首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of novel assays for basic cell research is tightly linked to the development of easy-to-use and versatile tools and protocols for implementing such technologies for a wide range of applications and model species. The bimolecular fluorescence complementation (BiFC) assay is one such novel method for which tools and protocols for its application in plant cell research are still being developed. BiFC is a powerful tool which enables not only detection, but also visualization and subcellular localization of protein–protein interactions in living cells. Here we describe the application of BiFC in plant cells while focusing on the use of our versatile set of vectors which were specifically designed to facilitate the transformation, expression and imaging of protein–protein interactions in various plant species. We discuss the considerations of using our system in various plant model systems, the use of single versus multiple expression cassettes, the application of our vectors using various transformation methods and the use of internal fluorescent markers which can assist in signal localization and easy data acquisition in living cells.  相似文献   

2.
Protein:protein interactions play key functional roles in the molecular machinery of the cell. A major challenge for structural biology is to gain high‐resolution structural insight into how membrane protein function is regulated by protein:protein interactions. To this end we present a method to express, detect, and purify stable membrane protein complexes that are suitable for further structural characterization. Our approach utilizes bimolecular fluorescence complementation (BiFC), whereby each protein of an interaction pair is fused to nonfluorescent fragments of yellow fluorescent protein (YFP) that combine and mature as the complex is formed. YFP thus facilitates the visualization of protein:protein interactions in vivo, stabilizes the assembled complex, and provides a fluorescent marker during purification. This technique is validated by observing the formation of stable homotetramers of human aquaporin 0 (AQP0). The method's broader applicability is demonstrated by visualizing the interactions of AQP0 and human aquaporin 1 (AQP1) with the cytoplasmic regulatory protein calmodulin (CaM). The dependence of the AQP0‐CaM complex on the AQP0 C‐terminus is also demonstrated since the C‐terminal truncated construct provides a negative control. This screening approach may therefore facilitate the production and purification of membrane protein:protein complexes for later structural studies by X‐ray crystallography or single particle electron microscopy.  相似文献   

3.
Protein function is often mediated via formation of stable or transient complexes. Here we report the determination of protein-protein interactions in plants using bimolecular fluorescence complementation (BiFC). The yellow fluorescent protein (YFP) was split into two non-overlapping N-terminal (YN) and C-terminal (YC) fragments. Each fragment was cloned in-frame to a gene of interest, enabling expression of fusion proteins. To demonstrate the feasibility of BiFC in plants, two pairs of interacting proteins were utilized: (i) the alpha and beta subunits of the Arabidopsis protein farnesyltransferase (PFT), and (ii) the polycomb proteins, FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) and MEDEA (MEA). Members of each protein pair were transiently co-expressed in leaf epidermal cells of Nicotiana benthamiana or Arabidopsis. Reconstitution of a fluorescing YFP chromophore occurred only when the inquest proteins interacted. No fluorescence was detected following co-expression of free non-fused YN and YC or non-interacting protein pairs. Yellow fluorescence was detected in the cytoplasm of cells that expressed PFT alpha and beta subunits, or in nuclei and cytoplasm of cells that expressed FIE and MEA. In vivo measurements of fluorescence spectra emitted from reconstituted YFPs were identical to that of a non-split YFP, confirming reconstitution of the chromophore. Expression of the inquest proteins was verified by immunoblot analysis using monoclonal antibodies directed against tags within the hybrid proteins. In addition, protein interactions were confirmed by immunoprecipitations. These results demonstrate that plant BiFC is a simple, reliable and relatively fast method for determining protein-protein interactions in plants.  相似文献   

4.
5.
Most of the biological processes are carried out and regulated by dynamic networks of protein-protein interactions. In this study, we demonstrate the feasibility of the bimolecular fluorescence complementation (BiFC) assay for in vivo quantitative analysis of protein-protein interactions in Saccharomyces cerevisiae. We show that the BiFC assay can be used to quantify not only the amount but also the cell-to-cell variation of protein-protein interactions in S. cerevisiae. In addition, we show that protein sumoylation and condition-specific protein-protein interactions can be quantitatively analyzed by using the BiFC assay. Taken together, our results validate that the BiFC assay is a very effective method for quantitative analysis of protein-protein interactions in living yeast cells and has a great potential as a versatile tool for the study of protein function.  相似文献   

6.
Protein-protein interactions are essential in most biological processes. Many proteomic approaches have succeeded in the identification of strong and obligatory interactions but the study of weak and transient protein-protein interactions is still a challenge. The aim of the present study was to test the ability of bimolecular fluorescence complementation to detect and discriminate in vivo weak intracellular protein interactions. As a test case, the interaction of the SH3 domain from the c-Abl tyrosine kinase with both natural and designed targets has been chosen. The reassociation of functional yellow fluorescent protein (YFP) from its fragments requires previous binding between the SH3 domain and its partners; but once this occurs, the complex is trapped, turning transient SH3 interactions into stable, easily detectable ones. The method is very sensitive and can be implemented for proteomic analysis of weak protein interactions using flow cytometry. The fluorescence emission is dependent on the strength of the interaction, in such a way that it can be used, at least qualitatively, to screen for best binding candidates among similar proline-rich peptides. In addition, it is illustrated how this method can be used to gain structural insights into particular c-Abl SH3 interactions.  相似文献   

7.
The specificity of intracellular signaling and developmental patterning in biological systems relies on selective interactions between different proteins in specific cellular compartments. The identification of such protein-protein interactions is essential for unraveling complex signaling and regulatory networks. Recently, bimolecular fluorescence complementation (BiFC) has emerged as a powerful technique for the efficient detection of protein interactions in their native subcellular localization. Here we report significant technical advances in the methodology of plant BiFC. We describe a series of versatile BiFC vector sets that are fully compatible with previously generated vectors. The new vectors enable the generation of both C-terminal and N-terminal fusion proteins and carry optimized fluorescent protein genes that considerably improve the sensitivity of BiFC. Using these vectors, we describe a multicolor BiFC (mcBiFC) approach for the simultaneous visualization of multiple protein interactions in the same cell. Application to a protein interaction network acting in calcium-mediated signal transduction revealed the concurrent interaction of the protein kinase CIPK24 with the calcium sensors CBL1 and CBL10 at the plasma membrane and tonoplast, respectively. We have also visualized by mcBiFC the simultaneous formation of CBL1/CIPK1 and CBL9/CIPK1 protein complexes at the plasma membrane. Thus, mcBiFC provides a useful new tool for exploring complex regulatory networks in plants.  相似文献   

8.
Many cellular processes depend on protein-protein interactions. The identification of molecules able to modulate protein contacts is of significant interest for drug discovery and chemical biology. Nevertheless, finding antagonists of protein interactions that work efficiently within the cell is a challenging task. Here, we describe the novel use of bimolecular fluorescence complementation (BIFC) to detect compounds that block the interaction of target proteins in vivo. In the BIFC method, each interaction partner is fused to a complementary fragment of a fluorescent protein and interactions are detected by fluorescence restoration after reporter reassembly. Here, we demonstrate that the inhibition of specific intracellular protein interactions results in a concomitant decrease in fluorescence emission. We also show that integration of BIFC with flow cytometry might provide an effective means to detect interaction modulators by directly reading out changes in the reporter signal. The in vivo application of this approach is illustrated through monitoring the inhibition of the interaction between the Escherichia coli Hsp70 chaperone and a short peptidic substrate by pyrrhocoricin-derived antibacterial peptides.  相似文献   

9.
Detection of low-affinity or transient interactions can be a bottleneck in our understanding of signaling networks. To address this problem, we developed an arrayed screening strategy based on protein complementation to systematically investigate protein-protein interactions in live human cells, and performed a large-scale screen for regulators of telomeres. Maintenance of vertebrate telomeres requires the concerted action of members of the Telomere Interactome, built upon the six core telomeric proteins TRF1, TRF2, RAP1, TIN2, TPP1, and POT1. Of the ~12,000 human proteins examined, we identified over 300 proteins that associated with the six core telomeric proteins. The majority of the identified proteins have not been previously linked to telomere biology, including regulators of post-translational modifications such as protein kinases and ubiquitin E3 ligases. Results from this study shed light on the molecular niche that is fundamental to telomere regulation in humans, and provide a valuable tool to investigate signaling pathways in mammalian cells.  相似文献   

10.
Li JF  Bush J  Xiong Y  Li L  McCormack M 《PloS one》2011,6(11):e27364
Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.  相似文献   

11.
Bimolecular fluorescence complementation (BiFC) assay makes it possible to visualize protein-protein interactions in living cells. In this assay, Venus, a bright-yellow variant of green fluorescent protein, is known to produce fluorescent backgrounds due to non-specific interactions. In this study we found that the V150A mutation increased by 8.6-fold the signal-to-noise ratio in the BiFC assay of bFos-bJun interaction.  相似文献   

12.
Dynamic actin polymerization drives a variety of morphogenetic events during metazoan development. Members of the WASP/WAVE protein family are central nucleation-promoting factors. They are embedded within regulatory networks of macromolecular complexes controlling Arp2/3-mediated actin nucleation in time and space. WAVE (Wiskott-Aldrich syndrome protein family verprolin-homologous protein) proteins are found in a conserved pentameric heterocomplex that contains Abi, Kette/Nap1, Sra-1/CYFIP, and HSPC300. Formation of the WAVE complex contributes to the localization, activity, and stability of the various WAVE proteins. Here, we established the Bimolecular Fluorescence Complementation (BiFC) technique in Drosophila to determine the subcellular localization of the WAVE complex in living flies. Using different split-YFP combinations, we are able to visualize the formation of the WAVE-Abi complex in vivo. We found that WAVE also forms dimers that are capable of forming higher order clusters with endogenous WAVE complex components. The N-terminal WAVE homology domain (WHD) of the WAVE protein mediates both WAVE-Abi and WAVE-WAVE interactions. Detailed localization analyses show that formation of WAVE complexes specifically takes place at basal cell compartments promoting actin polymerization. In the wing epithelium, hetero- and homooligomeric WAVE complexes co-localize with Integrin and Talin suggesting a role in integrin-mediated cell adhesion. RNAi mediated suppression of single components of the WAVE and the Arp2/3 complex in the wing further suggests that WAVE-dependent Arp2/3-mediated actin nucleation is important for the maintenance of stable integrin junctions.  相似文献   

13.
14.
15.
Olig1, a member of class B basic-helix-loop-helix (bHLH), plays key roles in early oligodendrocyte specification. Inhibitors of DNA binding (Id) is another sub-class of HLH proteins, act as dominant-negative regulators of bHLH proteins, which can form heterodimers with class A or B bHLH proteins, but lack the critical basic DNA binding domain. Id4 was recently found to interact with olig1 and inhibit oligodendrocyte differentiation. However, there still no direct evidence to reveal the spatial and temporal interaction of olig1 and ID4 in living cells. In this study, we performed bimolecular fluorescence complementation (BiFC) analysis to further characterize the distinct subcellular localization of olig1, ID4 and their dimer in living SW1116 cells. To examine the subcellular localization of olig1 and ID4 by themselves, the olig1-EGFP or ID4-DsRed2 fusion proteins were also expressed in SW1116 cells, respectively. As predicted, the olig1-EGFP fusion proteins were located in the nucleus, and ID4-DsRed2 fusion proteins were located in the cytoplasm. When olig1-EGFP and ID4-DsRed2 fusion proteins were co-expressed, the green and red signals were co-located in the cytoplasm. Using BiFC, the strong BiFC signals could be detected in pBiFC-olig1VN173 and pBiFC-ID4VC155 co-transfected cells and the fluorescence signal was located in the cytoplasm. These results collectively confirmed that olig1 and ID4 could interact and form dimer in living cells, and ID4 could block the transport of olig1 from cytoplasm to nucleus.  相似文献   

16.
Due to the inexorable invasion of our hospitals and communities by drug-resistant bacteria, there is a pressing need for novel antibacterial agents. Here we report the development of a sensitive and robust but low-tech and inexpensive high-throughput metabolic screen for novel antibiotics. This screen is based on a colorimetric assay of pH that identifies inhibitors of bacterial sugar fermentation. After validation of the method, we screened over 39,000 crude extracts derived from organisms that grow in the diverse ecosystems of Costa Rica and identified 49 with reproducible antibacterial effects. An extract from an endophytic fungus was further characterized, and this led to the discovery of three novel natural products. One of these, which we named mirandamycin, has broad-spectrum antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae, methicillin-resistant Staphylococcus aureus, and Mycobacterium tuberculosis. This demonstrates the power of simple high throughput screens for rapid identification of new antibacterial agents from environmental samples.  相似文献   

17.
The study of plant pathogenesis and the development of effective treatments to protect plants from diseases could be greatly facilitated by a high-throughput pathosystem to evaluate small-molecule libraries for inhibitors of pathogen virulence. The interaction between the Gram-negative bacterium Pseudomonas syringae and Arabidopsis thaliana is a model for plant pathogenesis. However, a robust high-throughput assay to score the outcome of this interaction is currently lacking. We demonstrate that Arabidopsis seedlings incubated with P. syringae in liquid culture display a macroscopically visible 'bleaching' symptom within 5 days of infection. Bleaching is associated with a loss of chlorophyll from cotyledonary tissues, and is correlated with bacterial virulence. Gene-for-gene resistance is absent in the liquid environment, possibly because of the suppression of the hypersensitive response under these conditions. Importantly, bleaching can be prevented by treating seedlings with known inducers of plant defence, such as salicylic acid (SA) or a basal defence-inducing peptide of bacterial flagellin (flg22) prior to inoculation. Based on these observations, we have devised a high-throughput liquid assay using standard 96-well plates to investigate the P. syringae-Arabidopsis interaction. An initial screen of small molecules active on Arabidopsis revealed a family of sulfanilamide compounds that afford protection against the bleaching symptom. The most active compound, sulfamethoxazole, also reduced in planta bacterial growth when applied to mature soil-grown plants. The whole-organism liquid assay provides a novel approach to probe chemical libraries in a high-throughput manner for compounds that reduce bacterial virulence in plants.  相似文献   

18.
19.
Nuclear receptor TR3/Nur77/NR4A1 binds several antiapoptotic Bcl-2-family proteins (Bcl-B, Bcl-2, Bfl-1) in a non-BH3-dependent manner. A 9-amino-acid peptide derived from full-length TR3 with polyarginine tail (TR3-r8) recapitulates TR3's binding specificity, displaying high affinity for Bcl-B. TR3-r8 peptide was used to screen for small molecule Bcl-B inhibitors. A fluorescence polarization assay (FPA) employing fluorescein isothiocyanate (FITC)-labeled TR3-r8 peptide (FITC-TR3-r8) and Bcl-B protein was optimized, with nonfluorescent TR3-r8 serving to demonstrate reversible, competitive binding. Approximately 50,000 compounds were screened at 3.75 mg/L, yielding 145 reproducible hits with >/=50% FITC-TR3-r8 displacement (a confirmed hit rate of 0.29%). After dose-response analyses and counterscreening with an unrelated FITC-based FPA, 6 candidate compounds remained. Nuclear magnetic resonance (NMR) showed that 2 of these compounds bound Bcl-B, but not glutathione S-transferase (GST) control protein. One Bcl-B-binding compound was unable to displace FITClabeled BH3 peptides from Bcl-B, confirming a unique binding mechanism compared with traditional antagonists of antiapoptotic Bcl-2-family proteins. This compound bound Bcl-B with K(d) 1.94 +/- 0.38 microM, as determined by isothermal titration calorimetry. Experiments using Bcl-B overexpressing HeLa cells demonstrated that this compound induced Bcl-B-dependent cell death. The current FPA represents a screen that can identify noncanonical inhibitors of Bcl-2-family proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号