首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Susceptibility to kainate-induced seizures under dietary zinc deficiency   总被引:11,自引:0,他引:11  
Zinc homeostasis in the brain is altered by dietary zinc deficiency, and its alteration may be associated with the etiology and manifestation of epileptic seizures. In the present study, susceptibility to kainate-induced seizures was enhanced in mice fed a zinc-deficient diet for 4 weeks. When Timm's stain was performed to estimate zinc concentrations in synaptic vesicles, Timm's stain in the brain was attenuated in the zinc-deficient mice. In rats fed the zinc-deficient diet for 4 weeks, susceptibility to kainate-induced seizures was also enhanced. When the release of zinc and neurotransmitters in the hippocampal extracellular fluid of the zinc-deficient rats was studied using in vivo microdialysis, the zinc concentration in the perfusate was less than 50% of that of the control rats and the increased levels of zinc by treatment with kainate were lower than the basal level in control rats, suggesting that vesicular zinc is responsive to dietary zinc deficiency. The levels of glutamate in the perfusate of the zinc-deficient rats were more increased than in the control rats, whereas the levels of GABA in the perfusate were not at all increased in the zinc-deficient rats, unlike in the control rats. The present results demonstrate an enhanced release of glutamate associated with a decrease in GABA concentrations as a possible mechanism for the increased seizure susceptibility under zinc deficiency.  相似文献   

2.
Susceptibility to kainate-induced seizures is enhanced by zinc deficiency. To evaluate kainate-induced excitotoxicity in zinc deficiency, the relationship between kainate-induced seizures and hippocampal cell death was examined in control and zinc-deficient mice. Mice were fed a control and zinc-deficient diet for 4 weeks, and then intraperitoneally injected with 12 mg/kg kainate every 60 min three times. The rate of dead mice to the total mice was higher in zinc-deficient group than in control group 3 days after the last injection of kainate. In the survivals, which exhibited tonic convulsions in both control and zinc-deficient groups, kainate-induced hippocampal cell death was also analyzed by cresyl violet staining. Neuronal loss was more observed in the CA1, CA2 and CA3 pyramidal cell layers of zinc-deficient group than those of the control group. TUNEL-positive cells were significantly more detected in the CA1 and CA3 pyramidal cell layers of zinc-deficient group. These results demonstrate that kainate-induced hippocampal cell death occurs more easily in zinc deficiency. Extracellular zinc concentration detected with ZnAF-2 was significantly decreased in the hippocampal CA3 of zinc-deficient mice, in agreement with the previous data measured by in vivo microdialsysis. Synaptically released zinc may be less involved in kainate-induced hippocampal cell death in zinc deficiency.  相似文献   

3.
On the basis of abnormal neuropsychological behavior in the open-field test after 2-week zinc deprivation, neurochemical response was examined in young mice fed a zinc-deficient diet for 2 weeks. Serum corticosterone concentration was markedly higher in zinc-deficient mice than in the control mice. Basal signals of intracellular calcium (fluo-4 FF) were also significantly more in hippocampal slices from zinc-deficient mice. These results suggest that basal Ca2+ levels in hippocampal cells are increased by zinc deficiency. On the other hand, Schaffer collateral long-term potentiation (LTP) was unaffected by zinc deficiency; the averaged fEPSP after tetanic stimulation was 162+/-8% of baseline value in the control and 172+/-22% in zinc-deficient mice. In the Morris water maze, there was also no significant difference in learning behavior for the hidden platform task between the control and zinc-deficient mice. The present study indicates that Schaffer collateral LTP associated with spatial cognition performance are unaffected by calcium dyshomeostasis in the hippocampus elicited by 2-week zinc deprivation, which may be linked to the increased serum corticosterone concentration.  相似文献   

4.
On the basis of the evidence of the transient learning impairment of young adult rats fed a zinc-deficient diet for 4 weeks, zinc concentration in the hippocampus was examined in the zinc-deficient rats to understand the mechanism of brain dysfunction in zinc deficiency. Zinc concentration in the hippocampus, as well as that in other brain regions, was not decreased by 4-week zinc deprivation. When Timm's stain, with which histochemically reactive zinc in the presynaptic vesicles is detected, was compared between the control and zinc-deficient rats, the intensity of Timm's stain in the hippocampus was almost the same between them. In the hippocampus, zinc concentration in the synaptosomal fraction was not also decreased by 4-week zinc deprivation, whereas that in the crude nuclear fraction was significantly increased. These results suggest that zinc concentration in the presynaptic vesicles is not decreased in young adults rats by 4-week zinc deprivation. It is likely that zinc-requiring systems in the nucleus are more responsive to zinc deficiency than vesicular zinc. This responsiveness appears to be involved in the transient learning impairment.  相似文献   

5.
On the basis of the evidence that the excitability of hippocampal glutamatergic neurotransmitter system is enhanced by dietary zinc deficiency, the response of amygdalar neurotransmitter system was checked in young rats fed a zinc-deficient diet for 4 weeks. Extracellular zinc concentration in the amygdala, which was measured by the in vivo microdialysis, was almost the same as that in the hippocampus and decreased by zinc deficiency. Extracellular zinc concentration in the amygdala was increased both in the control and zinc-deficient rats by stimulation with 100 mM KCl, suggesting that the increase in extracellular zinc in the amygdala, as well as that in the hippocampus, is linked with neuronal depolarization. In amygdalar extracellular fluid, the basal glutamate concentration was not significantly different between the control and zinc-deficient rats and was increased to almost the same extent between them by stimulation with 100 mM KCl, unlike more increase in extracellular glutamate concentration in the hippocampus in zinc deficiency. On the other hand, the basal GABA concentration in the amygdalar extracellular fluid was significantly lower in zinc-deficient rats and was not increased both in the control and zinc-deficient rats by stimulation with 100 mM KCl. These results suggest that GABAergic neurotransmitter system is critically impaired in the amygdala of young rats after 4-week zinc deprivation.  相似文献   

6.
On the basis of the previous evidence that 65Zn concentrations in the brain of EL (epilepsy) mice was affected by induction of seizures, 65Zn movement in the brain was quantitatively evaluated in ddY mice treated with kainate. Six days after intravenous injection of 65ZnCl2, mice were intraperitoneally injected with kainate (10 mg/kg x 6 times in 2 weeks). Myoclonic jerks were observed during treatment with kainate. Twenty days after 65Zn injection, 65Zn distribution in the brain was compared between the kainite-treated and control mice. 65Zn distribution in the brain of the kainate-treated mice was overall lower than in the control mice. 65Zn concentration was significantly decreased in the frontal cortex, hippocampal CA1, thalamus and hypothalamus by treatment with kainate. These results demonstrate that kainate-induced seizures are linked to decreased zinc concentrations in the brain.  相似文献   

7.
The extracellular concentration of glutamate in the hippocampus is increased by hippocampal perfusion with CaEDTA, a membrane-impermeable zinc chelator, suggesting that the activity of glutamatergic neurons in the hippocampus are influenced by the extracellular concentrations of zinc. In the present study, the relationship between the extracellular concentrations of zinc and mossy fiber activity in the hippocampus was examined in mice and rats fed a zinc-deficient diet for 4 weeks. Timm's stain, by which histochemically reactive zinc in the presynaptic vesicles is detected, was attenuated in the hippocampus in zinc deficiency. The extracellular signal of ZnAF-2, a membrane-impermeable zinc indicator, was also lower in the hippocampal CA3, suggesting that the basal extracellular concentrations of zinc are lower maintained in zinc deficiency. To check mossy fiber activity after 4-week zinc deprivation, the decrease in the signal of FM4-64, an indicator of presynaptic activity (exocytosis), at mossy fiber synapses was measured under the condition of spontaneous depolarization. The decrease was significantly facilitated by zinc deficiency, suggesting that the basal exocytosis at mossy fiber synapses is enhanced by zinc deficiency. On the other hand, the increase in anxiety-like behavior was observed in the open-field test after 4-week zinc deprivation. The present study demonstrates that the decrease in the basal extracellular concentrations of zinc may be linked to the enhancement of the basal mossy fiber activity in zinc deficiency. This decrease seems to be also involved in neuropsychological behavior in zinc deficiency.  相似文献   

8.
We hypothesized that neonatal seizures lead to increased Ca2+ influx (nCa2+I) in neuronal nuclei of newborn rats and that such increase is nitric-oxide mediated. Neuronal nuclear 45Ca2+ influx (nCa2+I) was measured in neuronal nuclei of 25 10-day-old male rat-pups newborn brains. They were divided into five groups (n = 5/group). (I) control; (II) hypoxia without seizures; (III) hypoxia with seizures; (IV) kainate, 2 mg/kg intraperitoneal (i.p.)-induced seizures and (V) 7-nitroindazole (7-NINA), 1 mg/kg i.p. pretreated, kainate-induced seizures. nCa2+I was significantly (P < 0.05) increased following hypoxia or seizures (hypoxic- or kainate-induced). Post-hypoxic seizures further enhanced nCa2+I increase induced by hypoxia (P < 0.05). 7-NINA abated the nCa2+I increase induced by kainate. We conclude that (1) kainate or hypoxia-induced seizures in newborn rats modify the neuronal nuclear membrane function, resulting in increased nCa2+I, (2) seizures exacerbate the hypoxia-induced increased nCa2+I incurred after hypoxia and (3) intranuclear calcium surges during kainate-induced neonatal seizures are nitric oxide-mediated.  相似文献   

9.
Young (25-day-old) and adult (90-day-old) rats pretreated with ethosuximide (62.5 or 125 mg/kg i.p.) were injected with either s.c. pentylenetetrazole (100 mg/kg) or i.p. kainate (10 or 14 mg/kg). The incidences and latencies of minor (clonic) and major (tonic-clonic) seizures were registered. Ethosuximide (125 mg/kg) completely blocked clonic seizures induced by the lower dose of kainate, and slightly suppressed or delayed those induced by the higher dose of kainate or pentylenetetrazole in both age groups. The effect of ethosuximide on major kainate-induced seizures (elicited in young rats only) was insignificant (ethosuximide only partially decreased the incidence of major seizures), whereas ethosuximide abolished major pentylenetetrazole-induced seizures in both age groups. Ethosuximide also failed to affect the latencies of kainate-induced automatisms (e.g., scratching, wet dog shakes). Similarities between kainate- and pentylenetetrazole-induced clonic seizures, as well as a similar action of ethosuximide on both, suggest a common generator for the pattern of clonic seizures.  相似文献   

10.
Takeda A  Tamano H  Kan F  Hanajima T  Yamada K  Oku N 《Life sciences》2008,82(17-18):909-914
Neuropsychological behavior via activation of the hypothalamic-pituitary-adrenal (HPA) axis was analyzed using young mice fed a zinc-deficient diet for 2 weeks. Serum corticosterone concentration was significantly increased after 2-week zinc deprivation, whereas zinc concentration in the brain was not decreased. In the resident-intruder test, the rate of mice that exhibited aggressive behavior to the total mice was significantly higher in isolated zinc-deficient mice than in isolated control mice. The duration of aggressive behavior was more in isolated zinc-deficient mice. These results indicate that aggressive behavior of young mice elicited by social isolation is enhanced by zinc deficiency. On the other hand, social isolation-induced aggressive behavior was enhanced in isolated pair-fed mice with food restriction that can activate the HPA axis. Serum corticosterone concentration was also significantly higher in isolated zinc-deficient mice. To see the effect of the increased serum corticosterone on behavioral abnormality, neurotransmitter concentrations in brain tissue were checked. The concentrations of glutamate and GABA in brain tissue were significantly higher in both grouped and isolated zinc-deficient mice. Furthermore, the concentration of extracellular glutamate in the amygdala before the resident-intruder test was significantly higher in isolated zinc-deficient (aggressive) mice and the higher concentration was maintained during the test. The changes in neurotransmitter homeostasis, probably via the increase in serum corticosterone, seem to be linked to aggressive behavior elicited by social isolation in zinc deficiency.  相似文献   

11.
Febrile seizure (FS) counts as the most common seizures symptom in children undergoing recurrent seizures, posing a high risk to developing subsequent temporal lobe epilepsy. Canonical transient receptor potential channel (TRPC) members are identified as the FS-related genes in hyperthermia prone rats. However, the role of TRPC3 in hyperthermia-induced FS rats remains unclear. In the present study, we investigated whether TRPC3 functionally contributes to the development of FSs. Elevated TRPC3 mRNA and protein levels was detected in hyperthermia-induced FS rats and rat hippocampal neuron cells. The specific inhibitor of TRPC3, Pyr3, remarkably attenuated the susceptibility and severity of seizures, neuronal cell death, and neuroinflammation in FS rats. Conversely, NCX3 activation was apparently suppressed in rats subjected to recurrent FS and rat hippocampal neuron cells. The expression of NCX3 was up-regulated after TRPC3 inhibition in vivo and in vitro. Furthermore, an interaction between TRPC3 and NCX3 was detected by co-immunoprecipitation. Inhibition of TRPC3 suppressed intracellular Ca2+ levels in hyperthermia-treated hippocampal neuronal cells. In conclusion, our findings supported that TRPC3 functions as a critical regulator of seizure susceptibility and targeting TRPC3 may be a new therapeutic strategy for FS.  相似文献   

12.
Somatostatin biosynthesis in the hippocampus is activated during and following kindling epileptogenesis. The aim of this study was to investigate whether this phenomenon is associated with enhanced somatostatin release in vivo. Experiments have been run in awake, freely moving rats, implanted with a bipolar electrode in the right amygdala (for kindling stimulation), and with a recording electrode and a microdialysis probe in the left hippocampus. Basal somatostatin-like immunoreactivity (-LI) release was significantly greater in kindled than naive rats. In naive rats, a 2-min perfusion with 100 mM K(+) did not affect behavior and EEG recordings and nonsignificantly increased somatostatin-LI release; a 10-min K(+) perfusion evoked numerous wet dog shakes, electrical seizures (class 0; latency congruent with 8 min, duration congruent with 8 min), and somatostatin-LI release ( congruent with 350% of basal); and a single kindling after-discharge (4 +/- 3-s duration in the hippocampus) also evoked somatostatin-LI release ( congruent with 200% of basal). In kindled rats, a 2-min 100 mM K(+) perfusion evoked hippocampal discharges in three of seven animals (latency congruent with 2 min, mean duration congruent with 1.5 min) and increased somatostatin-LI release ( congruent with 250% of basal); a 10-min K(+) perfusion evoked behavioral seizures (class 1 to 5, latency congruent with 4 min, mean duration congruent with 12 min) with numerous wet dog shakes and robust somatostatin-LI release ( congruent with 350% of basal); and a kindling stimulation evoked generalized seizures (class 4 or 5, 77 +/- 15-s duration in the hippocampus) with remarkable somatostatin-LI release ( congruent with 300% of basal). These data demonstrate that hippocampal somatostatin release is increased in the kindling model in vivo.  相似文献   

13.
Impairment in the activity and expression of glutamate transporters has been found in experimental models of epilepsy in adult animals. However, there are few studies investigating alterations on glutamate transporters caused by epilepsy in newborn animals, especially in the early periods after seizures. In this study, alterations in the hippocampal glutamate transporters activity and immunocontent were investigated in neonatal rats (7 days old) submitted to kainate-induced seizures model. Glutamate uptake, glutamate transporters (GLT-1, GLAST, EAAC1) and glutamine synthetase (GS) were assessed in hippocampal slices obtained 12 h, 24 h, 48 h, 72 h and 60 days after seizures. Immunoreactivity for hippocampal GFAP, NeuN and DAPI were assessed 24 h after seizure. Behavioral analysis (elevated-plus maze and inhibitory avoidance task) was also investigated in the adult animals (60 days old). The decrease on glutamate uptake was observed in hippocampal slices obtained 24 h after seizures. The immunocontent of GLT-1 increased at 12 h and decreased at 24 h (+62% and −20%, respectively), while GLAST increased up to 48 h after seizures. No alterations were observed for EAAC1 and GS. It should be mentioned that there were no long-term changes in tested glutamate transporters at 60 days after kainate treatment. GFAP immunoreactivity increased in all hippocampal subfields (CA1, CA3 and dentate gyrus) with no alterations in NeuN and DAPI staining. In the adulthood, kainate-treated rats showed anxiety-related behavior and lower performance in the inhibitory avoidance task. Our findings indicate that acute modifications on hippocampal glutamate transporters triggered by a single convulsive event in early life may play a role in the behavioral alterations observed in adulthood.  相似文献   

14.
海马mu型阿片肽受体介导大鼠癫痫发作敏感性形成   总被引:1,自引:1,他引:0  
Liu H  Gao HM  Zhang WQ  Tang YY  Song HS 《生理学报》2004,56(1):101-106
为探讨海马mu型阿片肽受体介导癫痫发作敏感性形成的作用,实验采用微渗透泵技术,观察大鼠腹侧海马注射mu型阿片肽受体激动剂PL017(2.09、2.59、3.29μg/μ1)、拮抗剂β-funaltrexamine hydrochloride(β-FNA、0.88、1.10、1.35μg/μl)对红藻氨酸(kainic acid,KA)诱导癫痫发作的干预作用.PL017能够明显缩短癫痫发作潜伏期、增加癫痫发作级别(P<0.05),β-FNA则可显著延长癫痫发作潜伏期、降低发作级别(P<0.01);PL017和β-FNA的干预作用均表现出剂量依赖效应.结果表明,海马mu型阿片肽受体具有促进KA诱导的癫痫发作敏感性形成作用.  相似文献   

15.
Activation of NMDA receptors has been shown to induce either neuronal cell death or neuroprotection against excitotoxicity in cultured cerebellar granule neurons in vitro. We have investigated the effects of pretreatment with NMDA on kainate-induced neuronal cell death in mouse hippocampus in vivo. The systemic administration of kainate (30 mg/kg), but not NMDA (100 mg/kg), induced severe damage in pyramidal neurons of the hippocampal CA1 and CA3 subfields 3-7 days later, without affecting granule neurons in the dentate gyrus. An immunohistochemical study using an anti-single-stranded DNA antibody and TdT-mediated dUTP nick end labeling analysis both revealed that kainate, but not NMDA, induced DNA fragmentation in the CA1 and CA3 pyramidal neurons 1-3 days after administration. Kainate-induced neuronal loss was completely prevented by the systemic administration of NMDA (100 mg/kg) 1 h to 1 day previously. No pyramidal neuron was seen with fragmented DNA in the hippocampus of animals injected with kainate 1 day after NMDA treatment. The neuroprotection mediated by NMDA was prevented by the non-competitive NMDA receptor antagonist MK-801. Taken together these results indicate that in vivo activation of NMDA receptors is capable of protecting against kainate-induced neuronal damage through blockade of DNA fragmentation in murine hippocampus.  相似文献   

16.
Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation of CA1 LTP after exposure to acute stress.  相似文献   

17.
Zinc homeostasis in the brain is associated with the etiology and manifestation of epileptic seizures. Adult Noda epileptic rats (NER, >12-week-old) exhibit spontaneously generalized tonic-clonic convulsion about once a day. To pursue the involvement of synaptic Zn2+ signal in susceptibility to spontaneous seizures, in the present study, the effect of zinc chelators on epileptogenesis was examined using adult NER. Clioquinol (CQ) and TPEN are lipophilic zinc chelotors, transported into the brain and reduce the levels of synaptic Zn2+. The incidence of tonic-clonic convulsion was markedly increased after i.p. injection of CQ (30–100 mg/kg) and TPEN (1 mg/kg). The basal levels of extracellular Zn2+ measured by ZnAF-2 were decreased before tonic-clonic convulsion was induced with zinc chelators. The hippocampal electroencephalograms during CQ (30 mg/kg)-induced convulsions were similar to those during sound-induced convulsions in NER reported previously. Exocytosis of hippocampal mossy fibers, which was measured with FM4-64, was significantly increased in hippocampal slices from CQ-injected NER that did not show tonic-clonic convulsion yet. These results indicate that the abnormal excitability of mossy fibers is induced prior to epileptic seizures by injection of zinc chelators into NER. The incidence of tonic-clonic convulsion induced with CQ (30 mg/kg) was significantly reduced by co-injection with aminooxyacetic acid (5–10 mg/kg), an anticonvulsant drug enhancing GABAergic activity, which did not affect locomotor activity. The present paper demonstrates that the abnormal excitability in the brain, especially in mossy fibers, which is potentially associated with the insufficient GABAergic neuron activity, may be a factor to reduce the threshold for epileptogenesis in NER.  相似文献   

18.
Zinc homeostasis and functions of zinc in the brain   总被引:19,自引:0,他引:19  
Atsushi Takeda 《Biometals》2001,14(3-4):343-351
The brain barrier system, i.e., the blood-brain and blood-cerebrospinal fluid barriers, is important for zinc homeostasis in the brain. Zinc is supplied to the brain via both barriers. A large portion of zinc serves as zinc metalloproteins in neurons and glial cells. Approximately 10% of the total zinc in the brain, probably ionic zinc, exists in the synaptic vesicles, and may serve as an endogenous neuromodulator in synaptic neurotransmission. The turnover of zinc in the brain is much slower than in peripheral tissues such as the liver. However, dietary zinc deprivation affects zinc homeostasis in the brain. Vesicular zinc-enriched regions, e.g., the hippocampus, are responsive to dietary zinc deprivation, which causes brain dysfunctions such as learning impairment and olfactory dysfunction. Olfactory recognition is reversibly disturbed by the chelation of zinc released from amygdalar neuron terminals. On the other hand, the susceptibility to epileptic seizures, which may decrease vesicular zinc, is also enhanced by zinc deficiency. Therefore, zinc homeostasis in the brain is closely related to neuronal activity. Even in adult animals and probably adult humans, adequate zinc supply is important for brain functions and prevention of neurological diseases.  相似文献   

19.
Kainate, a glutamate analogue, activates kainate and AMPA receptors inducing strong synaptic activation. Systemic kainate application to rodents results in seizures, neurodegeneration, and neuronal remodeling in the brain. It is therefore used to investigate molecular mechanisms responsible for these conditions. We analyzed proteome alterations in murine primary cortical neurons after 24 h of kainate treatment. Our 2-D gel based proteomics approach revealed 91 protein alterations, some already associated with kainate-induced pathology. In addition, we found a large number of proteins which have not previously been reported to be associated with kainate-induced pathology. Functional classification of altered proteins revealed that they predominantly participate in mRNA splicing and cytoskeleton remodeling.  相似文献   

20.
Zinc deficiency induces a striking reduction of food intake in animals. To elucidate the mechanisms for this effect, two studies were connectedly conducted to determine the effects of peripheral administration of zinc on food intake in rats fed the zinc-adequate or zinc-deficient diets for a 3-week period. In study 1, two groups of male Sprague-Dawley rats were provided diets made either adequate (ZA; 38.89 mg/kg) or deficient (ZD; 3.30 mg/kg) in zinc. In study 2, after feeding for 3 weeks, both ZA and ZD groups received intraperitoneal (IP) injection of zinc solution with three levels (0.5, 1.0, and 2.0 mug zinc/g body weight, respectively) and cumulative food intake at 0.5, 1, 2, 4, and 24 h, and plasma hormones concentrations were measured. The results in study 1 showed rats fed the ZD diets revealed symptoms of zinc deficiency, such as sparse and coarse hair, poor appetite, susceptibility to surroundings, lethargy, and small movements. Zinc concentrations in serum, femur, and skeletal muscle of rats fed the ZD diets declined by 26.58% (P < 0.01), 27.32% (P < 0.01), and 24.22% (P < 0.05), respectively, as compared with ZA control group. These findings demonstrated that rat models with zinc deficiency and zinc adequacy had been fully established. The results in study 2 showed that IP administration of zinc in both ZA and ZD rats did not influence food intake at each time points (P > 0.05), although zinc deficiency suppressed food intake. Plasma neuropeptide Y (NPY) was higher, but insulin and glucagon were lower in response to zinc deficiency or zinc administration by contrast with their respective controls (P < 0.05). Leptin, T3, and T4 concentrations were uniformly decreased (P < 0.05) in rats fed the ZD diets in contrast to ZA diets; however, no differences (P > 0.05) were observed during zinc injection. Calcitonin gene-related peptide was unaffected (P > 0.05) by either zinc deficiency or zinc administration. The present studies suggested that zinc administration did not affect short-term food intake in rats even in the zinc-deficient ones; the reduced food intake induced by zinc deficiency was fprobably associated with the depression in thyroid hormones. The results also indicated that NPY and insulin varied conversely during the control of food intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号