首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
VERNALIZATION INSENSITIVE 3 (VIN3) encodes a PHD domain chromatin remodelling protein that is induced in response to cold and is required for the establishment of the vernalization response in Arabidopsis thaliana.1 Vernalization is the acquisition of the competence to flower after exposure to prolonged low temperatures, which in Arabidopsis is associated with the epigenetic repression of the floral repressor FLOWERING LOCUS C (FLC).2,3 During vernalization VIN3 binds to the chromatin of the FLC locus,1 and interacts with conserved components of Polycomb-group Repressive Complex 2 (PRC2).4,5 This complex catalyses the tri-methylation of histone H3 lysine 27 (H3K27me3),4,6,7 a repressive chromatin mark that increases at the FLC locus as a result of vernalization.4,710 In our recent paper11 we found that VIN3 is also induced by hypoxic conditions, and as is the case with low temperatures, induction occurs in a quantitative manner. Our experiments indicated that VIN3 is required for the survival of Arabidopsis seedlings exposed to low oxygen conditions. We suggested that the function of VIN3 during low oxygen conditions is likely to involve the mediation of chromatin modifications at certain loci that help the survival of Arabidopsis in response to prolonged hypoxia. Here we discuss the implications of our observations and hypotheses in terms of epigenetic mechanisms controlling gene regulation in response to hypoxia.Key words: arabidopsis, VIN3, FLC, hypoxia, vernalization, chromatin remodelling, survival  相似文献   

2.
3.
In our recent paper in the Plant Journal, we reported that Arabidopsis thaliana lysophospholipase 2 (lysoPL2) binds acyl-CoA-binding protein 2 (ACBP2) to mediate cadmium [Cd(II)] tolerance in transgenic Arabidopsis. ACBP2 contains ankyrin repeats that have been previously shown to mediate protein-protein interactions with an ethylene-responsive element binding protein (AtEBP) and a farnesylated protein 6 (AtFP6). Transgenic Arabidopsis ACBP2-overexpressors, lysoPL2-overexpressors and AtFP6-overexpressors all display enhanced Cd(II) tolerance, in comparison to wild type, suggesting that ACBP2 and its protein partners work together to mediate Cd(II) tolerance. Given that recombinant ACBP2 and AtFP6 can independently bind Cd(II) in vitro, they may be able to participate in Cd(II) translocation. The binding of recombinant ACBP2 to [14C]linoleoyl-CoA and [14C]linolenoyl-CoA implies its role in phospholipid repair. In conclusion, ACBP2 can mediate tolerance to Cd(II)-induced oxidative stress by interacting with two protein partners, AtFP6 and lysoPL2. Observations that ACBP2 also binds lysophosphatidylcholine (lysoPC) in vitro and that recombinant lysoPL2 degrades lysoPC, further confirm an interactive role for ACBP2 and lysoPL2 in overcoming Cd(II)-induced stress.Key words: acyl-CoA-binding protein, cadmium, hydrogen peroxide, lysophospholipase, oxidative stressAcyl-CoA-binding proteins (ACBP1 to ACBP6) are encoded by a multigene family in Arabidopsis thaliana.1 These ACBP proteins are well studied in Arabidopsis in comparison to other organisms,14 and are located in various subcellular compartments.1 Plasma membranelocalized ACBP1 and ACBP2 contain ankyrin repeats that have been shown to function in protein-protein interactions.5,6 ACBP1 and ACBP2 which share 76.9% amino acid identity also confer tolerance in transgenic Arabidopsis to lead [Pb(II)] and Cd(II), respectively.1,5,7 Since recombinant ACBP1 and ACBP2 bind linolenoyl-CoA and linoleoyl-CoA in vitro, they may possibly be involved in phospholipid repair in response to heavy metal stress at the plasma membrane.5,7 In contrast, ACBP3 is an extracellularly-localized protein8 while ACBP4, ACBP5 and ACBP6 are localized to cytosol.9,10 ACBP1 and ACBP6 have recently been shown to be involved in freezing stress.9,11 ACBP4 and ACBP5 bind oleoyl-CoA ester and their mRNA expressions are lightregulated.12,13 Besides acyl-CoA esters, some ACBPs also bind phospholipids.9,11,13 To investigate the biological function of ACBP2, we have proceeded to establish its interactors at the ankyrin repeats, including AtFP6,5 AtEBP6 and now lysoPL2 in the Plant Journal paper. While the significance in the interaction of ACBP2 with AtEBP awaits further investigations, some parallels can be drawn between those of ACBP2 with AtFP6 and with lysoPL2.  相似文献   

4.
In young Arabidopsis seedlings, retrograde signaling from plastids regulates the expression of photosynthesis-associated nuclear genes in response to the developmental and functional state of the chloroplasts. The chloroplast-located PPR protein GUN1 is required for signalling following disruption of plastid protein synthesis early in seedling development before full photosynthetic competence has been achieved. Recently we showed that sucrose repression and the correct temporal expression of LHCB1, encoding a light-harvesting chlorophyll protein associated with photosystem II, are perturbed in gun1 mutant seedlings.1 Additionally, we demonstrated that in gun1 seedlings anthocyanin accumulation and the expression of the “early” anthocyanin-biosynthesis genes is perturbed. Early seedling development, predominantly at the stage of hypocotyl elongation and cotyledon expansion, is also affected in gun1 seedlings in response to sucrose, ABA and disruption of plastid protein synthesis by lincomycin. These findings indicate a central role for GUN1 in plastid, sucrose and ABA signalling in early seedling development.Key words: ABA, ABI4, anthocyanin, chloroplast, GUN1, retrograde signalling, sucroseArabidopsis seedlings develop in response to light and other environmental cues. In young seedlings, development is fuelled by mobilization of lipid reserves until chloroplast biogenesis is complete and the seedlings can make the transition to phototrophic growth. The majority of proteins with functions related to photosynthesis are encoded by the nuclear genome, and their expression is coordinated with the expression of genes in the chloroplast genome. In developing seedlings, retrograde signaling from chloroplasts to the nucleus regulates the expression of these nuclear genes and is dependent on the developmental and functional status of the chloroplast. Two classes of gun (genomes uncoupled) mutants defective in retrograde signalling have been identified in Arabidopsis: the first, which comprises gun2–gun5, involves mutations in genes encoding components of tetrapyrrole biosynthesis.2,3 The other comprises gun1, which has mutations in a nuclear gene encoding a plastid-located pentatricopeptide repeat (PPR) protein with an SMR (small MutS-related) domain near the C-terminus.4,5 PPR proteins are known to have roles in RNA processing6 and the SMR domain of GUN1 has been shown to bind DNA,4 but the specific functions of these domains in GUN1 are not yet established. However, GUN1 has been shown to be involved in plastid gene expression-dependent,7 redox,4 ABA1,4 and sucrose signaling,1,4,8 as well as light quality and intensity sensing pathways.911 In addition, GUN1 has been shown to influence anthocyanin biosynthesis, hypocotyl extension and cotyledon expansion.1,11  相似文献   

5.
6.
7.
8.
9.
10.
Plant defensins are small, highly stable, cysteine-rich peptides that constitute a part of the innate immune system primarily directed against fungal pathogens. Biological activities reported for plant defensins include antifungal activity, antibacterial activity, proteinase inhibitory activity and insect amylase inhibitory activity. Plant defensins have been shown to inhibit infectious diseases of humans and to induce apoptosis in a human pathogen. Transgenic plants overexpressing defensins are strongly resistant to fungal pathogens. Based on recent studies, some plant defensins are not merely toxic to microbes but also have roles in regulating plant growth and development.Key words: defensin, antifungal, antimicrobial peptide, development, innate immunityDefensins are diverse members of a large family of cationic host defence peptides (HDP), widely distributed throughout the plant and animal kingdoms.13 Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling.4 In the early 1990s, the first members of the family of plant defensins were isolated from wheat and barley grains.5,6 Those proteins were originally called γ-thionins because their size (∼5 kDa, 45 to 54 amino acids) and cysteine content (typically 4, 6 or 8 cysteine residues) were found to be similar to the thionins.7 Subsequent “γ-thionins” homologous proteins were indentified and cDNAs were cloned from various monocot or dicot seeds.8 Terras and his colleagues9 isolated two antifungal peptides, Rs-AFP1 and Rs-AFP2, noticed that the plant peptides'' structural and functional properties resemble those of insect and mammalian defensins, and therefore termed the family of peptides “plant defensins” in 1995. Sequences of more than 80 different plant defensin genes from different plant species were analyzed.10 A query of the UniProt database (www.uniprot.org/) currently reveals publications of 371 plant defensins available for review. The Arabidopsis genome alone contains more than 300 defensin-like (DEFL) peptides, 78% of which have a cysteine-stabilized α-helix β-sheet (CSαβ) motif common to plant and invertebrate defensins.11 In addition, over 1,000 DEFL genes have been identified from plant EST projects.12Unlike the insect and mammalian defensins, which are mainly active against bacteria,2,3,10,13 plant defensins, with a few exceptions, do not have antibacterial activity.14 Most plant defensins are involved in defense against a broad range of fungi.2,3,10,15 They are not only active against phytopathogenic fungi (such as Fusarium culmorum and Botrytis cinerea), but also against baker''s yeast and human pathogenic fungi (such as Candida albicans).2 Plant defensins have also been shown to inhibit the growth of roots and root hairs in Arabidopsis thaliana16 and alter growth of various tomato organs which can assume multiple functions related to defense and development.4  相似文献   

11.
12.
13.
Eukaryotic DNA polymerase η (Polη) confers ultraviolet (UV) resistance by catalyzing translesion synthesis (TLS) past UV photoproducts. Polη has been studied extensively in budding yeast and mammalian cells, where its interaction with monoubiquitylated proliferating cell nuclear antigen (PCNA) is necessary for its biological activity. Recently, in collaboration with other investigators, our laboratory demonstrated that Arabidopsis thaliana Polη is required for UV resistance in plants. Furthermore, the purified enzyme can perform TLS opposite a cyclobutane pyrimidine dimer and interacts with PCNA. Intriguingly, the biological activity of Polη in a heterologous yeast assay depends on co-expression with Arabidopsis PCNA2 and Polη sequences implicated in binding PCNA or ubiquitin. We suggest that interaction of Arabidopsis Polη with ubiquitylated PCNA2 is required for TLS past UV photoproducts by Polη.Key words: polymerase η, proliferating cell nuclear antigen, translesion synthesis, ubiquitin, Arabidopsis thaliana, ultraviolet radiationUltraviolet (UV)-induced pyrimidine dimers can block the progression of DNA replication forks potentially disrupting the replication machinery and resulting in cell death. For this reason, cells have evolved non-essential, low fidelity DNA polymerases (Pols) capable of copying damaged templates,1,2 a process termed translesion DNA synthesis (TLS). In budding yeast, TLS past UV photoproducts is catalyzed by Polη and Polζ (composed of the Rev3 catalytic and Rev7 accessory subunits), but also involves the Rev1 protein in an as yet undetermined role linked to Polζ.1,3,4 Yeast and human Polη replicates cyclobutane pyrimidine dimers (CPDs), in particular thymine-thymine (TT) CPDs, in a relatively error-free manner whereas Polζ is essential for UV mutagenesis implicating it in error-prone TLS.1,4,5Both UV resistance due to TLS and the polymerases responsible have been well-studied in yeast and mammalian cells over the past decade. Only more recently has evidence emerged that TLS may also contribute to UV resistance in plants. Arabidopsis thaliana POLH, REV1, REV3 and REV7 encode homologs of Polη, Rev1, Rev3 and Rev7, respectively.610 T-DNA insertions in POLH, REV1 or REV3 sensitise root growth to acute UV doses,68,10 and these mutations, as well as inactivation of REV7, increase the sensitivity of whole plants to longer term UV treatment.6,8 Interestingly, polh rev3 double mutants show an additive increase in UV sensitivity over that observed for polh and rev3 single mutants,6,10 potentially pointing to differences in the UV photoproducts bypassed by the two polymerases. That the enhanced UV sensitivity of the mutants may reflect a TLS deficiency is suggested by the finding that purified Arabidopsis Polη catalyzes primer extension and TLS past a TT CPD in vitro.6For TLS to occur, Polη must gain access to the replication machinery arrested at a UV photoproduct. It does so in yeast and mammalian cells by interacting with proliferating cell nuclear antigen (PCNA), the eukaryotic sliding clamp required for processive DNA replication.1,3,11, DNA damage or stalling of the replicative polymerase triggers monoubiquitylation of PCNA at lysine 164 by a complex of the E2 ubiquitin conjugase Rad6 and the E3 ubiquitin ligase Rad18.1,3,11,12 This modification increases the affinity of Polη for PCNA, with which it interacts via a single PCNA interacting peptide (PIP) box and a single ubiquitin-binding zinc finger (UBZ) domain.1,3In contrast to its yeast and mammalian counterparts, Polη from Arabidopsis and Oryza sativa (rice) has two PIP boxes and lacks a UBZ.6,9,10 Instead the two polymerases each possess two ubiquitin-binding motifs (UBMs) similar to those present in the Arabidopsis Rev1 protein and a vertebrate TLS polymerase, Pol., for which there is no homolog in Arabidopsis.6,13 Considerable differences in the sequences flanking the UBMs in Polη and Rev1 argue that Polη did not acquire its UBMs from Rev1, and so, although perhaps unique to plant Polη, their origin remains a mystery.The presence of PCNA- and ubiquitin-binding sequences in plant Polη hint that it may operate in TLS in a manner similar to that for Polη from yeast or mammalian cells. Indeed, three lines of evidence6 lead us to suggest that the Polη PIP boxes and UBMs likely function in binding ubiquitylated PCNA and this interaction is probably required for TLS past UV photoproducts by Arabidopsis Polη. First, Arabidopsis Polη interacts physically and in yeast two-hybrid assays with Arabidopsis PCNA1 and PCNA2. Second, expression in yeast of Arabidopsis cDNAs encoding Polη and PCNA2, but not PCNA1, fully complements the UV sensitivity conferred by elimination of yeast Polη. In vitro mutagenesis suggests the inability of Polη plus PCNA1 to restore UV resistance is due to a lysine at position 201 in PCNA1 but not PCNA2. In the three-dimensional structure of PCNA, amino acid 201 lies adjacent to lysine-164, the residue that is ubiquitylated in yeast and human PCNA. Thus, one possibility is that lysine-201 in PCNA1 prevents complementation of UV sensitivity by inhibiting ubiquitylation of lysine-164. Third, altering presumed critical residues in either of the two PIP boxes or UBM2 in Arabidopsis Polη also prevents restoration of UV resistance in Polη-deficient yeast cells.Several important parts of the puzzle remain to be solved. In particular, the ubiquitylation of plant PCNA has yet to be demonstrated, and the identity of the proteins that might monoubiquitylate plant PCNA is uncertain. Although Arabidopsis Rad6 homologs can ubiquitylate target proteins in vitro, there is no evidence that Arabidopsis PCNA1 or PCNA2 is a substrate, and Arabidopsis lacks a Rad18 homolog.14,15 Finally, if PCNA is ubiquitylated in planta, does this occur at lysine-164 in response to DNA damage or replication fork stalling, is the interaction of Polη with PCNA stimulated by this modification, and is an enhanced interaction mediated by the Polη UBMs?  相似文献   

14.
15.
16.
17.
Double fertilization, uniquely observed in plants, requires successful sperm cell delivery by the pollen tube to the female gametophyte, followed by migration, recognition and fusion of the two sperm cells with two female gametic cells. The female gametophyte not only regulates these steps but also controls the subsequent initiation of seed development. Previously, we reported that loss of LORELEI, which encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein, in the female reproductive tissues causes a delay in initiation of seed development. From these studies, however, it was unclear if embryos derived from fertilization of lre-5 gametophytes continued to lag behind wild-type during seed development. Additionally, it was not determined if the delay in initiation of seed development had any lingering effects during seed germination. Finally, it was not known if loss of LORELEI function affects seedling development given that LORELEI is expressed in eight-day-old seedlings. Here, we showed that despite a delay in initiation, lre-5/lre-5 embryos recover, becoming equivalent to the developing wild-type embryos beginning at 72 hours after pollination. Additionally, lre-5/lre-5 seed germination, and seedling and root development are indistinguishable from wild-type indicating that loss of LORELEI is tolerated, at least under standard growth conditions, in vegetative tissues.Key words: LORELEI, glycosylphosphatidylinositol (GPI)-anchored protein, embryogenesis, DD45, seed germination, primary and lateral root growth, seedling developmentDouble fertilization is unique to flowering plants. Upon female gametophyte reception of a pollen tube, the egg and central cells of the female gametophyte fuse with the two released sperm cells to form zygote and endosperm, respectively and initiate seed development.1 The female gametophyte controls seed development by (1) repressing premature central cell or egg cell proliferation until double fertilization is completed,13 (2) supplying factors that mediate early stages of embryo and endosperm development1,4,5 and (3) regulating imprinting of genes required for seed development.1,6The molecular mechanisms underlying female gametophyte control of early seed development are poorly understood. Although much progress has been made in identifying genes and mechanisms by which the female gametophyte represses premature central cell or egg cell proliferation until double fertilization is completed and regulates imprinting of genes required for seed development,1,6 only a handful of female gametophyte-expressed genes that affect early embryo7,8 and endosperm9 development after fertilization have been characterized. This is particularly important given that a large number of female gametophyte-expressed genes likely regulate early seed development.5We recently reported on a mutant screen for plants with reduced fertility and identification of a mutant that contained a large number of undeveloped ovules and very few viable seeds.10 TAIL-PCR revealed that this mutant is a new allele of LORELEI(LRE) [At4g26466].10,11 Four lre alleles have been reported;11 so, this mutant was designated lre-5.10 The Arabidopsis LORELEI protein contains 165 amino acids and possesses sequence features indicative of a glycosylphosphatidylinositol (GPI)-anchor containing cell surface protein. GPI-anchors serve as an alternative to transmembrane domains for anchoring proteins in cell membranes and GPI-anchored proteins participate in many functions including cell-cell signaling.12  相似文献   

18.
Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influencing autoimmunity and tolerance to transplants. Further understanding of the ability of fetal cells to cross both the placental and blood-brain barriers, to migrate into diverse tissues, and to differentiate into multiple cell types may also advance strategies for intravenous transplantation of stem cells for cytotherapeutic repair. Here we discuss hypotheses for how fetal cells cross the placental and blood-brain barriers and the persistence and distribution of fetal cells in the mother.Key Words: fetomaternal microchimerism, stem cells, progenitor cells, placental barrier, blood-brain barrier, adhesion, migrationMicrochimerism is the presence of a small population of genetically distinct and separately derived cells within an individual. This commonly occurs following transfusion or transplantation.13 Microchimerism can also occur between mother and fetus. Small numbers of cells traffic across the placenta during pregnancy. This exchange occurs both from the fetus to the mother (fetomaternal)47 and from the mother to the fetus.810 Similar exchange may also occur between monochorionic twins in utero.1113 There is increasing evidence that fetomaternal microchimerism persists lifelong in many child-bearing women.7,14 The significance of fetomaternal microchimerism remains unclear. It could be that fetomaternal microchimerism is an epiphenomenon of pregnancy. Alternatively, it could be a mechanism by which the fetus ensures maternal fitness in order to enhance its own chances of survival. In either case, the occurrence of pregnancy-acquired microchimerism in women may have implications for graft survival and autoimmunity. More detailed understanding of the biology of microchimeric fetal cells may also advance progress towards cytotherapeutic repair via intravenous transplantation of stem or progenitor cells.Trophoblasts were the first zygote-derived cell type found to cross into the mother. In 1893, Schmorl reported the appearance of trophoblasts in the maternal pulmonary vasculature.15 Later, trophoblasts were also observed in the maternal circulation.1620 Subsequently various other fetal cell types derived from fetal blood were also found in the maternal circulation.21,22 These fetal cell types included lymphocytes,23 erythroblasts or nucleated red blood cells,24,25 haematopoietic progenitors7,26,27 and putative mesenchymal progenitors.14,28 While it has been suggested that small numbers of fetal cells traffic across the placenta in every human pregnancy,2931 trophoblast release does not appear to occur in all pregnancies.32 Likewise, in mice, fetal cells have also been reported in maternal blood.33,34 In the mouse, fetomaternal transfer also appears to occur during all pregnancies.35  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号