed of molecular chaperones (heat-shock proteins, HSPs) and their modulators known as co-chaperones, catalyzes these protein folding events.1,2 In animals, defects in the chaperone machinery is implicated in an increasing number of diseases such as cancers, susceptibility to viruses, neurodegenerative disease and cystic fibrosis, and thus it has become a major pharmacological target.3,4 In plants, molecular genetic studies have identified chaperones and co-chaperones as components of various physiological responses and are now starting to yield important information on how chaperones work. Notably, processes in plant innate immunity rely on the HSP70 and HSP9057 chaperones as well as two recently characterised co-chaperones, RAR1 (required for Mla12 resistance) and SGT1 (suppressor of G2 allele of skp1).811SGT1 is a highly conserved and essential co-chaperone in eukaryotes and is organized into three structural domains: a tetratricopeptide repeat (TPR), a CHORD/SGT1 (CS) and an SGT1-specific (SGS) domain (Fig. 1A). SGT1 is involved in a number of apparently unrelated physiological responses ranging from cell cycle progression and adenylyl cyclase activity in yeast to plant immunity against pathogens, heat shock tolerance and plant hormone (auxin and jasmonic acid) signalling.79,12,13 Because the SGT1 TPR domain is able to interact with Skp1, SGT1 was initially believed to be a component of SCF (Skp1/Cullin/F-box) E3 ubiquitin ligases that are important for auxin/JA signalling in plants and cell cycle progression in yeast.13,14 However, mutagenesis of SGT1 revealed that the TPR domain is dispensable for plant immunity and auxin signalling.15 Also, SGT1-Skp1 interaction was not observed in Arabidopsis.13 More relevant to SGT1 functions appear to be the CS and SGS domains.16 The former is necessary and sufficient for RAR1 and HSP90 binding. The latter is the most conserved of all SGT1 domains and the site of numerous disabling mutations.14,16,17Open in a separate windowFigure 1Model for SGT1/chaperone complex functions in the folding of LRR-containing proteins. (A) The structural domains of SGT1, their sites of action (above) and respective binding partners (below) are shown. N- and C-termini are indicated. TPR, tetratricopeptide repeat; CS, CHORD/SGT1; SGS, SGT1-specific. (B) Conceptual analogy between steroid receptor folding by the HOP/chaperone machinery and LRR protein folding by the SGT1/chaperone machinery. LRR motifs are overrepresented in processes requiring SGT1 such as plant immune receptor signalling, yeast adenylyl cyclase activity and plant or yeast SCF (Skp1/Cullin/F-box) E3 ubiquitin ligase activities. (C) Opposite forces drive LRR evolution. Structure of LRRs 16 to 18 of the F-box auxin receptor TIR1 is displayed as an illustration of the LRR folds.30 Leucine/isoleucine residues (side chain displayed in yellow) are under strong purifying selection and build the hydrophobic LRR backbone (Left). By contrast, solvent-exposed residues of the β-strands define a polymorphic and hydrophilic binding surface conferring substrate specificity to the LRR (Right) and are often under diversifying selection.We recently demonstrated that Arabidopsis SGT1 interacts stably through its SGS domain with cytosolic/nuclear HSP70 chaperones.7 The SGS domain was both necessary and sufficient for HSP70 binding and mutations affecting SGT1-HSP70 interaction compromised JA/auxin signalling and immune responses. An independent in vitro study also found interaction between human SGT1 and HSP70.18 The finding that SGT1 protein interacts directly with two chaperones (HSP90/70) and one co-chaperone (RAR1) reinforces the notion that SGT1 behaves as a co-chaperone, nucleating a larger chaperone complex that is essential for eukaryotic physiology. A future challenge will be to dissect the chaperone network at the molecular and subcellular levels. In plant cells, SGT1 localization appears to be highly dynamic with conditional nuclear localization7 and its association with HSP90 was recently shown to be modulated in vitro by RAR1.16A co-chaperone function suits SGT1 diverse physiological roles better than a specific contribution to SCF ubiquitin E3 ligases. Because SGT1 does not affect HSP90 ATPase activity, SGT1 was proposed rather as a scaffold protein.16,19 In the light of our findings and earlier studies,20 SGT1 is reminiscent of HOP (Hsp70/Hsp90 organizing protein) which links HSP90 and HSP70 activities and mediates optimal substrate channelling between the two chaperones (Fig. 1B).21 While the contribution of the HSP70/HOP/HSP90 to the maturation of glucocorticoid receptors is well established,21 direct substrates of an HSP70/SGT1/HSP90 complex remain elusive.It is interesting that SGT1 appears to share a functional link with leucine-rich repeat- (LRR) containing proteins although LRR domains are not so widespread in eukaryotes. For example, plant SGT1 affects the activities of the SCFTIR1 and SCFCOI1 E3 ligase complexes whose F-box proteins contain LRRs.13 Moreover, plant intracellular immune receptors comprise a large group of LRR proteins that recruit SGT1.8,9 LRRs are also found in yeast adenylyl cyclase Cyr1p and the F-box protein Grr1p which is required for SGT1-dependent cyclin destruction during G1/S transition.12,14 Yeast 2-hybrid interaction assays also revealed that yeast and plant SGT1 tend to associate directly or indirectly with LRR proteins.12,22,23 We speculate that SGT1 bridges the HSP90-HSC70 chaperone machinery with LRR proteins during complex maturation and/or activation. The only other structural motif linked to SGT1 are WD40 domains found in yeast Cdc4p F-box protein and SGT1 interactors identified in yeast two-hybrid screens.12What mechanisms underlie a preferential SGT1-LRR interaction? HSP70/SGT1/HSP90 may have co-evolved to assist specifically in folding and maturation of LRR proteins. Alternatively, LRR structures may have an intrinsically greater need for chaperoning activity to fold compared to other motifs. These two scenarios are not mutually exclusive. The LRR domain contains multiple 20 to 29 amino acid repeats, forming an α/β horseshoe fold.24 Each repeat is rich in hydrophobic leucine/isoleucine residues which are buried inside the structure and form the structural backbone of the motif (Fig. 1C, left). Such residues are under strong purifying selection to preserve structure. These hydrophobic residues would render the LRR a possible HSP70 substrate.25 By contrast, hydrophilic solvent- exposed residues of the β strands build a surface which confers ligand recognition specificity of the LRRs (Fig. 1C). In many plant immune receptors for instance, these residues are under diversifying selection that is likely to favour the emergence of novel pathogen recognition specificities in response to pathogen evolution.26 The LRR domain of such a protein has to survive such antagonist selection forces and yet remain functional. Under strong selection pressure, LRR proteins might need to accommodate less stable LRRs because their recognition specificities are advantageous. This could be the point at which LRRs benefit most from a chaperoning machinery such as the HSP90/SGT1/HSP70 complex. This picture is reminiscent of the genetic buffering that HSP90 exerts on many traits to mask mutations that would normally be deleterious to protein folding and/or function, as revealed in Drosophila and Arabidopsis.27 It will be interesting to test whether the HSP90/SGT1/HSP70 complex acts as a buffer for genetic variation, favouring the emergence of novel LRR recognition surfaces in, for example, highly co-evolved plant-pathogen interactions.28,29  相似文献   

8.
Auxin is a phytohormone essential for plant development. Due to the high redundancy in auxin biosynthesis, the role of auxin biosynthesis in embryogenesis and seedling development, vascular and flower development, shade avoidance and ethylene response were revealed only recently. We previously reported that a vitamin B6 biosynthesis mutant pdx1 exhibits a short-root phenotype with reduced meristematic zone and short mature cells. By reciprocal grafting, we now have found that the pdx1 short root is caused by a root locally generated signal. The mutant root tips are defective in callus induction and have reduced DR5::GUS activity, but maintain relatively normal auxin response. Genetic analysis indicates that pdx1 mutant could suppress the root hair and root growth phenotypes of the auxin overproduction mutant yucca on medium supplemented with tryptophan (Trp), suggesting that the conversion from Trp to auxin is impaired in pdx1 roots. Here we present data showing that pdx1 mutant is more tolerant to 5-methyl anthranilate, an analogue of the Trp biosynthetic intermediate anthranilate, demonstrating that pdx1 is also defective in the conversion from anthranilate to auxin precursor tryptophan. Our data suggest that locally synthesized auxin may play an important role in the postembryonic root growth.Key words: auxin synthesis, root, PLP, PDX1The plant hormone auxin modulates many aspects of growth and development including cell division and cell expansion, leaf initiation, root development, embryo and fruit development, pattern formation, tropism, apical dominance and vascular tissue differentiation.13 Indole-3-acetic acid (IAA) is the major naturally occurring auxin. IAA can be synthesized in cotyledons, leaves and roots, with young developing leaves having the highest capacity.4,5Auxin most often acts in tissues or cells remote from its synthetic sites, and thus depends on non-polar phloem transport as well as a highly regulated intercellular polar transport system for its distribution.2The importance of local auxin biosynthesis in plant growth and development has been masked by observations that impaired long-distance auxin transport can result in severe growth or developmental defects.3,6 Furthermore, a few mutants with reduced free IAA contents display phenotypes similar to those caused by impaired long-distance auxin transport. These phenotypes include defective vascular tissues and flower development, short primary roots and reduced apical dominance, or impaired shade avoidance and ethylene response.715 Since these phenotypes most often could not be rescued by exogenous auxin application, it is difficult to attribute such defects to altered local auxin biosynthesis. By complementing double, triple or quadruple mutants of four Arabidopsis shoot-abundant auxin biosynthesis YUCCA genes with specific YUCCA promoters driven bacterial auxin biosynthesis iaaM gene, Cheng et al. provided unambiguous evidence that auxin biosynthesis is indispensable for embryo, flower and vascular tissue development.8,13 Importantly, it is clear that auxin synthesized by YUCCAs is not functionally interchangeable among different organs, supporting the notion that auxin synthesized by YUCCAs mainly functions locally or in a short range.6,8,13The central role of auxin in root meristem patterning and maintenance is well documented,1,2,16 but the source of such IAA is still unclear. When 14C-labeled IAA was applied to the five-day-old pea apical bud, the radioactivity could be detected in lateral root primordia but not the apical region of primary roots.17 Moreover, removal of the shoot only slightly affected elongation of the primary root, and localized application of auxin polar transport inhibitor naphthylphthalamic acid (NPA) at the primary root tip exerted more profound inhibitory effect on root elongation than at any other site.18 These results suggest that auxin generated near the root tip may play a more important role in primary root growth than that transported from the shoot. In line with this notion, Arabidopsis roots have been shown to harbor multiple auxin biosynthesis sites including root tips and the region upward from the tip.4Many steps of tryptophan synthesis and its conversion to auxin involve transamination reactions, which require the vitamin B6 pyridoxal 5-phosphate (PLP) as a cofactor. We previously reported that the Arabidopsis mutant pdx1 that is defective in vitamin B6 biosynthesis displays dramatically reduced primary root growth with smaller meristematic zone and shorter mature cortical cells.19 In the current investigation, we found that the root tips of pdx1 have reduced cell division capability and reduced DR5::GUS activity, although the induction of this reporter gene by exogenous auxin was not changed. Reciprocal grafting indicates that the short-root phenotype of pdx1 is caused by a root local rather than shoot generated factor(s). Importantly, pdx1 suppresses yucca mutant, an auxin overproducer, in root hair proliferation although it fails to suppress the hypocotyl elongation phenotype.20 Our work thus demonstrated that pdx1 has impaired root local auxin biosynthesis from tryptophan. To test whether the synthesis of tryptophan is also affected in pdx1 mutant, we planted pdx1 together with wild-type seeds on Murashige and Skoog (MS) medium supplemented with 5-mehtyl-anthranilate (5-MA), an analogue of the Trp biosynthetic intermediate anthranilate.21 Although pdx1 seedlings grew poorly under the control conditions, the growth of wild-type seedlings was more inhibited than that of the pdx1 seedlings on 10 µM 5-MA media (Fig. 1A–D). Compared with the elongated primary root on MS, wild-type seedlings showed very limited root growth on 5-MA (Fig. 1E). The relatively increased tolerance to 5-MA of pdx1 thus indicates that the pdx1 mutant may be defective in Trp biosynthesis, although amino acid analysis of the bulked seedlings did not find clear changes in Trp levels in the mutants (our unpublished data).Open in a separate windowFigure 1The pdx1 mutant seedlings are relatively less sensitive to toxic 5-methyl anthranilate (5-MA). (A and C) Five-day-old seedlings of the wild type (Col-0) (A) or pdx1 (C) on MS medium. (B and D) Five-day-old seedlings of the wild type (B) or pdx1 (D) on MS medium supplemented with 10 µM 5-MA. (E) Eight-day-old seedlings of the wild type or pdx1 on MS medium without or with 10 µM 5-MA supplement. Sterilized seeds were planted directly on the indicated medium and after two days of cold treatment, the plates were incubated under continuous light at 22–24°C before taking pictures.We reported that PDX1 is required for tolerance to oxidative stresses in Arabidopsis.19 Interestingly, redox homeostasis appears to play a critical role in Arabidopsis root development. The glutathione-deficient mutant root meristemless1 (rml1) and the vitamin C-deficient mutant vitamin C1 (vtc1) both have similar stunted roots.22,23 Nonetheless, pdx1 is not rescued by either glutathione or vitamin C19 suggesting that the pdx1 short-root phenotype may not be resulted from a general reduction of antioxidative capacity. Interestingly, ascorbate oxidase is found to be highly expressed in the maize root quiescent center.24 This enzyme can oxidatively decarboxylate auxin in vitro, suggesting that the quiescent center may be a site for metabolizing auxin to control its homeostasis.25 It is therefore likely that the reduced auxin level in pdx1 root tips could be partially caused by increased auxin catabolism resulted from reduced vitamin B6 level. We thus conducted experiments to test this possibility. A quiescent center-specific promoter WOX5 driven bacterial auxin biosynthetic gene iaaH26 was introduced into pdx1 mutant. The transgenic seeds were planted on media supplemented with different concentrations of indoleacetamide (IAM), the substrate of iaaH protein. Although promotion of lateral root growth was observed at higher IAM concentrations, which indicates increased tryptophan-independent auxin production from the transgene, no change in root elongation was observed between pdx1 with or without the WOX5::iaaH transgene at any concentration of IAM tested (data not shown), suggesting that the pdx1 short-root phenotype may not be due to increased auxin catabolism.Taken together, in addition to auxin transport; temporally, spatially or developmentally coordinated local auxin biosynthesis defines the plant growth and its response to environmental changes.8,14,15  相似文献   

9.
10.
11.
There is increasing evidence that immunophilins function as key regulators of plant development. One of the best investigated members, the multi-domain FKBP TWISTED DWARF1 (TWD1)/FKBP42, has been shown to reside on both the vacuolar and plasma membranes where it interacts in mirror image with two pairs of ABC transporters, MRP1/ MRP2 and PGP1/PGP19(MDR1), respectively. Twisted dwarf1 and pgp1/pgp19 mutants display strongly overlapping phenotypes, including reduction and disorientation of growth, suggesting functional interaction.In a recent work using plant and heterologous expression systems, TWD1 has been demonstrated to modulate PGP-mediated export of the plant hormone auxin, which controls virtually all plant developmental processes. Here we summarize recent molecular models on TWD1 function in plant development and PGP-mediated auxin tranport and discuss open questions.Key Words: Twisted Dwarf1, plant development, auxin, immunophilin, P-glycoprotein, ABC transporterFK506-binding Proteins (FKBPs), together with unrelated cyclophilins, belong to the immunophilins, an ancient and ubiquitous protein family.1,4,5 They were first described as receptors for immunosuppressive drugs in animal and human cells, FK506 and cyclosporin A, respectively.1 All FKBP-type immunophilins share a characteristic peptidyl-prolyl cis-trans isomerase domain (PPIase domain or FKBD, Fig. 2A) making protein folding a key feature among immunophilins.2 The best investigated example, the human cytosolic single-domain FKBP12, modulates Ca2+ release channels6,7 and associates with the cell cycle regulator TGF-β.8 Furthermore, the human FKBP12/FK506 complex is known to bind and inhibit calcineurin activity,9 leading to immune response inhibition. However, not all single- and multiple-domain FKBPs own folding activity and, interestingly, many form distinct protein complexes with diverse functions.35Open in a separate windowFigure 2Model of TWISTED DWARF 1 interacting proteins. (A) Domain structure of TWD1 and putative interacting proteins. FKBD, FK506-binding domain: TPR, tetratricopeptide repeat; CaM(-BD, calmodulin-binding domain; MA, membrane anchor. For details, see text. (B) Functional TWD1-ABC transporter complexes on both the vacuolar and plasma membrane. While for TWD1/PGP pairs, the positive regulatory role on auxin transport was demonstrated,18 the modulation of MRP-mediated vacuolar import of glutathion conjugates (GS-X) was established using mammalian test substrates17 because the in vivo substrates are unknown. Note that C-terminal nucleotide binding folds of MRP- and PGP-like ABC transporters interact with distinct functional domains of TWD1, the TPR and FKBD, respectively. The native auxin, IAAH, gets trapped by deprotonization upon uptake into the cell. Export is catalyzed by secondary active export via PIN-like efflux carriers15 and/or by primary active, ATP-driven P-glycoproteins (PGPs, right panel); loss-of TWD1 function abolishes PGP-mediated auxin export (left panel).  相似文献   

12.
Fab1/PIKfyve produces Phosphatidylinositol-3,5-bisphosphate (PtdIns (3,5) P2) from Phosphatidylinositol-3-phosphate (PtdIns 3-P), and is involved not only in vacuole/lysosome homeostasis, but also in transporting various proteins to the vacuole or recycling proteins on the plasma membrane (PM) through the use of endosomes in a variety of eukaryotic cells. We previously demonstrated that Arabidopsis FAB1A/B functions as PtdIns-3,5-kinase in both Arabidopsis and fission yeast and plays a key role in vacuolar acidification and endocytosis. Although the conditional FAB1A/B knockdown mutant revealed an auxin-resistant phenotype to a membrane-impermeable auxin, 2,4-dichlorophenoxyacetic acid (2,4-D), the mutant did not exhibit this phenotype to a membrane-permeable artificial auxin, naphthalene 1-acetic acid (NAA). The difference in the sensitivities to 2,4-D and NAA is similar to those of the auxin-resistant mutants such as aux1. Taken together, these results suggest that impairment of the function of Arabidopsis FAB1A/B might cause a defect in the membrane recycling capabilities of the auxin transporters and inhibit proper auxin transport into the cells in Arabidopsis.Key words: auxin signaling, auxin transporter, recycling of plasma membrane proteinsPhosphatidylinositol-3,5-bisphosphate (PtdIns (3,5) P2) exists on the external membrane of multi-vesicular bodies (MVBs) at very low levels in eukaryotic cells,1,2 and plays key roles in endomembrane homeostasis including endocytosis, vacuole/lysosome formation and vacuolar acidification.1,3 PtdIns (3,5) P2 deficiency causes an enlarged vacuolar structure in yeast and mammalian cells.4,5 FAB1 forms a protein complex with its regulatory molecules, and synthesizes PtdIns (3,5) P2 from PtdIns 3P.69 In Arabidopsis, there are four Fab1/PIKfyve orthologs (FAB1A, FAB1B, FAB1C and FAB1D) in the genome, and the double homozygous mutant of FAB1A and FAB1B exhibited the male gametophyte lethal phenotype.10 Previously, we reported that conditional loss-of-function and gain-of-function mutants of FAB1A/B impair endomembrane homeostasis and reveal various developmental phenotypes.11 Interestingly, lateral root formation by exogenous auxin, which is known as a typical auxin-responsive phenotype, was largely impaired when FAB1A/B expression was conditionally downregulated or upregulated. From these results, we speculated that the defect in the endocytosis process in fab1a/b mutants might inhibit the precise recycling process of auxin transporters on the PM, thereby inhibiting proper auxin transport into the plant cells.11 In this report, we tested this hypothesis to assess the sensitivity on auxin-dependent lateral root formation to a membrane permeable auxin, NAA, in the fab1a/b knockdown mutant.  相似文献   

13.
14.
15.
16.
Flowering is a developmental process, which is influenced by chemical and environmental stimuli. Recently, our research established that the Arabidopsis SUMO E3 ligase, AtSIZ1, is a negative regulator of transition to flowering through mechanisms that reduce salicylic acid (SA) accumulation and involve SUMO modification of FLOWERING LOCUS D (FLD). FLD is an autonomous pathway determinant that represses the expression of FLOWERING LOCUS C (FLC), a floral repressor. This addendum postulates mechanisms by which SIZ1-mediated SUMO conjugation regulates SA accumulation and FLD activity.Key words: SIZ1, SA, flowering, SUMO, FLD, FLCSUMO conjugation and deconjugation are post-translational processes implicated in plant defense against pathogens, abscisic acid (ABA) and phosphate (Pi) starvation signaling, development, and drought and temperature stress tolerance, albeit only a few of the modified proteins have been identified.18 The Arabidopsis AtSIZ1 locus encodes a SUMO E3 ligase that regulates floral transition and leaf development.8,9 siz1 plants accumulate substantial levels of SA, which is the primary cause for dwarfism and early short-day flowering exhibited by these plants.1,9 How SA promotes transition to flowering is not yet known but apparently, it is through a mechanism that is independent of the known floral signaling pathways.9,10 Exogenous SA reduces expression of AGAMOUS-like 15 (AGL15), a floral repressor that functions redundantly with AGL18.11,12 A possible mechanism by which SA promotes transition to flowering may be by repressing expression of AGL15 and AGL18 (Fig. 1).Open in a separate windowFigure 1Model of how SUMO conjugation and deconjugation regulate plant development in Arabidopsis. SIZ1 and Avr proteins regulate biosynthesis and accumulation of SA, a plant stress hormone that is involved in plant innate immunity, leaf development and regulation of flowering time. SA promotes transition to flowering may through AGL15/AGL18 dependent and independent pathways. FLC expression is activated by FRIGIDA but repressed by the autonomous pathway gene FLD, and SIZ1-mediated sumoylation of FLD represses its activity. Lines with arrows indicate upregulation (activation), and those with bars identify downregulation (repression).siz1 mutations also cause constitutive induction of pathogenesis-related protein genes leading to enhanced resistance against biotrophic pathogens.1 Several bacterial type III effector proteins, such as YopJ, XopD and AvrXv4, have SUMO isopeptidase activity.1315 PopP2, a member of YopJ/AvrRxv bacterial type III effector protein family, physically interacts with the TIR-NBS-LRR type R protein RRS1, and possibly stabilizes the RRS1 protein.16 Phytopathogen effector and plant R protein interactions lead to increased SA biosynthesis and accumulation, which in turn activates expression of pathogenesis-related proteins that facilitate plant defense.17 SIZ1 may participate in SUMO conjugation of plant R proteins to regulate Avr and R protein interactions leading to SA accumulation, which, in turn, affects phenotypes such as diseases resistance, dwarfism and flowering time (Fig. 1).Our recent work revealed also that AtSIZ1 facilitates FLC expression, negatively regulating flowering.9 AtSIZ1 promotes FLC expression by repressing FLD activity.9 Site-specific mutations that prevent SUMO1/2 conjugation to FLD result in enhanced activity of the protein to represses FLC expression, which is associated with reduced acetylation of histone 4 (H4) in FLC chromatin.9 FLD, an Arabidopsis ortholog of Lysine-Specific Demethylase 1 (LSD1), is a floral activator that downregulates methylation of H3K4 in FLC chromatin and represses FLC expression.18,19 Interestingly, bacteria expressing recombinant FLD protein did not demethylate H3K4me2, inferring that the demethylase activity requires additional co-factors as are necessary for LSD1.18,20 Together, these results suggest that SIZ1-mediated SUMO modification of FLD may affect interactions between FLD and co-factors, which is necessary for FLC chromatin modification.Despite our results that implicate SA in flowering time control, how SIZ1 regulates SA accumulation and the identity of the effectors involved remain to be discovered. In addition, it remains to be determined if SIZ1 is involved in other mechanisms that modulate FLD activity and FLC expression, or the function of other autonomous pathway determinants.  相似文献   

17.
18.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

19.
20.
The prion hypothesis13 states that the prion and non-prion form of a protein differ only in their 3D conformation and that different strains of a prion differ by their 3D structure.4,5 Recent technical developments have enabled solid-state NMR to address the atomic-resolution structures of full-length prions, and a first comparative study of two of them, HET-s and Ure2p, in fibrillar form, has recently appeared as a pair of companion papers.6,7 Interestingly, the two structures are rather different: HET-s features an exceedingly well-ordered prion domain and a partially disordered globular domain. Ure2p in contrast features a very well ordered globular domain with a conserved fold, and—most probably—a partially ordered prion domain.6 For HET-s, the structure of the prion domain is characterized at atomic-resolution. For Ure2p, structure determination is under way, but the highly resolved spectra clearly show that information at atomic resolution should be achievable.Key words: prion, NMR, solid-state NMR, MAS, structure, Ure2p, HET-sDespite the large interest in the basic mechanisms of fibril formation and prion propagation, little is known about the molecular structure of prions at atomic resolution and the mechanism of propagation. Prions with related properties to the ones responsible for mammalian diseases were also discovered in yeast and funghi8,9 which provide convenient model system for their studies. Prion proteins described include the mammalian prion protein PrP, Ure2p,10 Rnq1p,11 Sup35,12 Swi1,13 and Cyc8,14 from bakers yeast (S. cervisiae) and HET-s from the filamentous fungus P. anserina. The soluble non-prion form of the proteins characterized in vitro is a globular protein with an unfolded, dynamically disordered N- or C-terminal tail.1518 In the prion form, the proteins form fibrillar aggregates, in which the tail adopts a different conformation and is thought to be the dominant structural element for fibril formation.Fibrills are difficult to structurally characterize at atomic resolution, as X-ray diffraction and liquid-state NMR cannot be applied because of the non-crystallinity and the mass of the fibrils. Solid-state NMR, in contrast, is nowadays well suited for this purpose. The size of the monomer, between 230 and 685 amino-acid residues for the prions of Figure 1, and therefore the number of resonances in the spectrum—that used to be large for structure determination—is now becoming tractable by this method.Open in a separate windowFigure 1Prions identified today and characterized as consisting of a prion domain (blue) and a globular domain (red).Prion proteins characterized so far were found to be usually constituted of two domains, namely the prion domain and the globular domain (see Fig. 1). This architecture suggests a divide-and-conquer approach to structure determination, in which the globular and prion domain are investigated separately. In isolation, the latter, or fragments thereof, were found to form β-sheet rich structures (e.g., Ure2p(1-89),6,19 Rnq1p(153-405)20 and HET-s(218-289)21). The same conclusion was reached by investigating Sup35(1-254).22 All these fragements have been characterized as amyloids, which we define in the sense that a significant part of the protein is involved in a cross-beta motif.23 An atomic resolution structure however is available presently only for the HET-s prion domain, and was obtained from solid-state NMR24 (vide infra). It contains mainly β-sheets, which form a triangular hydrophobic core. While this cross-beta structure can be classified as an amyloid, its triangular shape does deviate significantly from amyloid-like structures of smaller peptides.23Regarding the globular domains, structures have been determined by x-ray crystallography (Ure2p25,26 and HET-s27), as well as NMR (mammal prions15,2830). All reveal a protein fold rich in α-helices, and dimeric structures for the Ure2 and HET-s proteins. The Ure2p fold resembles that of the β-class glutathione S-transferases (GST), but lacks GST activity.25It is a central question for the structural biology of prions if the divide-and-conquer approach imposed by limitations in current structural approaches is valid. Or in other words: can the assembly of full-length prions simply be derived from the sum of the two folds observed for the isolated domains?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号