首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Nuclear Factor-Kappa B [NFκB] activation triggers the elevation of various pro-angiogenic factors that contribute to the development and progression of diabetic vasculopathies. It has been demonstrated that vascular endothelial growth factor [VEGF] activates NFκB signaling pathway. Under the ischemic microenvironments, hypoxia-inducible factor-1 [HIF-1] upregulates the expression of several proangiogenic mediators, which play crucial roles in ocular pathologies. Whereas YC-1, a soluble guanylyl cyclase [sGC] agonist, inhibits HIF-1 and NFκB signaling pathways in various cell and animal models. Throughout this investigation, we examined the molecular link between VEGF and NFκB under a hypoxia-independent microenvironment in human retinal microvascular endothelial cells [hRMVECs]. Our data indicate that VEGF promoted retinal neovasculogenesis via NFκB activation, enhancement of its DNA-binding activity, and upregulating NFκB/p65, SDF-1, CXCR4, FAK, αVβ3, α5β1, EPO, ET-1, and MMP-9 expression. Conversely, YC-1 impaired the activation of NFκB and its downstream signaling pathways, via attenuating IκB kinase phosphorylation, degradation and activation, and thus suppressing p65 phosphorylation, nuclear translocation, and inhibiting NFκB-DNA binding activity. We report for the first time that the nexus between VEGF and NFκB is implicated in coordinating a scheme that upregulates several pro-angiogenic molecules, which promotes retinal neovasculogenesis. Our data may suggest the potential use of YC-1 to attenuate the deleterious effects that are associated with hypoxia/ischemia-independent retinal vasculopathies.  相似文献   

16.
17.
HIV-1 Tat protein reprograms cellular gene expression of infected as well as uninfected cells apart from its primary function of transactivating HIV-1 long terminal repeat (LTR) promoter by binding to a nascent RNA stem–loop structure known as the transactivator response region (TAR). Tat also induces chromatin remodeling of proviral LTR-mediated gene expression by recruiting histone acetyl transferases to the chromatin, which results in histone acetylation. Furthermore several studies have shown convincing evidence that Tat can transactivate HIV-1 gene expression in the absence of TAR, the molecular mechanism of which remains to be elucidated. Here we show a direct interaction of Tat with nuclear factor kappa B (NFκB) enhancer, a global regulatory sequence for many cellular genes both in vitro and in vivo. This interaction not only provides a novel molecular basis to explain TAR-independent transactivation in HIV-1, but also points toward the potential mechanism of Tat- mediated modulation of cellular genes.  相似文献   

18.
The influence of ultraviolet B (UVB) radiation on transglutaminase 1 (TGase 1), a major factor that regulates skin keratinization, has not been sufficiently characterized especially at the gene or protein level. Thus, we determined whether UVB affects the expression of TGase 1 in human keratinocytes and clarified the intracellular stress signaling mechanism(s) involved. Exposure of human keratinocytes to UVB significantly up-regulated the expression of TGase 1 at the gene and protein levels. Treatment with inhibitors of p38, MEK, JNK or NFκB significantly abolished the UVB-stimulated protein expression of TGase 1. Treatment with astaxanthin immediately after UVB irradiation did not attenuate the increased phosphorylation of Ser536/Ser468NFκBp65, c-Jun, ATK-2 and CK2, and did not abrogate the increased or diminished protein levels of c-Jun/c-Fos or I-κBα, respectively. However, the same treatment with astaxanthin significantly abolished the UVB-stimulated expression of TGase 1 protein, which was accompanied by the attenuated phosphorylation of Thr565/Ser376/Ser360MSK1, Ser276NFκBp65 and Ser133CREB. The MSK1 inhibitor H89 significantly down-regulated the increased protein expression of TGase 1 in UVB-exposed human keratinocytes, which was accompanied by an abrogating effect on the increased phosphorylation of Ser276NFκBp65 and Ser133CREB but not Thr565/Ser376/Ser360MSK1. Transfection of human keratinocytes with MSK1 siRNA suppressed the UVB-stimulated protein expression of TGase 1. These findings suggest that the UVB-stimulated expression of TGase 1 is mediated predominantly via the NFκB pathway and can be attenuated through a specific interruption of the p38/MSK1/NFκBp65Ser276 axis.  相似文献   

19.
ΔNp63α, the dominant negative isoform of the p63 family is an essential survival factor in head and neck squamous cell carcinoma. This isoform has been shown to be downregulated in response to several DNA damaging agents, thereby enabling an effective cellular response to genotoxic agents. Here, we identify a key molecular mechanism underlying the regulation of ΔNp63α expression in response to extrinsic stimuli, such as chemotherapeutic agents. We show that ΔNp63α interacts with NFκB in presence of cisplatin. We find that NFκB promotes ubiquitin-mediated proteasomal degradation of ΔNp63α. Chemotherapy-induced stimulation of NFκB leads to degradation of ΔNp63α and augments trans-activation of p53 family-induced genes involved in the cellular response to DNA damage. Conversely, inhibition of NFκB with siRNA-mediated silencing NFκB expression attenuates chemotherapy induced degradation of ΔNp63α. These data demonstrate that NFκB plays an essential role in regulating ΔNp63α in response to extrinsic stimuli. Our findings suggest that the activation of NFκB may be a mechanism by which levels of ΔNp63α are reduced, thereby rendering the cells susceptible to cell death in the face of cellular stress or DNA damage.Key words: ΔNp63α, NFκB, ubiquitination, cisplatin, head and neck cancer  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号