首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cause of the inflection in the course of the carboxylase reaction and the changes in the functioning form of spinach ribulose bisphosphate carboxylase (RuBisCO) during the reaction were elucidated by relating the activity to the protein conformation of RuBisCO using a fluorescence probe, 2-p-toluidinylnaphthalene sulfonate. The activity of RuBisCO in the linear phase was 50 to 60% of that in the initial burst at 0.5 to 1.0 mM ribulose bisphosphate (RuBP) and 65 to 80% at 2 to 5 mM RuBP. The amount and the progress of the decrease in the activity during the reaction had a close relationship to a change in the protein conformation of RuBisCO. The enzyme, the substrate binding sites of which were masked beforehand with carboxyarabinitol bisphosphate, still showed a change of its protein conformation upon addition of RuBP, suggesting that RuBisCO has two (substrate and regulatory) RuBP-binding sites per RuBisCO promoter. RuBisCO required over 2 mM RuBP for binding on the regulatory sites. Both sites also bound 6-phosphogluconate. When both sites were masked with 6-phosphogluconate beforehand, the course of the subsequent carboxylase reaction was linear with time. From these results, I propose that the inflection in the course of the reaction of spinach RuBisCO is a hysteretic response of the enzyme to RuBP bound to both substrate and regulatory sites.  相似文献   

2.
As is the case with spinach ribulose bisphosphate carboxylase/oxygenase (Rubisco), [14C]carboxyarabinitol bisphosphate (CABP) bound to purified Chlorella Rubisco with a molar ratio of unity to large subunit of the enzyme. The concentration of binding sites in extracts of photosynthetic organisms was determined by reacting the extracts with [14C]-carboxypentitol bisphosphate (CPBP) and precipitating the resultant Rubisco-[14C]CABP complex with a combination of polyethylene glycol-4000 and MgCl2. Plots of the relationship between concentrations of [14C] CPBP in the reaction mixture and the precipitated [14C]CPBP gave a straight line and the concentration of binding sites were estimated by extrapolation to zero [14C]CPBP since the dissociation constant of CABP with Rubisco is 10−11 molar. Spinach, pea, and soybean leaves contained 6.4 to 6.8 milligrams Rubisco per milligram chlorophyll, corresponding to 92 to 97 ribulose bisphosphate-binding sites per milligram chlorophyll. The Rubisco content of sunflower and wheat leaves was 5.3 to 5.5 milligrams per milligram chlorophyll. The concentrations in C4 plants were not uniform and corn and Panicum miliaceum leaves contained 3 and 7 milligrams Rubisco per milligram chlorophyll. The Rubisco content of green algae was one-fifth to one-sixth that of C3 plant leaves and was affected by the CO2 concentration during growth. The content of Euglena and blue-green algae is also reported.  相似文献   

3.
Two kinds of ATP binding sites were found to exist on the ATPase molecule. One was the catalytic site (1 mol/mol phosphorylation site) and its apparent dissociation constant for ATP was about 1 microM. The other was the regulatory site(s) and its apparent dissociation constant for ATP was equal to or higher than about 0.2 mM. The affinities of both sites for AMPPNP were three times lower than those for ATP. The affinity of the ATPase for ATP was reduced by the addition of KCl, but unaffected by the addition of NaCl. As thermodynamically expected, the affinity of the Na+-binding sites for Na+ ions was almost completely unaffected by the addition of ATP, which markedly decreased that of the K+-binding sites for K+ and Rb+ ions. In the absence of KCl, Na+ ions were bound very rapidly to the Na+-binding sites [(1979) J. Biochem. 86, 509--523]. However, Na+ ions were bound very slowly to the enzyme preincubated with 50 microM KCl, and the Na+ binding was markedly accelerated by the addition of ATP or AMPPNP at concentrations much higher than several microM. On the other hand, in the presence of 50 microM KCl, 1 mol of ATP was bound to the catalytic site with the same dissociation constant as that in the absence of KCl, and another 1 mol of ATP bound with a dissociation constant of about 0.1 mM. Therefore, we concluded that the Na+ binding to the enzyme in a K+ form is markedly accelerated by the binding at ATP to the regulatory site.  相似文献   

4.
Zhu G  Jensen RG 《Plant physiology》1990,93(1):244-249
The properties of the tight and specific binding of 2-C-carboxy-d-arabinitol 1,5-bisphosphate (CABP), which occurs only to reaction sites of ribulose 1,5-bisphosphate carboxylase (Rubisco) that are activated by CO2 and Mg2+, were studied. With fully active purified spinach (Spinacia oleracea) Rubisco the rate of tight binding of [14C]CABP fit a multiple exponential rate equation with half of the sites binding with a rate constant of 40 per minute and the second half of the sites binding at 3.2 per minute. This suggests that after CABP binds to one site of a dimer of Rubisco large subunits, binding to the second site is considerably slower, indicating negative cooperativity as previously reported (S Johal, BE Partridge, R Chollet [1985] J Biol Chem 260: 9894-9904). The rate of CABP binding to partially activated Rubisco was complete within 2 to 5 minutes, with slower binding to inactive sites as they formed the carbamate and bound Mg2+. Addition of [14C]CABP and EDTA stopped binding of Mg2+ and allowed tight binding of the radiolabel only to sites which were CO2/Mg2+-activated at that moment. This approach estimated the amount of CO2/Mg2+-activated sites in the presence of inactive sites and carbamylated sites lacking Mg2+. The rate of CO2 fixation was proportional to the CO2/Mg2+-activated sites. During light-dependent CO2 fixation with isolated spinach chloroplasts, the amount of carbamylation was proportional to Rubisco activity either initially upon lysis of the plastids or following total activation with Mg2+ and CO2. Lysis of chloroplasts in media with [14C]CABP plus EDTA estimated those carbamylated sites having Mg2+. The loss of Rubisco activation during illumination was partially due to the lack of Mg2+ to stabilize the carbamylated sites.  相似文献   

5.
The proposal of E. Stellwagen [(1976) J. Mol Biol., 106, 903–911] that the structure of a protein can be predicted by sequence analysis provided that the protein specifically binds Cibacron blue F3GA, is not sound at least for muscle fructose bisphosphate aldolase. Contrary to the predictions we have shown that Cibacron blue does not interact directly with lysine 227 at the catalytic sites but with different sites which bind also ATP and fructose bisphosphate. We have shown also that aldolase binds 3.5 molecules of dye per subunit (dissociation constant 1.9 μm), too great a number to support the hypothesis that the binding of Cibacron blue is a specific indication of the presence of an NAD domain.  相似文献   

6.
The binding of vanadate to isolated sarcoplasmic reticulum (SR) membranes was measured colorimetrically by equilibrium sedimentation and ion exchange column filtration. The concentration dependence of vanadate binding exhibited a biphasic curve with two phases of equal amplitude. A similar biphasic curve of the vanadate dependence was observed with the purified Ca(2+)-ATPase prepared by deoxycholate extraction. Sites of vanadate binding could be classified into two distinct species based on apparent affinity; the high-affinity binding sites have a dissociation constant below 0.1 microM, and the low-affinity sites one of 36 microM. The maximum amount of vanadate bound to each of the high- or low-affinity sites was estimated to be 2.6-3.6 nmol/mg SR protein, which corresponds to approximately 0.5 mol of vanadate bound per mol of Ca(2+)-ATPase. These results indicate that 1 mol of Ca(2+)-ATPase contains 0.5 mol of high-affinity vanadate-binding sites as well as 0.5 mol of low-affinity vanadate-binding sites. Vanadate binding to the low-affinity sites was competitively inhibited by inorganic phosphate, while vanadate binding to the high-affinity sites resulted in a non-competitive inhibition of the phosphoenzyme formation from inorganic phosphate. When SR membrane were solubilized with polyoxy-ethylene-9-laurylether (C12E9), the vanadate binding exhibited a monophasic concentration dependency curve with a dissociation constant of 13 microM. The number of vanadate-binding sites was estimated to be 7.2 nmol/mg SR protein which represents about 1 mol of site per mol of Ca(2+)-ATPase. Vanadate binding to the solubilized Ca(2+)-ATPase was competitively inhibited by inorganic phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Previous reports indicate that ribulose 1,5-bisphosphate (RuBP) binds very tightly to inactive ribulose bisphosphate carboxylase (rubisco) in vitro. Therefore, we decided to investigate whether there was evidence for tight binding of RuBP associated with deactivation of rubisco in vivo. We modified a technique for rapidly separating `free' metabolites from those bound to high molecular compounds. Arabidopsis thaliana plants were illuminated at various irradiances before freezing the leaves in liquid N2 and assaying rubisco activity and RuBP. The percentage activation of rubisco varied from 37% at low irradiance (45 micromoles quanta per square meter per second) to 100% at high irradiance (800 micromoles quanta per square meter per second). The total amount of RuBP did not vary much with irradiance, but bound RuBP changed from 36% of the total at low irradiance to none at high irradiance. Bound RuBP was significantly correlated with the estimated number of inactive rubisco sites, with a ratio of about 1:1. After a step increase in irradiance, rubisco activation increased and total RuBP increased transiently, but steady levels of both occurred by 10 minutes. The amount of bound RuBP decreased with a similar time course to the estimated decrease in inactive rubisco sites. After a step decrease in irradiance, rubisco deactivated slowly for at least 25 minutes. Bound RuBP increased gradually but did so more slowly than the estimated increase in inactive rubisco sites.  相似文献   

8.
W B Whitman  F R Tabita 《Biochemistry》1978,17(7):1288-1293
Rhodospirillum rubrum ribulose bisphosphate carboxylase contains two high affinity binding sites for pyridoxal phosphate and two catalytic sites per dimer. However, pyridoxal phosphate binding at only one site is sufficient for inactivation of both catalytic sites. In the presence of 20 mM bicarbonate, 10 mM magnesium, and pyridoxal phosphate, the rates of inactivation and Schiff base formation are pseudo-first-order and show saturation kinetics. These observations provide additional evidence that pyridoxal phosphate binds at the active site of the R. rubrum carboxylase. It is also proposed that the large subunit may contain regulatory as well as catalytic properties.  相似文献   

9.
Yeast AMP deaminase is allosterically activated by ATP and MgATP and inhibited by GTP and PO4. The tetrameric enzyme binds 2 mol each of ATP, GTP, and PO4/subunit with Kd values of 8.4 +/- 4.0, 4.1 +/- 0.6, and 169 +/- 12 microM, respectively. At 0.7 M KCl, ATP binds to the enzyme, but no longer activates. Titration with coformycin 5'-monophosphate, a slow, tight-binding inhibitor, indicates a single catalytic site/subunit. ATP and GTP bind at regulatory sites distinct from the catalytic site and their binding is mutually exclusive. Inorganic phosphate competes poorly with ATP for the ATP sites (Kd = 20.1 +/- 4.1 mM). However, near-saturating ATP reduces the moles of phosphate bound per subunit to 1 PO4, which binds with a Kd = 275 +/- 22 microM. In the presence of ATP, PO4 cannot effectively compete with ATP for the nucleotide triphosphate sites. The PO4 which binds in the presence of ATP is competitive with AMP at the catalytic site since the Kd equals the kinetic inhibition constant for PO4. Initial reaction rate curves are a cooperative function of AMP concentration and activation by ATP is also cooperative. However, no cooperativity is observed in the binding of any of the regulator ligands and ATP binding and kinetic activation by ATP is independent of substrate analog concentration. Cooperativity in initial rate curves results, therefore, from altered rate constants for product formation from each (enzyme.substrate)n species and not from cooperative substrate binding. The traditional cooperative binding models of allosteric regulation do not apply to yeast AMP deaminase, which regulates catalytic activity by kinetic control of product formation. The data are used to estimate the rates of AMP hydrolysis under reported metabolite concentrations in yeast.  相似文献   

10.
We have developed an assay to monitor in vitro the posttranslational assembly of the chloroplast protein, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Most of the newly synthesized 55-kD catalytic ("large") subunits of this enzyme occur in a 29S complex together with 60- and 61-kD "binding" proteins. When the 29S complex is incubated with ATP and MgCl2 it dissociates into subunits, and the formerly bound large subunits now sediment at 7S (still faster than expected for a monomer). Upon incubation at 24 degrees C, these large subunits assemble into RuBisCO. The minority of newly made large subunits which are not bound to the 29S complex also sediment at 7S. When endogenous ATP was removed by addition of hexokinase and glucose, the dissociation of the 29S complex was inhibited. Nevertheless, the 7S large subunits assembled into RuBisCO, and did so to a greater extent than in controls retaining endogenous ATP. Thus the 7S large subunits are also assembly competent, at least when ATP is removed. Apparently, in chloroplast extracts, ATP can have a dual effect on the assembly of RuBisCO: on the one hand, even at low concentrations it can inhibit incorporation of 7S large subunits RuBisCO; on the other hand, at higher concentrations it can lead to substantial buildup of the 7S large subunit pool by causing dissociation of the 29S complex, and stimulate overall assembly. At both high and zero concentrations of ATP, however, antibody to the binding protein inhibited the assembly of endogenous large subunits into RuBisCO. Thus it appears that all assembly-competent large subunits are associated with the binding protein, either in the 7S complex or in the 29S complex. The involvement of the binding protein in RuBisCO assembly may represent the first example of non-autonomous protein assembly in higher plants and may pose problems for the genetic engineering of RuBisCO from these organisms.  相似文献   

11.
K M Musier  G G Hammes 《Biochemistry》1988,27(18):7015-7020
The method of continuous variation (Job plot analysis) and difference absorbance spectroscopy were used to investigate the binding of 2'(3')-(trinitrophenyl)-ADP and -ATP to chloroplast coupling factor 1 (CF1). Experiments performed at a low total concentration (30 microM) of nucleotide and enzyme binding sites (assuming three or four binding sites per CF1) could be interpreted in terms of approximately three nucleotide binding sites per CF1. At higher total concentrations (100 and 400 microM), the number of apparent binding sites increased to almost four. Computer-generated Job plots, using a protein-ligand complex formation scheme of n independent, nonequivalent binding sites, gave good fits to the experimental data at all concentrations when four binding sites were modeled. The dissociation constant of the fourth site was estimated to be approximately 20 microM. Additional nucleotide binding sites were not directly observed by this method and, if they exist, have very weak binding affinities (dissociation constants greater than approximately 1 mM).  相似文献   

12.
We reported previously that calmodulin binds to tubulin in a Ca2+-dependent manner, thereby inhibiting microtubule assembly. In this work, we quantitatively investigated the binding between calmodulin and tubulin by applying two analytical methods. One was the frontal analysis using affinity chromatography originally developed by Kasai and Ishii (J. Biochem. 84, 1061-1069, 1978). The use of tubulin-Sepharose columns gave a dissociation constant of 4.0 microM. The other was the equilibrium gel filtration developed by Hummel and Dreyer (Biochim. Biophys. Acta 63, 532-534, 1962). This method using a Sephadex G-100 column provided a dissociation constant of 3.5 microM under the same medium conditions as in the frontal analysis, and it was found that 2 mol calmodulin could bind to 1 mol tubulin. Furthermore, the frontal analysis method was convenient for studies on the effect of temperature and ionic strength on the binding. Upon elevating the temperature, the dissociation constant increased. Increase in the ionic strength also increased the dissociation constant.  相似文献   

13.
J S Lolkema  D Walz 《Biochemistry》1990,29(51):11180-11188
Binding of the substrate analogue p-nitrophenyl alpha-D-galactopyranoside (NPG) to lac permease of Escherichia coli in different membrane preparations was investigated. Binding was assayed with an improved version of the centrifugation technique introduced by Kennedy et al. [Kennedy, E.P., Rumley, M.V., Armstrong, J.B. (1974) J. Biol. Chem. 249, 33-37]. Two binding sites for NPG were found with dissociation constants of about 16 microM and 1.6 mM at pH 7.5 and room temperature. With purified lac permease reconstituted into proteoliposomes, it could be shown that one permease molecule binds two substrate molecules. Oxidation of lac permease with the lipophilic quinone plumbagin or alkylation with the sulfhydryl reagent N-ethylmaleimide caused a 12-fold increase in the first dissociation constant. The second dissociation constant seemed to be increased as well, but its value could not reliably be estimated. Ethoxyformylation of lac permease with diethyl pyrocarbonate totally abolished NPG binding. The implications of these results for the catalytic performance of the enzyme are discussed.  相似文献   

14.
We previously measured the amounts of Na+ and K+ ions bound to the Na+,K+-dependent ATPase [EC 3.6.1.3] purified from porcine kidney by a modified membrane filtration method [(1979) J. Biochem. 86, 509--523]. In this study, we improved the method for measuring the amount of the active site and measured the amount of Rb+ ions (a K+ congener) bound to the ATPase as well as those of Na+ and K+ ions to get more accurate information on the K+- and Na+-binding sites. The following results were obtained. Two kinds of cation-binding sites were found to exist on the ATPase molecule. One was the Na+-binding sites (3 mol per mol of active site). Na+ ions were bound to the sites cooperatively (Hill coefficient, 2.5--3), and the apparent dissociation constant was 0.20--0.32 mM. Three moles of Na+ ions bound to the sites was displaced by 1 mol of K+ ions bound to the ATPase (phi K, 24 microM). The other was the K+-binding sites (2 mol per mol of active site). Two moles of K+, Rb+, or Na+ ions was bound to the sites cooperatively (Hill coefficient, 1.5--2), and their apparent dissociation constants were 0.044, 0.024, and 2.2 mM, respectively. We measured the amounts of Na+ and Rb+ ions bound to the ATPase in the presence of 0.8 mM NaCl and 0.13 mM RbCl, and obtained unequivocal evidence for the simultaneous binding of 3 mol of Na+ ions and 2 mol of Rb+ ions per mol of active site of the ATPase.  相似文献   

15.
The forward and reverse rate constants involved in carbamylation, activation, carboxylation, and inhibition of D-ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) have been estimated by a new technique of simultaneous non-linear regression of a differential equation kinetic model to multiple experimental data. Parameters predicted by the model fitted to data from purified spinach enzyme in vitro included binding affinity constants for non-substrate CO2 and Mg2+ of 200+/-80 microM and 700+/-200 microM, respectively, as well as a turnover number (k(cat)) of 3.3+/-0.5 s(-1), a Michaelis half-saturation constant for carboxylation (K(M,C)) of 10+/-4 microM and a Michaelis constant for RuBP binding (K(M,RuBP)) of 1.5+/-0.5 microM. These and other constants agree well with previously measured values where they exist. The model is then used to show that slow inactivation of RuBisCO (fallover) in oxygen-free conditions at low concentrations of CO2 and Mg2+ is due to decarbamylation and binding of RuBP to uncarbamylated enzyme. In spite of RuBP binding more tightly to uncarbamylated enzyme than to the activated form, RuBisCO is activated at high concentrations of CO2 and Mg2+. This apparent paradox is resolved by considering activation kinetics and the fact that while RuBP binds tightly but slowly to uncarbamylated enzyme, it binds fast and loosely to activated enzyme. This modelling technique is presented as a new method for determining multiple kinetic data simultaneously from a limited experimental data set. The method can be used to compare the properties of RuBisCO from different species quickly and easily.  相似文献   

16.
M F Bruist  G G Hammes 《Biochemistry》1981,20(22):6298-6305
The solubilized coupling factor from spinach chloroplasts (CF1) contains one nondissociable ADP/CF1 which exchanges slowly with medium ADP in the presence of Ca2+, Mg2+, or EDTA; medium ATP also exchanges in the presence of Ca2+ or EDTA, but it is hydrolyzed, and only ADP is found bound to CF1. The rate of ATP exchange with heat-activated CF1 is approximately 1000 times slower than the rate of ATP hydrolysis. In the presence of Mg2+, both latent CF1 and heat-activated CF1 bind one ATP/CF1, in addition to the ADP. This MgATP is not removed by dialysis, by gel filtration, or by the substrate CaATP during catalytic turnover; however, it is released when the enzyme is stored several days as an ammonium sulfate precipitate. The photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]-propionyl]-ATP binds to the MgATP site, and photolysis results in labeling of the beta subunit of CF1. Equilibrium binding measurements indicate that CF1 has two identical binding sites for ADP with a dissociation constant of 3.9 microM (in addition to the nondissociable ADP site). When MgATP is bound to CF1, one ADP binding site with a dissociation constant of 2.9 microM is found. One ATP binding site is found in addition to the MgATP site with a dissociation constant of 2.9 microM. Reaction of CF1 with the photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]propionyl]-ADP indicates that the ADP binding site which is not blocked by MgATP is located near the interface of alpha and beta subunits. No additional binding sites with dissociation constants less than 200 micro M are observed for MgATP with latent CF1 and for CaADP with heat-activated CF1. Thus, three distinct nucleotide binding sites can be identified on CF1, and the tightly bound ADP and MgATP are not at the catalytic site. The active site is either the third ADP and ATP binding site or a site not yet detected.  相似文献   

17.
Recombinant calreticulin and discrete domains of calreticulin were expressed in Escherichia coli, using the glutathione S-transferase fusion protein system, and their Ca2+ binding properties were determined. Native calreticulin bound 1 mol of Ca2+/mol of protein with high affinity, and also bound approximately 20 mol of Ca2+/mol of protein with low affinity. Both Ca2+ binding sites were present in the recombinant calreticulin indicating that proper folding of the protein was achieved using this system. Calreticulin is structurally divided into three distinct domains: the N-domain encompassing the first 200 residues; the P-domain which is enriched in proline residues (residue 187-317); and the C-domain which covers the carboxyl-terminal quarter of the protein (residues 310-401), and contains a high concentration of acidic residues. These domains were expressed in E. coli, isolated, and purified, and their Ca2+ binding properties were analyzed. The C-domain bound approximately 18 mol of Ca2+/mol of protein with a dissociation constant of approximately 2 mM. The P-domain bound approximately 0.6-1 mol of Ca2+/mol of protein with a dissociation constant of approximately 10 microM. The P-domain and the C-domain, when expressed together as the P+C-domain, bound Ca2+ with both high affinity and low affinity, reminiscent of both full length recombinant calreticulin and native calreticulin. In contrast the N-domain, did not bind any detectable amount of 45Ca2+. We conclude that calreticulin has two quite distinct types of Ca2+ binding sites, and that these sites are in different structural regions of the molecule. The P-domain binds Ca2+ with high affinity and low capacity, whereas the C-domain binds Ca2+ with low affinity and high capacity.  相似文献   

18.
The binding of substrates and a product to glutathione S-transferase A from rat liver was studied by use of equilibrium dialysis and equilibrium partition in a two-phase system. The radioactive substrates glutathione and bromosulfophthalein as well as a product of glutathione and 3,4-dichloro-1-nitrobenzene, S-(2-chloro-4-nitrophenyl)glutathione, gave hyperbolic binding isotherms with a stoichiometry of 2 mol per mol of enzyme (i.e. 1 molecule per subunit). Glutathione (and glutathione disulfide) had an equilibrium (dissociation) constant for the binding of about 10 microM, whereas bromosulfophthalein and the product had equilibrium constants of about 0.5 microM. All ligands showed the same binding stoichiometry, and competition experiments involving unlabeled ligands indicated that glutathione and the glutathione derivatives were binding to the same site. Low affinity sites appeared to exist in addition to the specific high affinity sites (one per subunit) for all ligands tested. The binding studies are fully consistent with a steady state random kinetic mechanism for the enzyme.  相似文献   

19.
1. The binding of Ca2+ ions to purified pig heart NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase, freed of contaminating Ca2+ by parvalbumin/polyacrylamide chromatography, has been studied by flow dialysis and by the use of fura-2. 2. For the 2-oxoglutarate dehydrogenase complex, 3.5 mol of Ca2+-binding sites/mol of complex were apparent, with an apparent dissociation constant (Kd value) for Ca2+ of 2.0 microM. These values were little affected by Mg2+ ions, ADP or 2-oxoglutarate. 3. By contrast, binding of Ca2+ to NAD+-isocitrate dehydrogenase (Kd = 14 microM) required ADP, isocitrate and Mg2+ ions. The number of Ca2+-binding sites associated with NAD+-isocitrate dehydrogenase was then 0.9 mol/mol of tetrameric enzyme. 4. The 2-oxoglutarate dehydrogenase complex bound ADP (as ADP3-) to a group of tight-binding sites (Kd = 3.1 microM) with a stoichiometry, 3.3 mol/mol of complex, similar to that for the binding of Ca2+; a variable number of much weaker sites (Kd = 100 microM) for ADP3- was also apparent.  相似文献   

20.
This paper reports that microM concentrations of fructose bisphosphate are titrated by rabbit muscle fructose-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) when the enzyme concentration is varied in the range which secures measurable initial velocities of reaction: a result that can only be explained by supposing that the enzyme has a greater affinity for fructose bisphosphate than suggested by Fernando, J., Enser, M., Pontremoli, S. and Horecker, B.L. (1968) Arch. Biochem. Biophys. 126, 599-606. The results also suggest that the keto form of the substrate may be the preferred configuration and that the enzyme is inhibited by magnesium-bound fructose bisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号