首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
All eukaryotic and some prokaryotic ClC anion transport proteins have extensive cytoplasmic C-termini containing two cystathionine-β-synthase (CBS) domains. CBS domain secondary structure is highly conserved and consists of two a-helices and three b-strands arranged as b1-a1-b2-b3-a2. ClC CBS domain mutations cause muscle and bone disease and alter ClC gating. However, the precise functional roles of CBS domains and the structural bases by which they regulate ClC function are poorly understood. CLH-3a and CLH-3b are C. elegans ClC anion channel splice variants with strikingly different biophysical properties. Splice variation occurs at cytoplasmic N- and C-termini and includes several amino acids that form a2 of the second CBS domain (CBS2). We demonstrate that interchanging a2 between CLH-3a and CLH-3b interchanges their gating properties. The "R-helix" of ClC proteins forms part of the ion conducting pore and selectivity filter and is connected to the cytoplasmic C-terminus via a short stretch of cytoplasmic amino acids termed the "R-helix linker". C-terminus conformation changes could cause R-helix structural rearrangements via this linker. X-ray structures of three ClC protein cytoplasmic C-termini suggest that a2 of CBS2 and the R-helix linker could be closely apposed and may therefore interact. We found that mutating apposing amino acids in a2 and the R-helix linker of CLH-3b was sufficient to give rise to CLH-3a-like gating. We postulate that the R-helix linker interacts with CBS2 a2, and that this putative interaction provides a pathway by which cytoplasmic C-terminus conformational changes induce conformational changes in membrane domains that in turn modulate ClC function.  相似文献   

2.
Mammalian Ste20-like proline/alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinases phosphorylate and regulate cation-coupled Cl(-) cotransporter activity in response to cell volume changes. SPAK and OSR1 are activated via phosphorylation by upstream with-no-lysine (WNK) kinases. In Caenorhabditis elegans, the SPAK/OSR1 ortholog germinal center kinase (GCK)-3 binds to and regulates the activity of the cell volume- and meiotic cell cycle-dependent ClC anion channel CLH-3b. We tested the hypothesis that WNK kinases function in the GCK-3/CLH-3b signaling cascade. CLH-3b heterologously expressed in human embryonic kidney (HEK) cells was unaffected by coexpression with the single C. elegans WNK kinase, WNK-1, or kinase-dead WNK-1 dominant-negative mutants. RNA interference (RNAi) knockdown of the single Drosophila WNK kinase had no effect on the activity of CLH-3b expressed in Drosophila S2 cells. Similarly, RNAi silencing of C. elegans WNK-1 had no effect on basal or cell volume-sensitive activity of CLH-3b expressed endogenously in worm oocytes. Previous yeast 2-hybrid studies suggested that ERK kinases may function upstream of GCK-3. Pharmacological inhibition of ERK signaling disrupted CLH-3b activity in HEK cells in a GCK-3-dependent manner. RNAi silencing of the C. elegans ERK kinase MPK-1 or the ERK phosphorylating/activating kinase MEK-2 constitutively activated native CLH-3b. MEK-2 and MPK-1 play important roles in regulating the meiotic cell cycle in C. elegans oocytes. Cell cycle-dependent changes in MPK-1 correlate with the pattern of CLH-3b activation observed during oocyte meiotic maturation. We postulate that MEK-2/MPK-1 functions upstream from GCK-3 to regulate its activity during cell volume and meiotic cell cycle changes.  相似文献   

3.
The gelsolin family of actin regulatory proteins is activated by Ca(2+) to sever and cap actin filaments. Gelsolin has six homologous gelsolin-like domains (G1-G6), and Ca(2+)-dependent conformational changes regulate its accessibility to actin. Caenorhabditis elegans gelsolin-like protein-1 (GSNL-1) has only four gelsolin-like domains (G1-G4) and still exhibits Ca(2+)-dependent actin filament-severing and -capping activities. We found that acidic residues (Asp-83 and Asp-84) in G1 of GSNL-1 are important for its Ca(2+) activation. These residues are conserved in GSNL-1 and gelsolin and previously implicated in actin-severing activity of the gelsolin family. We found that alanine mutations at Asp-83 and Asp-84 (D83A/D84A mutation) did not disrupt actin-severing or -capping activity. Instead, the mutants exhibited altered Ca(2+) sensitivity when compared with wild-type GSNL-1. The D83A/D84A mutation enhanced Ca(2+) sensitivity for actin severing and capping and its susceptibility to proteolytic digestion, suggesting a conformational change. Single mutations caused minimal changes in its activity, whereas Asp-83 and Asp-84 were required to stabilize Ca(2+)-free and Ca(2+)-bound conformations, respectively. On the other hand, the D83A/D84A mutation suppressed sensitivity of GSNL-1 to phosphatidylinositol 4,5-bisphosphate inhibition. The structure of an inactive form of gelsolin shows that the equivalent acidic residues are in close contact with G3, which may maintain an inactive conformation of the gelsolin family.  相似文献   

4.
CLH-3a and CLH-3b are swelling-activated, alternatively spliced Caenorhabditis elegans ClC anion channels that have identical membrane domains but exhibit marked differences in their cytoplasmic NH2 and COOH termini. The major differences include a 71-amino acid CLH-3a NH2-terminal extension and a 270-amino acid extension of the CLH-3b COOH terminus. Splice variation gives rise to channels with striking differences in voltage, pH, and Cl sensitivity. On the basis of structural and functional insights gained from crystal structures of bacterial ClCs, we suggested previously that these functional differences are due to alternative splicing of the COOH terminus that may change the accessibility and/or function of pore-associated ion-binding sites. We recently identified a mutant worm strain harboring a COOH-terminal deletion mutation in the clh-3 gene. This mutation removes 101 COOH-terminal amino acids unique to CLH-3b and an additional 64 upstream amino acids shared by both channels. CLH-3b is expressed in the worm oocyte, which allowed us to characterize the mutant channel, CLH-3bC, in its native cellular environment. CLH-3bC exhibits altered voltage-dependent gating as well as pH and Cl sensitivity that resemble those of CLH-3a. This mutation also alters channel inhibition by Zn2+, prevents ATP depletion-induced activation, and dramatically reduces volume sensitivity. These results suggest that the deleted COOH-terminal region of CLH-3bC functions to modulate channel sensitivity to voltage and extracellular ions. This region also likely plays a role in channel regulation and cell volume sensitivity. Our findings contribute to a growing body of evidence indicating that cytoplasmic domains play key roles in the gating and regulation of eukaryotic ClCs. chloride; cell volume; voltage-gated anion channel  相似文献   

5.
6.
In this study we describe the expression and function of the two rat type-1 inositol 1,4,5-trisphosphate receptor (InsP3R) ligand binding domain splice variants (SI+/-/SII+). Receptor protein from COS-1 cells transfected with the type-1 InsP3R expression plasmids (pInsP3R-T1, pInsP3R-T1ALT) or control DNA were incorporated into planar lipid bilayers and the single channel properties of the recombinant receptors were defined. The unitary conductance of the two splice variants were approximately 290 pS with Cs+ as charge carrier and approximately 65 pS with Ca2+ as charge carrier. Both InsP3R expression products consistently behaved like those of the native type-1 receptor isoform isolated from cerebellum in terms of their InsP3, Ca2+, and heparin sensitivity. An InsP3 receptor ligand binding domain truncation lacking the 310 amino-terminal amino acids (pInsP3R-DeltaT1ALT) formed tetrameric complexes but failed to bind InsP3 with high affinity, and did not form functional Ca2+ channels when reconstituted in lipid bilayers. These data suggest that 1) the ligand binding alternative splice site is functionally inert in terms of InsP3 binding and single channel function, and 2) the single channel properties of the expressed recombinant type-1 channel are essentially identical to those of the native channel. This work establishes a foundation from which molecular/biophysical approaches can be used to define the structure-function properties of the InsP3 receptor channel family.  相似文献   

7.
There are two basic mechanisms that are associated with the maintenance of the telomere length, which endows cancer cells with unlimited proliferative potential. One mechanism, referred to as alternative lengthening of telomeres (ALT), accounts for approximately 10–15% of all human cancers. Tumours engaged in the ALT pathway are characterised by the presence of the single stranded 5′-C-rich telomeric overhang (C-overhang). This recently identified hallmark of ALT cancers distinguishes them from healthy tissues and renders the C-overhang as a clear target for anticancer therapy. We analysed structures of the 5′-C-rich and 3′-G-rich telomeric overhangs from human and Caenorhabditis elegans, the recently established multicellular in vivo model of ALT tumours. We show that the telomeric DNA from C. elegans and humans forms fundamentally different secondary structures. The unique structural characteristics of C. elegans telomeric DNA that are distinct not only from those of humans but also from those of other multicellular eukaryotes allowed us to identify evolutionarily conserved properties of telomeric DNA. Differences in structural organisation of the telomeric DNA between the C. elegans and human impose limitations on the use of the C. elegans as an ALT tumour model.  相似文献   

8.
N-Methyl-D-aspartate (NMDA) receptors are susceptible to open-channel block by dizolcipine (MK-801), ketamine and Mg(2+) and are permeable to Ca(2+). It is thought that a tryptophan residue in the second membrane-associated domain (M2) may form part of the binding site for open-channel blockers and contribute to Ca(2+) permeability. We tested this hypothesis using recombinant wild-type and mutant NMDA receptors expressed in HEK-293 cells. The tryptophan was mutated to a leucine (W-5L) in both the NMDAR1 and NMDAR2A subunits. MK-801 and ketamine progressively inhibited currents evoked by glutamate, and the rate of inhibition was increased by the W-5L mutation. An increase in open channel probability accounted for the acceleration. Fluctuation analysis of the glutamate-evoked current revealed that the NMDAR1 W-5L mutation increased channel mean open time, providing further evidence for an alteration in gating. However, the equilibrium affinities of Mg(2+) and ketamine were largely unaffected by the W-5L mutation, and Ca(2+) permeability was not decreased. Therefore, the M2 tryptophan residue of the NMDA channel is not involved in Ca(2+) permeation or the binding of open-channel blockers, but plays an important role in channel gating.  相似文献   

9.
10.
In Shaker K(+) channels depolarization displaces outwardly the positively charged residues of the S4 segment. The amount of this displacement is unknown, but large movements of the S4 segment should be constrained by the length and flexibility of the S3-S4 linker. To investigate the role of the S3-S4 linker in the ShakerH4Delta(6-46) (ShakerDelta) K(+) channel activation, we constructed S3-S4 linker deletion mutants. Using macropatches of Xenopus oocytes, we tested three constructs: a deletion mutant with no linker (0 aa linker), a mutant containing a linker 5 amino acids in length, and a 10 amino acid linker mutant. Each of the three mutants tested yielded robust K(+) currents. The half-activation voltage was shifted to the right along the voltage axis, and the shift was +45 mV in the case of the 0 aa linker channel. In the 0 aa linker, mutant deactivation kinetics were sixfold slower than in ShakerDelta. The apparent number of gating charges was 12.6+/-0.6 e(o) in ShakerDelta, 12.7+/-0.5 in 10 aa linker, and 12.3+/-0.9 in 5 aa linker channels, but it was only 5.6+/-0.3 e(o) in the 0 aa linker mutant channel. The maximum probability of opening (P(o)(max)) as measured using noise analysis was not altered by the linker deletions. Activation kinetics were most affected by linker deletions; at 0 mV, the 5 and 0 aa linker channels' activation time constants were 89x and 45x slower than that of the ShakerDelta K(+) channel, respectively. The initial lag of ionic currents when the prepulse was varied from -130 to -60 mV was 0.5, 14, and 2 ms for the 10, 5, and 0 aa linker mutant channels, respectively. These results suggest that: (a) the S4 segment moves only a short distance during activation since an S3-S4 linker consisting of only 5 amino acid residues allows for the total charge displacement to occur, and (b) the length of the S3-S4 linker plays an important role in setting ShakerDelta channel activation and deactivation kinetics.  相似文献   

11.
Mutations in the human ClC-2 Cl(-) channel have been described to influence its function dramatically. To test for naturally occurring gene variants in a human population and their functionality, all 24 CLCN2 exons from a Central African population were sequenced. Six single amino acid exchanges in the intracellular N-terminus (P48R, R68H), in the pore domain (G199A), or in the intracellular C-terminus (R646Q, R725W, R747H) were identified at low frequency. Heterologous expression of these polymorphisms in Xenopus laevis oocytes demonstrated their functional significance as determined by two-electrode voltage-clamp. The polymorphisms R68H, R725W, and R747H exhibited faster voltage-stimulated gating as compared to the wild type channel, resulting in higher steady state currents of R725W. Probably due to decreased surface expression P48R, R68H, and R646Q mutants generated lower currents than the wild type channels. The inward currents of the mutated channels R725W, R747H, and G199A failed to increase during hypotonic swelling, a defect paralleled by impaired swelling-accelerated voltage-gating in one mutant (G199A). In conclusion, the Africans' gene pool comprises CLCN2 gene variants in the N-terminus, the C-terminus or the pore domain that affect surface expression and voltage- or cell-swelling-stimulated channel gating.  相似文献   

12.
CRM197, CRM176, and CRM228 are products of single or multiple missense mutations in the diphtheria toxin gene. CRM197 differs from wild-type toxin in 1 amino acid residue of the fragment A region, and also CRM176 and CRM228 have amino acid substitution(s) in fragment A. We compared the binding properties of CRM197 to toxin-sensitive Vero cells with those of diphtheria toxin and other CRMs. Nicked CRM197 is about 50 times more effective than intact CRM197 in inhibiting the action of diphtheria toxin on sensitive cells, as shown by inhibition of diphtheria toxin cytotoxicity or inhibition of binding of 125I-diphtheria toxin. The binding of native toxin or other CRMs was not significantly affected by nicking. Moreover, the binding of CRM197 to cells was unaffected by ATP, although ATP clearly inhibits binding of diphtheria toxin, CRM176, and CRM228. Two kinds of hybrid protein were formed using fragment B of CRM197: one with fragment A of diphtheria toxin and one with fragment A of CRM228. ATP inhibited the binding of these hybrid proteins. Furthermore, the affinities of these hybrid proteins for diphtheria toxin-sensitive cells were the same as that of native toxin. Thus, it was concluded that the altered binding properties of CRM197 were due to alteration of fragment A and what the interaction of diphtheria toxin with ATP involves both fragments. The results also suggest that fragment A plays a role in diphtheria toxin-receptor interaction.  相似文献   

13.
Amodel peptide that their sequence corresponds to the linker part between domain III and IV of rat brain type IIA Na+ channel has been synthesized for the conformational affect study corresponded to different gated states of Na+ channel. Nuclear magnetic resonance spectra of local anesthetic (LA) diphenyl drugs, such as phenytoin, in presence of a model peptide in both phosphate buffer and phospholipid bicelles (dimyristotl phosphocholine/dihexanoyl phospholcholine), which micelles serve to mimic the peptide-lipid interactions, have been measured to obtain information of the interactions between selected drugs and model peptide. Molecular modeling is performed to help to provide possible conformational information about the polypeptide LIII-IV that may be critical for recognition and signal transduction of inactivated Na+ channel. The voltage-sensing mechanism of Na+ channel involves the movement of the inactivation particles (Ile, Phe, and Met) in the LIII-IV while binding to S4-S5 intracellular region within DIII and DIV. The movement of LIII-IV making its C-terminal residues, including Glu1492 and Glu1493, may aligned near and stabilize the LAs bound with their receptors.  相似文献   

14.
Kcv from the chlorella virus PBCV-1 is a viral protein that forms a tetrameric, functional K+ channel in heterologous systems. Kcv can serve as a model system to study and manipulate basic properties of the K+ channel pore because its minimalistic structure (94 amino acids) produces basic features of ion channels, such as selectivity, gating, and sensitivity to blockers. We present a characterization of Kcv properties at the single-channel level. In symmetric 100 mM K+, single-channel conductance is 114 ± 11 pS. Two different voltage-dependent mechanisms are responsible for the gating of Kcv. “Fast” gating, analyzed by β distributions, is responsible for the negative slope conductance in the single-channel current–voltage curve at extreme potentials, like in MaxiK potassium channels, and can be explained by depletion-aggravated instability of the filter region. The presence of a “slow” gating is revealed by the very low (in the order of 1–4%) mean open probability that is voltage dependent and underlies the time-dependent component of the macroscopic current.  相似文献   

15.
Vogt T 《FEBS letters》2004,561(1-3):159-162
A recently discovered, S-adenosyl-L-methionine and bivalent cation-dependent O-methyltransferase from the ice plant, Mesembryanthemum crystallinum, is involved in the methylation of various flavonoid and phenylpropanoid conjugates. Differences in regiospecificity as well as altered kinetic properties of the recombinant as compared to the native plant O-methyltransferase can be attributed to differences in the N-terminal part of the protein. Upon cleavage of the first 11 amino acids, the recombinant protein displays essentially the same substrate specificity as observed earlier for the native plant enzyme. Product formation of the newly designed, truncated recombinant enzyme is consistent with light-induced accumulation of methylated flavonoid conjugates in the ice plant. Therefore, substrate affinity and regiospecificity of an O-methyltransferase in vivo and in vitro can be controlled by cleavage of an N-terminal domain.  相似文献   

16.
The III-IV linker (L(III-IV)) of the rat brain sodium channel is critical for fast inactivation, possibly forming a fast inactivation particle. Inactivation can be disrupted by mutation of a conserved alanine at position 1329 in the S4-S5 loop of domain III. Combination of a charged mutation at 1329 with a compensatory (opposite) charge mutation at position 1489 in L(III-IV) partially restores inactivation of the channel. The compensatory charge mutant channel has a single-channel mean open time that is similar to that of the wild-type channel and is approximately 50 times shorter than that of the L(III-IV) mutant channel. The results of thermodynamic cycle analysis indicate that the mutations in domain III S4-S5 and L(III-IV) have a coupling energy of 2.8 kcal/mol, indicating that the two mutations act interdependently. These data suggest that L(III-IV) interacts directly with A1329, which may form part of the docking site if L(III-IV) is a fast inactivation particle.  相似文献   

17.
Neutralizing Abs constitute a pivotal mechanism of the adaptive immune response against HIV-1 infection. Yet, most of the Abs that appear in the circulation during HIV infection are nonneutralizing. In this study, we report a dramatic change of the neutralizing properties of a human Ab reactive with the nonneutralizing epitope termed cluster I on the HIV-1 transmembrane protein gp41 when the Ab was produced in Chinese hamster ovary (CHO)-K1 cells. Our laboratory has previously reported that the Ab F240, when produced in a hybridoma, is nonneutralizing as assessed by standard neutralization assays. The F240 IgG1 Ab expressed in CHO cells acquired a strong neutralization activity against a broad range of HIV isolates without a change in immunoreactivity. Sequencing of the F240 mRNAs produced in the parental hybridoma and CHO cells revealed identical sequences, suggesting that acquired neutralization resulted from cell-specific posttranslational modifications. We found that the Ab produced by CHO cells is glycosylated to a greater extent than the parental Ab produced by the hybridoma. Moreover, treatment with peptide N-glycosidase F abrogated F240 neutralization, in an isolate-specific manner, but not Ab b12 neutralization. Interestingly, the F240 isotype-switched variants IgG3 and IgG4, also expressed in CHO cells, exhibited identical immunoreactivity to IgG1 isotypes but had clear differences in viral neutralization. These results suggest that structural features of the Ig molecule other than the primary sequence of the variable regions play a more prominent role in HIV neutralization than anticipated.  相似文献   

18.
ClC voltage-gated anion channels have been identified in bacteria, yeast, plants, and animals. The biophysical and structural properties of ClCs have been studied extensively, but relatively little is known about their precise physiological functions. Furthermore, virtually nothing is known about the signaling pathways and molecular mechanisms that regulate channel activity. The nematode Caenorhabditis elegans provides significant experimental advantages for characterizing ion channel function and regulation. We have shown previously that the ClC Cl- channel homologue CLH-3 is expressed in C. elegans oocytes, and that it is activated during meiotic maturation and by cell swelling. We demonstrate here that depletion of intracellular ATP or removal of Mg2+, experimental maneuvers that inhibit kinase function, constitutively activate CLH-3. Maturation- and swelling-induced channel activation are inhibited by type 1 serine/threonine phosphatase inhibitors. RNA interference studies demonstrated that the type 1 protein phosphatases CeGLC-7alpha and beta, both of which play essential regulatory roles in mitotic and meiotic cell cycle events, mediate CLH-3 activation. We have suggested previously that CLH-3 and mammalian ClC-2 are orthologues that play important roles in heterologous cell-cell interactions, intercellular communication, and regulation of cell cycle-dependent physiological processes. Consistent with this hypothesis, we show that heterologously expressed rat ClC-2 is also activated by serine/threonine dephosphorylation, suggesting that the two channels have common regulatory mechanisms.  相似文献   

19.
During entry into host cells, poliovirus undergoes a receptor-mediated conformational transition to form 135S particles with irreversible exposure of VP4 capsid sequences and VP1 N termini. To understand the role of VP4 during virus entry, the fate of VP4 during infection by site-specific mutants at threonine-28 of VP4 (4028T) was compared with that of the parental Mahoney type 1 virus. Three virus mutants were studied: the entry-defective, nonviable mutant 4028T.G and the viable mutants 4028T.S and 4028T.V, in which residue threonine-28 was changed to glycine, serine, and valine, respectively. We show that mutant and wild-type (WT) VP4 proteins are localized to cellular membranes after the 135S conformational transition. Both WT and viable 4028T mutant particles interact with lipid bilayers to form ion channels, whereas the entry-defective 4028T.G particles do not. In addition, the electrical properties of the channels induced by the mutant viruses are different from each other and from those of WT Mahoney and Sabin type 3 viruses. Finally, uncoating and/or cytoplasmic delivery of the viral genome is altered in the 4028T mutants: the 4028T.G lethal mutant does not release its genome into the cytoplasm, and genome delivery is slower during infection by mutant 4028T.V 135S particles than by mutant 4028T.S or WT 135S particles. The distinctive electrical characteristics of the different 4028T mutant channels indicate that VP4 sequences might form part of the channel structure. The different entry phenotypes of these VP4 mutants suggest that the ion channels may be related to VP4's role during genome uncoating and/or delivery.  相似文献   

20.
Margittai M  Fasshauer D  Jahn R  Langen R 《Biochemistry》2003,42(14):4009-4014
Syntaxin 1a is a member of the SNARE superfamily of small, mostly membrane-bound proteins that mediate membrane fusion in all eukaryotic cells. Upon membrane fusion, syntaxin 1 forms a stable complex with its partner SNAREs. Syntaxin contains a C-terminal transmembrane domain, an adjacent SNARE motif that interacts with its partner SNAREs, and an N-terminal Habc domain. The Habc domain reversibly folds back upon the SNARE motif, resulting in a "closed" conformation that is stabilized by binding to the protein munc18. The SNARE motif and the Habc domain are separated by a linker region of about 40 amino acids. When syntaxin is complexed with munc18, the linker is structured and consists of a mix of turns and small alpha-helices. When syntaxin is complexed with its partner SNAREs, the Habc domain is dissociated, but the structure of the linker region is not known. Here we used site-directed spin labeling and EPR spectroscopy to determine the structure of the linker region of syntaxin in the SNARE complex. We found that the entire linker region of syntaxin is unstructured except for three residues at the N-terminal and six residues at the C-terminal boundary whereas the structures of the flanking regions in the Habc domain and the SNARE motif correspond to the high-resolution structures of the isolated fragments. We conclude that the linker region exhibits a high degree of conformational flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号