首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecologists frequently regress local species richness on regional species richness to draw inferences about the processes that structure local communities. A more promising approach is to quantify the contributions of alpha and beta diversity to regional diversity (the ABR approach) using additive partitioning. We applied this approach to four local–regional relationships based on data from 583 arboreal beetle species collected in a hierarchically nested sampling design. All four local–regional relationships exhibited proportional sampling, yet the ABR approach indicated that each was produced by a different combination of alpha and beta richness. Using the results of the ABR analysis, we also analysed the scale dependence of alpha and beta using a hierarchical linear model. Alpha diversity contributed less than expected to regional diversity at the finest spatial scale and more than expected at the broadest spatial scale. A switch in relative dominance from beta to alpha diversity with increasing spatial scale suggested scale transitions in ecological processes. Analysing the scale dependence of diversity components using the ABR approach furthers our understanding about the additivity of species diversity in biological communities.  相似文献   

2.
Despite widespread acknowledgement that local ecological communities are profoundly shaped by regional-scale influences, including evolutionary and biogeographic processes, this perspective has yet to be widely incorporated into ecological research. Drawing on recent research, we propose four steps towards making regional influences a stronger part of research on the richness of local communities: (1) identifying the regional-scale causes of variation in species richness in the systems ecologists study; (2) testing for effects of regional richness on local richness, using improved observational and experimental analyses to overcome earlier problems; (3) simultaneously analysing environmental influences on regional and local species richness as well as the influence of regional richness on local richness and (4) considering the potential reciprocal effects of local processes on regional richness. In conclusion, we suggest some ways that similar approaches could be applied to other aspects of community structure beyond species richness.  相似文献   

3.
Aim Ecologists have shown increasing interest in the relative roles of local and regional factors in structuring biotic communities. One approach to studying this is to examine the relationship between local species richness (LSR) and regional species richness (RSR). We examined the LSR–RSR relationship in stream diatoms, using two data sets that varied in spatial extent. At broad spatial extent ranging across drainage systems, we expected climatic and dispersal‐related factors to constrain LSR, thus resulting in a linear LSR–RSR relationship. However, at small spatial scales dispersal across sites should be unconstrained, resulting in strong local interactions and a weak or asymptotic LSR–RSR relationship. Location Boreal streams in Finland. Methods For data set 1, we sampled 15 stream riffles (localities) in each of eight drainage systems (regions), with the latitudinal gradient between the southernmost and northernmost sites being almost 1100 km. For data set 2, a locality for estimating LSR was a single stone, and each riffle represented a region for estimating RSR. We sampled 20 stones in each of eight riffles. We used linear regressions to examine the relationship between LSR and RSR across regions. We used both observed richness values, as well as values estimated with the Chao1 estimator. Results We found a relatively strong linear relationship between the Chao1‐estimated mean LSR and RSR (R2 = 0.654, P = 0.015) across drainage systems. The slope of the regression was 0.643 and it did not differ from 1.0, thus indicating linearity. At the riffle scale, however, LSR and RSR were not linearly related, and the slope of the regression (0.039) differed significantly from 1.0, indicating curvilinearity. Main conclusions These results suggest that the relationship between mean LSR and RSR varies across spatial scales in diatoms – from significantly linear at large scales to curvilinear at small scales. These plots imply strong regional enrichment in stream diatoms across drainage systems. Their diversity is thus determined largely by the composition of the regional species pool, as also in many macroorganisms. In contrast, at small spatial scales the LSR–RSR relationship implied a hard limit to local diversity, reflecting the primacy of local processes.  相似文献   

4.
The relationship between local and regional diversity was tested by regressing local community richness against regional species diversity for three taxa, birds, butterflies and mammals, in subtropical forest. The quadratic model best fits the relationship between local and regional diversity for birds. Local bird species richness is theoretically independent of the size of the regional pool of species and may represent saturated communities. A linear model best describes the relationship for mammals and butterflies. For mammals, the slope is shallow (0.264) and regional richness overestimates local species richness, suggesting communities are undersaturated. Extinction filtering may explain this pattern. Past climatic changes have filtered out many mammalian species, these changes have been too recent for autochthanous speciation, and the relatively low vagility of mammals has prevented extensive recolonisation. Differences in the nature of the diversity relationship between taxa are as much due to independent evolutionary histories as to differences in vagility and colonising potential. A pervasive role is suggested for regional biogeographic processes in the development of faunal assemblage structure. Large-scale processes are not considered in current conservation plans. We encourage the shift of conservation emphasis from local ecological processes and species interactions, to whole communities and consideration of regional processes.  相似文献   

5.
Abstract.  1. Patterns of simuliid species richness were examined over a variety of scales at 532 stream sites in the Nearctic (394) and Neotropical (138) regions. In Nearctic streams, species richness of immature blackflies both within and across ecoregions and over two seasons was examined. Stream variables at each site included seston, width, depth, velocity, discharge, conductivity, pH, dissolved oxygen, water temperature, dominant streambed-particle size, canopy cover, and riparian vegetation. These variables were subjected to a principal component analysis and derived principal components were related back to richness, using regression analysis. At the level of the stream reach, richness was not highly correlated with single-point measurements of stream conditions.
2. Using data from both Nearctic and Neotropical sites, the effect of regional richness on local richness was examined. As regional richness increased, local diversity reached an asymptote in which further increases in regional richness were not matched by increases in local richness. Hence, simuliid communities are best described as saturated (type II) communities, consistent with the current view of lotic communities as non-equilibrium systems.
3. The well-established pattern of greater species richness in tropical regions was not observed in this study. To the contrary, blackfly richness is higher in temperate streams than in tropical streams at both local and regional scales.  相似文献   

6.
Aim The role of dispersal in structuring biodiversity across spatial scales is controversial. If dispersal controls regional and local community assembly, it should also affect the degree of spatial species turnover as well as the extent to which regional communities are represented in local communities. Here we provide the first integrated assessment of relationships between dispersal ability and local‐to‐regional spatial aspects of species diversity across a large geographical area. Location Northern Eurasia. Methods Using a cross‐scale analysis covering local (0.64 m2) to continental (the Eurasian Arctic biome) scales, we compared slope parameters of the dissimilarity‐to‐distance relationship in species composition and the local‐to‐regional relationship in species richness among three plant‐like groups that differ in dispersal ability: lichens with the highest dispersal ability; mosses and moss allies with intermediate dispersal ability; and seed plants with the lowest dispersal ability. Results Diversity patterns generally differed between the three groups according to their dispersal ability, even after controlling for niche‐based processes. Increasing dispersal ability is linked to decreasing spatial species turnover and an increasing ratio of local to regional species richness. All comparisons supported our expectations, except for the slope of the local‐to‐regional relationship in species richness for mosses and moss allies which was not significantly steeper than that of seed plants. Main conclusions The negative link between dispersal ability and spatial species turnover and the corresponding positive link between dispersal ability and the ratio of local‐to‐regional species richness support the idea that dispersal affects community structure and diversity patterns across spatial scales.  相似文献   

7.
Aim To determine whether the diversity of resident and transient coral‐dwelling fish responds differentially to gradients in regional species richness. Location Three regions in the Indo‐Pacific (Red Sea, western Indian Ocean, Great Barrier Reef) which contain increasingly larger regional diversities of reef fish. Methods I surveyed fish residing within branching coral species. Fish species were a priori categorized as resident or transient based on the degree of affiliation between the fish and live coral. To compare among regions that differ in coral diversity I used a modified species–volume relationship (SVR). Each point in the SVR represents the total number of fish species, resident or transient, found within the cumulative volume of a specific coral species. Empirical SVRs were further compared with random‐placement null models. Results For transient species, I found that the observed SVRs did not differ consistently from those expected from random samples drawn from the corresponding regional species pools. In addition, for a given volume of coral, more fish species were found in richer regions, indicating strong regional influences on local diversity. In contrast, resident richness was lower than that expected from random samples of the species pool, and richness in rich regions was reduced comparably more than in poor regions. The SVRs of resident species were similar among regions with different regional diversities. Main conclusion These results suggest that, within coral species, transient fish richness is mostly influenced by stochastic allocation of species from the regional pool. Conversely, richness of resident species within a coral species is limited, making it independent of regional diversity. Since higher regional diversity of resident fish was not accompanied by higher richness per coral species or by decreased niche breadth, higher regional diversity of resident fish species must be rooted in higher coral richness. Consequently, ecological interactions between functional groups (coral and fish) can be powerful drivers of regional biodiversity.  相似文献   

8.
Recovering biodiversity is a common goal during restoration; however, for many ecosystems, it is not well understood how restoration influences species diversity across space and time. I examined understory species diversity and composition after woody encroachment removal in a large-scale savanna restoration experiment in central Iowa, United States. Over a 4-year time series, restoration had profound effects across space and time, increasing richness at local and site-level scales. Restoration sites had increased α (within sample) Simpson's diversity and α and γ (site level) species richness relative to control sites, although γ and β (among sample) Simpson's diversity, β richness, and α species evenness were not affected. Changes in richness were driven by graminoids at the α and γ scales and woody species (and some evidence for forbs) at the α scale. Interestingly, indicator species analysis revealed that at least some species from all functional groups were promoted by restoration, although no species were significant indicators of pre-treatment or control sites. Both savanna and nonsavanna species were indicators of restored sites. Restoration promoted exotic species at both scales, although species with spring phenologies were unaffected. Woody encroachment removal may be a means to promote species establishment in savannas; however, in this study, it resulted in establishment and proliferation of native and exotic and savanna and nonsavanna species. Future work might consider reintroduction of key savanna species to supplement those that have established. Work like this demonstrates the utility of restoration experiments for conducting research on large- and multiscale processes, such as species diversity.  相似文献   

9.
Aim To (1) describe termite functional diversity patterns across five tropical regions using local species richness sampling of standardized areas of habitat; (2) assess the relative importance of environmental factors operating at different spatial and temporal scales in influencing variation in species representation within feeding groups and functional taxonomic groups across the tropics; (3) achieve a synthesis to explain the observed patterns of convergence and divergence in termite functional diversity that draws on termite ecological and biogeographical evidence to‐date, as well as the latest evidence for the evolutionary and distributional history of tropical rain forests. Location Pantropical. Methods A pantropical termite species richness data set was obtained through sampling of eighty‐seven standardized local termite diversity transects from twenty‐nine locations across five tropical regions. Local‐scale, intermediate‐scale and large‐scale environmental data were collected for each transect. Standardized termite assemblage and environmental data were analysed at the levels of whole assemblages and feeding groups (using components of variance analysis) and at the level of functional taxonomic groups (using correspondence analysis and canonical correspondence analysis). Results Overall species richness of local assemblages showed a greater component of variation attributable to local habitat disturbance level than to region. However, an analysis accounting for species richness across termite feeding groups indicated a much larger component of variation attributable to region. Mean local assemblage body size also showed the greater overall significance of region compared with habitat type in influencing variation. Ordination of functional taxonomic group data revealed a primary gradient of variation corresponding to rank order of species richness within sites and to mean local species richness within regions. The latter was in the order: Africa > south America > south‐east Asia > Madagascar > Australia. This primary gradient of species richness decrease can be explained by a decrease in species richness of less dispersive functional taxonomic groups feeding on more humified food substrates such as soil. Hence, the transects from more depauperate sites/regions were dominated by more dispersive functional taxonomic groups feeding on less humified food substrates such as dead wood. Direct gradient analysis indicated that ‘region’ and other large‐scale factors were the most important in explaining patterns of local termite functional diversity followed by intermediate‐scale geographical and site variables and, finally, local‐scale ecological variables. Synthesis and main conclusions Within regions, centres of termite functional diversity lie in lowland equatorial closed canopy tropical forests. Soil feeding termite evolution further down food substrate humification gradients is therefore more likely to have depended on the long‐term presence of this habitat. Known ecological and energetic constraints upon contemporary soil feeders lend support for this hypothesis. We propose further that the anomalous distribution of termite soil feeder species richness is partly explained by their generally very poor dispersal abilities across oceans. Evolution, radiation and dispersal of soil feeder diversity appears to have been largely restricted to what are now the African and south American regions. The inter‐regional differences in contemporary local patterns of termite species richness revealed by the global data set point to the possibility of large differences in consequent ecosystem processes in apparently similar habitats on different continents.  相似文献   

10.
The role of habitat selection behaviour in the assembly of natural communities is an increasingly important theme in ecology. At the same time, ecologists and conservation biologists are keenly interested in scale and how processes at scales from local to regional interact to determine species distributions and patterns of biodiversity. How important is habitat selection in generating observed patterns of distribution and diversity at multiple spatial scales? In theory, habitat selection in response to interacting species can generate both positive and negative covariances among species distributions and create the potential to link processes of community assembly across multiple scales. Here I demonstrate that habitat selection by treefrogs in response to the distribution of fish predators functions at both the regional scale among localities and the local scale among patches within localities, implicating habitat selection as a critical link between local communities and the regional dynamics of metacommunities in complex landscapes.  相似文献   

11.
Over the last two decades, although much has been learned regarding the multifaceted nature of biodiversity, relatively little is known regarding spatial variation in constituents other than species richness. This is particularly true along extensive environmental gradients such as latitude. Herein, we describe latitudinal gradients in the functional diversity of New World bat communities. Bat species from each of 32 communities were assigned to one of seven functional groups. Latitudinal gradients existed for the richness, diversity and scaled‐dominance of functional groups. No significant patterns were observed for evenness of functional groups. Measures of functional diversity were different in magnitude and increased towards the equator at a faster rate than expected given the underlying spatial variation in species richness. Thus, latitudinal gradient in species richness alone do not cause the latitudinal gradient in functional diversity. When variation in species composition of the regional fauna of each community was incorporated into analyses, many differences between observed and simulated patterns of functional diversity were not significant. This suggests that those processes that determine the composition of regional faunas strongly influence the latitudinal gradient in functional diversity at the local level. Nonetheless, functional diversity was lower than expected across observed sites. Community‐wide responses to variation in the quantity and quality of resources at the local level probably contribute to differences in functional diversity at local and regional scales and enhance beta diversity.  相似文献   

12.
Theory predicts that the effects of regional richness on the richness of local communities may depend on the productivity, resource availability, and/or heterogeneity of local sites. Using the wetland plant communities of 50 independent streams as 'regions', we tested whether: (1) local richness in 1-m2 quadrats and 50-m stream segments was positively related to regional richness, even after environmental influences were considered; and (2) the effect of regional richness would interact with the effects of biomass, soil moisture, and/or heterogeneity on local richness. In models that explained up to 88% of variation in local richness, we found that richness at both local scales was positively related to regional richness, and that regional richness did not interact with any of the environmental gradients that also shaped local richness. We conclude that species availability from the regional pool may consistently enrich local communities, even while other constraints on local richness operate.  相似文献   

13.
In this study, fishes and habitat attributes were quantified, four times over 1 year, on three reefs within four regions encompassing a c. 6° latitudinal gradient across south-western Australia. The variability observed was partitioned at these spatio-temporal scales in relation to reef fish variables and the influence of environmental drivers quantified at local scales, i.e. at the scale of reefs (the number of small and large topographic elements, the cover of kelp, fucalean and red algae, depth and wave exposure) and at the scale of regions (mean and maximum nutrient concentrations and mean seawater temperature) with regard to the total abundance, species density, species diversity and the multivariate structure of reef fishes. Variation in reef fish species density and diversity was significant at the regional scale, whereas variation in the total abundance and assemblage structure of fishes was also significant at local scales. Spatial variation was greater than temporal variation in all cases. A systematic and gradual species turnover in assemblage structure was observed between adjacent regions across the latitudinal gradient. The cover of red algae within larger patches of brown macroalgae (a biological attribute of the reef) and the number of large topographic elements (a structural attribute of the reef) were correlated with variation observed at local scales, while seawater temperature correlated with variation at the scale of regions. In conclusion, conservation efforts on reef fishes need to incorporate processes operating at regional scales with processes that shape local reef fish communities at local scales.  相似文献   

14.
Aim We examined data on corals and reef fishes to determine how particular local habitat types contribute to variation in community structure across regions covering gradients in species richness and how consistent this was over time. Location Great Barrier Reef (GBR), Australia. Methods We compared large‐scale (1300 km), long‐term (11 years) data on fishes and corals that were collected annually at fixed sites in three habitats (inshore, mid‐shelf and outer‐shelf reefs) and six regions (latitudinal sectors) along a gradient of regional species richness in both communities. We used canonical approaches to partition variation in community structure (sites × species abundance data matrices) into components associated with habitat, region and time and Procrustes analyses to assess the degree of concordance between coral and fish community structure. Results Remarkably similar patterns emerged for both fish and coral communities occupying the same sites. Reefs that had similar coral communities also had similar fish communities. The fraction of the community data that could be explained by regional effects, independent of pure habitat effects, was similar in both fish (33%) and coral (36.9%) communities. Pure habitat effects were slightly greater in the fish (31.3%) than in the coral (20.1%) community. Time explained relatively little variation (fish = 7.9%, corals = 9.6%) compared with these two spatial factors. Conclusions Our results indicate either that fish and coral communities were structured in similar ways by processes associated with region, habitat and time, or that the variation in fish community structure tracked variation associated with the coral communities at these sites and thereby reflects an indirect link between the environment and the structure of fish communities mediated by corals. Irrespective of the causes of such commonality, we demonstrate that community structure, not just species richness, can be related to both habitat differences and regional setting simultaneously.  相似文献   

15.
Aim To determine the empirical relationships between species richness and spatial turnover in species composition across spatial scales. These have remained little explored despite the fact that such relationships are fundamental to understanding spatial diversity patterns. Location South‐east Scotland. Methods Defining local species richness simply as the total number of species at a finer resolution than regional species richness and spatial turnover as turnover in species identity between any two or more areas, we determined the empirical relationships between all three, and the influence of spatial scale upon them, using data on breeding bird distributions. We estimated spatial turnover using a measure independent of species richness gradients, a fundamental feature which has been neglected in theoretical studies. Results Local species richness and spatial turnover exhibited a negative relationship, which became stronger as larger neighbourhood sizes were considered in estimating the latter. Spatial turnover and regional species richness did not show any significant relationship, suggesting that spatial species replacement occurs independently of the size of the regional species pool. Local and regional species richness only showed the expected positive relationship when the size of the local scale was relatively large in relation to the regional scale. Conclusions Explanations for the relationships between spatial turnover and local and regional species richness can be found in the spatial patterns of species commonality, gain and loss between areas.  相似文献   

16.
Does variation in environmental harshness explain local and regional species diversity gradients? We hypothesise that for a given life form like trees, greater harshness leads to a smaller range of traits that are viable and thereby also to lower species diversity. On the basis of a strong dependence of maximum tree height on site productivity and other measures of site quality, we propose maximum tree height as an inverse measure of environmental harshness for trees. Our results show that tree species richness is strongly positively correlated with maximum tree height across multiple spatial scales in forests of both eastern and western North America. Maximum tree height co‐varied with species richness along gradients from benign to harsh environmental conditions, which supports the hypothesis that harshness may be a general mechanism limiting local diversity and explaining diversity gradients within a biogeographic region.  相似文献   

17.
《Global Change Biology》2017,23(11):4946-4957
Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in‐field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in‐field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.  相似文献   

18.
Aim The New Zealand terrestrial mollusc fauna is among the most speciose in the world, with often remarkably high richness at lowland forest sites. We sought to elucidate general explanations for patterns of richness in terrestrial mollusc communities by analysis of species coexistence and habitat relationships within a New Zealand district fauna. Location Pukeamaru Ecological District, eastern North Island, New Zealand. Methods We sampled molluscs using qualitative methods at twenty-three sites and quantitatively by frame sampling of scrubland-forest floor litter at sixteen of these sites and analysed patterns of species richness and turnover in relation to regional species pools and local habitat attributes. We then tested for nonrandom assemblage of taxa along diversity and habitat gradients. Results Ninety-four indigenous mollusc species were recorded from a district fauna estimated at 102 indigenous species: only two species were endemic. From the presumptive geological history of the district, the low endemism, and Brooks parsimony and indicator species analyses of faunal relationships, the communities were indicated to have resulted by accumulation of colonists from other New Zealand districts since the Miocene. Richness ranged from two or three indigenous species in dune habitats to fifty-nine species in a floristically rich forest. Beta diversity was high and site occupancy per species was low, indicating communities structured by successive replacement of ecological equivalents. Sites differing in vegetation had characteristic species assemblages, indicating a degree of habitat specialization. Canonical correspondence analysis indicated that canopy tree species, canopy height, floristic diversity, altitude, litter mass, and litter pH were important determinants of species assemblage in scrubland and forest. Richness was strongly associated with site floristic diversity and, for litter-dwelling species, the pH of litter substrate. High richness occurred at those sites supporting molluscs in high abundance. Shell-shape distributions were essentially Cainian unimodal, with communities dominated by snail species with subglobose to discoidal shells. Mean and variance of shell size increased with mollusc species richness and floristic diversity at sites, indicating dominance of communities by small-shelled species at early successional or floristically poor sites, and increased richness resulting from addition of larger snails into vacant niches. Shifts in shell form were associated with sympatry in several congeneric taxa. Main conclusions The underdispersion of shell shape, relative to faunas elsewhere in the world, indicates that community structure in New Zealand land snail faunas has been constrained by limited phylogenetic diversity and/or by convergence upon successful adaptations. The remarkably high richness that characterizes these communities indicates special conditions allow coexistence of numerous species. The relationship between floristic diversity at sites and the richness, diversity, and shell-size distributions of the molluscs suggests assemblages structured around niche partitioning among competing species. While there is an element of congruence between vegetation and mollusc pattern, this study indicates that assembly rules will be defined, and spatial pattern predicted, only through a better understanding of the linkage between regional species pool, organism traits, environment, and local community assemblage.  相似文献   

19.
Ecosystem engineers are organisms able to modulate environmental forces and, hence, may change the habitat conditions for other species. In so doing, ecosystem engineers may affect both species richness and evenness of communities and, in consequence, change species diversity. If these changes in community attributes are related to the magnitude of the habitat changes induced by the engineers, it seems likely that engineer species will have greater effects on diversity in sites where they cause larger habitat changes. We addressed this issue by evaluating the effects of three alpine cushion plants on species richness, evenness, and diversity of high-Andean plant communities. Given that the difference in microclimatic conditions between cushions and the external environment increases with elevation, we proposed that these organisms should have greater effects on community attributes at higher than at lower elevation sites. Results showed that the three cushion species had positive effects on species richness, diversity, and evenness of plant communities. It was also observed that the magnitude of these effects changed with elevation: positive effects on species richness and diversity increased towards upper sites for the three cushions species, whereas positive effects on evenness increased with elevation for one cushion species but decreased with elevation for other two cushion species. These results suggest that the presence of cushions is important to maintain plant diversity in high-Andean communities, but this positive effect on diversity seems to increase as the difference in environmental conditions between cushions and the external environment increases with elevation.  相似文献   

20.
Correlates between genetic diversity at intra- and interpopulation levels and the species diversity in plant communities are rarely investigated. Such correlates may give insights into the effect of local selective forces across different communities on the genetic diversity of local plant populations. This study has employed amplified fragment length polymorphism to assess the genetic diversity within and between 10 populations of Ranunculus acris in relation to the species diversity (richness and evenness) of grassland communities of two different habitat types, 'seminatural' and 'agriculturally improved', located in central Germany. Within-population genetic diversity estimated by Nei's unbiased gene diversity (HE) was high (0.258-0.334), and was not correlated with species richness (Pearson's r = -0.17; P = 0.64) or species evenness (Pearson's r = 0.15; P = 0.68) of the plant communities. However, the genetic differentiation between R. acris populations was significantly correlated with the difference in species evenness (Mantel's r = 0.62, P = 0.02), but not with difference in species richness of plant communities (r = -0.17, P = 0.22). Moreover, we also found that populations of R. acris from the 'seminatural' habitat were genetically different (amova, P < 0.05) from those in 'agriculturally improved' habitats, suggesting that gene flow between these habitat types is limited. The results reported in this study may indicate that habitat characteristics influence the genetic diversity of plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号