首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The synthesis of a series of symmetrical disulfides as potential substrates of trypanothione reductase and glutathione reductase was described. The key intermediate in the synthetic approach was the choice of S-tbutylmercapto-L-cysteine (1). The spermidine ring in the native substrate, trypanothione disulfide (TSST), was replaced with 3-dimethyl-aminopropylamine (DMAPA), while the-Glu moiety was replaced by phenylalanyl or tryptophanyl residues. The same modifications in the-Glu moiety of glutathione disulfide (GSSG) were applied.  相似文献   

2.
Trypanosomatids, the causative agents of several tropical diseases, have a unique thiol metabolism based on trypanothione [bis(glutathionyl)spermidine]. Enzymes of the pathway are attractive drug target molecules but the availability of trypanothione remains an obstacle. Here, we present a convenient method for the production of trypanothione and trypanothione disulfide in >200 mg quantities using a mutant of Crithidia fasciculata trypanothione synthetase in which Cys59 has been replaced by an alanine residue. The reagent costs less than 1% of the commercial price of trypanothione disulfide. The protocol also allows the synthesis of related glutathione conjugates. It will greatly facilitate the thorough analysis of this parasite’s metabolism and drug screening approaches against trypanothione-dependent enzymes.  相似文献   

3.
Summary The synthesis of asymmetrical disulfides, based on Zervas' inter-mediate, monocarbobenzoxy-L-cystine, has been developed. A series of substrate analogues of trypanothione disulfide (TSST) and glutathione disulfide (GSSG) are described, where the spermidine ring of (TSST) has been replaced by 3-dimethylaminopropylamine (DMAPA). The free amino group in Zervas' product was condensed with phenylalanyl, tryptophanyl or glutamyl residues, while the carbobenzoxy group was unaffected under the reaction conditions employed. The same synthetic approach was applied in the design of analogues of glutathione disulfide (GSSG).  相似文献   

4.
Trypanothione reductase (TR) is an NADPH-dependent flavoprotein oxidoreductase central to thiol metabolism in all the trypanosomatids including Leishmania. The unique presence of this enzyme in trypanosomatids and absence in mammalian host make this enzyme an attractive target for the development of the antileishmanials. Complete open reading frame encoding trypanothione reductase from Leishmania donovani (Dd8 strain, causative agent of Indian visceral leishmaniasis) was cloned, sequenced, and expressed in Escherichia coli strain BL21 (DE3) as glutathione S-transferase fusion protein. The conditions were developed for overexpression of fusion protein in soluble form and purification of the recombinant protein to homogeneity. The recombinant LdTR was 54.68 kDa in size, dimeric in nature, and reduces oxidized trypanothione to reduced form. The kinetic parameters for trypanothione disulfide are K(m), 50 microM; k(cat), 18,181 min(-1); and k(cat)/K(m), 6.06x10(6) M(-1) s(-1). The yield of recombinant LdTR was approximately 16 mg/L bacterial culture and accounted for 6% of the total soluble proteins. The expressed protein was inhibited by known TR inhibitors as well as by SbIII, the known antileishmanial compound. This is the first report of large-scale production of any leishmanial TR in E. coli.  相似文献   

5.
Summary The rational design of ligands for the substrate-binding site of a homology-modelled trypanothione reductase (TR) was performed. Peptides were designed to be selective for TR over human glutathione reductase (GR). The design process capitalized on the proposed differences between the activesites of TR and human GR, subsequently confirmed by the TR crystal structure. Enzyme kinetics confirmed that forT. cruzi TR benzoyl-Leu-Arg-Arg-ß-naphthylamide was an inhibitor (Ki 13.8µM) linearly competitive with the native substrate, trypanothione disulphide, and did not inhibit glutathione reductase.  相似文献   

6.
This paper discusses the effects of two neuroleptic agents, chlorpromazine and trifluoperazine; three antimycotics, amphotericin B, ketoconazole and miconazole and four antibiotics, pentamidine, rifampicin, mepacrine and metronidazole on the NADPH-dependent disulfide reducing enzymes cystine reductase (CysR), glutathione reductase (GR) trypanothione reductase (TR) and a putative disulfide reductase for compound X in Acanthamoeba polyphaga from the human pathogens A. polyphaga and Naegleria fowleri. Against A. polyphaga, all nine drugs studied had the capacity to inhibit the putative disulfide reductase from the trophozoites at a concentration of 32microg/ml during a 24h incubation and they were: the neuroleptics trifluoperazine (100%) and chlorpromazine (96%), the antimycotics miconazole (89%) ketoconazole (81%) and amphotericin B, (53%) and the antibiotics pentamidine (89%), rifampicin (64%), mepacrine (57%) and metronidazole (14%). Only six of the nine drugs simultaneously inhibited CysR, GR and the putative disulfide reductase. In N. fowleri, the most potent inhibitors of trypanothione reductase were amphotericin B and miconazole which inhibited 100% at a concentration of 32microg/ml during the 24h incubation followed by the neuroleptics trifluoperazine (92%) and chlorpromazine (80%) and the antibiotic mepacrine (70%). All these also inhibited CysR and GR from the trophozoites other than mepacrine which inhibited only CysR and TR. Ketoconazole, rifampicin (which did not affect CysR), pentamidine and metronidazole had opposite effects since they did not inhibit but increased the amount of the three thiols.  相似文献   

7.
Summary Kinetic data for alternative substrates of recombinant trypanothione reductase fromTrypanosoma cruzi were measured for a series ofN-substituted-L-cysteinylglycyl-3-dimethylaminopropylamides, in which the cysteineN-substituent was either a variant of the benzyloxycarbonyl group or was L-phenylalanine or L-tryptophan. Replacing the benzylic ether oxygen atom by CH2. or NH had relatively minor effects on kcat, but raised the value of Km, 4.5- and 10-fold, respectively. Similarly, relative to the carbobenzoxy group, anN-L-phenylalanyl orN-L-tryptophanyl replacement on the cysteine hardly altered kcat, but increased Km, values by 16.6 and 7.4 fold, respectively. These observations were consistent with the Km, values referring primarily to binding for this series of nonspecific substrates.Abbreviations DCC N,N-dicyclohexylcarbodiimide - dmapa dimethylaminopropylamine - DMF dimethylformamide - GR glutathione reductase - GSSG glutathione disulphide - GSH reduced glutathione - T[S]2 trypanothione disulphide - Hbt hydroxybenzotriazole - TFA trifluoroacetic acid - TLC thin layer chromatography - T[SH]2 reduced trypanothione as dithiol - TR trypanothione reductase - Z.cys.gly.dmapa N-benzyloxycarbonyl-Lcysteinylglycyl-3-dimethylpropylamide  相似文献   

8.
The substrate specificity of the human enzyme glutathione reductase was changed from its natural substrate glutathione to trypanothione [N1,N8-bis(glutathionyl)spermidine] by site-directed mutagenesis of two residues. The glutathione analogue, trypanothione, is the natural substrate for trypanothione reductase, an enzyme found in trypanosomatids and leishmanias, the causative agents of diseases such as African sleeping sickness, Chagas disease, and Oriental sore. The rational bases for our mutational experiments were the availability of a high-resolution X-ray structure for human glutathione reductase with bound substrates, the active site sequence comparisons of human glutathione reductase and the trypanothione reductases from Trypanosoma congolense and Trypanosoma cruzi, a complementary set of mutants in T. congolense trypanothione reductase, and the properties of substrate analogues of trypanothione. Mutation of two residues, A34----E34 and R37----W37, in the glutathione-binding site of human glutathione reductase switches human glutathione reductase into a trypanothione reductase with a preference for trypanothione over glutathione by a factor of 700 using kcat/Km as a criterion.  相似文献   

9.
African trypanosomes contain a cyclic derivative of oxidized glutathione, N1,N8-bis(glutathionyl)spermidine, termed trypanothione. This is the substrate for the parasite enzyme trypanothione reductase, a key enzyme in disulfide/dithiol redox balance and a target enzyme for trypanocidal therapy. Trypanothione reductase from these and related trypanosomatid parasites is structurally homologous to host glutathione reductase but the two enzymes show mutually exclusive substrate specificities. To assess the basis of host vs parasite enzyme recognition for their disulfide substrates, the interaction of bound glutathione with active-site residues in human red cell glutathione reductase as defined by prior X-ray analysis was used as the starting point for mutagenesis of three residues in trypanothione reductase from Trypanosoma congolense, a cattle parasite. Mutation of three residues radically alters enzyme specificity and permits acquisition of glutathione reductase activity at levels 10(4) higher than in wild-type trypanothione reductase.  相似文献   

10.
A three-dimensional structure is engineered for the Trypanosoma congolense trypanothione reductase (TpR) using the sequence homology with glutathione reductase (GR) and lipoamide dehydrogenase, molecular graphics, energy optimization and molecular dynamics techniques. The model was extended to include the complex with the coenzyme nicotinamide adenine dinucleotide phosphate (NADP). The TpR-NADP structure is compared with X-ray data from the glutathione reductase complex with the reduced NADP (NADPH). A model of TpR-NADP including the trypanothione substrate is presented, and an electron-transfer mechanism is proposed.  相似文献   

11.
A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.  相似文献   

12.
The nfa1 gene was cloned from a cDNA library of pathogenic Naegleria fowleri by immunoscreening; it consisted of 360 bp and produced a 13.1 kDa recombinant protein (rNfa1) that showed the pseudopodia-specific localization by immunocytochemistry in the previous study. Based on the idea that the pseudopodia-specific Nfa1 protein mentioned above seems to be involved in the pathogenicity of N. fowleri, we observed the effect of an anti-Nfa1 antibody on the proliferation of N. fowleri trophozoites and the cytotoxicity of N. fowleri trophozoites on the target cells. The proliferation of N. fowleri trophozoites was inhibited after being treated with an anti-Nfa1 polyclonal antibody in a dose-dependent manner for 48 hrs. By a light microscope, CHO cells co-cultured with N. fowleri trophozoites (group I) for 48 hrs showed severe morphological destruction. On the contrary, CHO cells co-cultured with N. fowleri trophozoites and anti-Nfa1 polyclonal antibody (1:100 dilution) (group II) showed less destruction. In the LDH release assay results, group I showed 50.6% cytotoxicity, and group II showed 39.3%. Consequently, addition of an anti-Nfa1 polyclonal antibody produced a decreasing effect of in vitro cytotoxicity of N. fowleri in a dose-dependent manner.  相似文献   

13.
14.
The gene encoding trypanothione reductase, the redox disulfide-containing flavoenzyme that is unique to the parasitic trypanosomatids (Shames et al., 1986), has been isolated from the cattle pathogen Trypanosoma congolense. Library screening was carried out with inosine-containing oligonucleotide probes encoding sequences determined from two active site peptides isolated from the purified Crithidia fasciculata enzyme. The nucleotide sequence of the gene was determined according to the dideoxy chain termination method of Sanger. The structural gene is 1476 nucleotides long and encodes 492 amino acids. We have identified the active site peptide containing the redox-active disulfide, a peptide corresponding to the histidine-467 region of human erythrocyte glutathione reductase, as well as the flavin binding domain that is highly conserved in all disulfide-containing flavoprotein reductase enzymes. Alignment of five tryptic peptides (80 residues) isolated from the C. fasciculata trypanothione reductase with the primary sequence of the T. congolense enzyme showed 88% homology with 76% identity. Additionally, a sequence comparison of the glutathione reductase from Escherichia coli or human erythrocytes to T. congolense trypanothione reductase reveals greater than 50% homology. A search for the amino acid residues in the primary sequence of trypanothione reductase functionally active in binding/catalysis in human erythrocyte glutathione reductase shows that only the two arginine residues (Arg-37 and Arg-347), shown by X-ray crystallographic data to hydrogen bond to the GS1 glutathione glycyl carboxylate, are absent.  相似文献   

15.
We have subjected peas (Pisum sativum L.) to four different oxidative stresses: cold conditions (4 °C) in conjunction with light, treatment with paraquat, fumigation with ozone, and illumination of etiolated seedlings (greening). In crude extracts of leaves from stressed plants, an increase (up to twofold) in activity of glutathione reductase (GR) was observed which was consistent with previous reports from several laboratories. In all cases, except for ozone fumigation, the increase in activity was not due to an elevation in the steady-state levels of GR protein. None of the applied stresses had any effect on steady-state levels of GR mRNA. In contrast to the small increase in GR activity, the K m of GR for glutathione disulphide showed a marked decrease when determined for extracts of stressed leaves, compared with that from unstressed plants. This indicates that GR from stressed plants has an increased affinity for glutathione disulphide. The profile of GR activity bands fractionated on non-denaturing acrylamide gels varied for extracts from differently stressed leaves and when compared with GR from unstressed plants. The changes in GR-band profiles and the alteration in the kinetic properties are best explained as changes in the isoform population of pea GR in response to stress.Abbreviations GR glutathione reductase - GSSG glutathione disulphide - Rubisco Ribulose-1,5-bisphosphate carboxylase-oxygenase - RNase A/T1 ribonucleases A and T1 We are grateful to Prof. Alan Wellburn and Dr. Phil Beckett (Division of Biological Sciences, University of Lancaster, UK) for providing ozone-fumigated material and Dr. Jeremy Harbinson for providing material grown at 4° C. This work was supported by a grant-in-aid to the John Innes Institute from the Agricultural and Food Research Council. E.A.E. and C.E. gratefully acknowledge the support of a John Innes Foundation studentship and a European Molecular Biology Organisation Fellowship respectively.  相似文献   

16.
Alterations in the redox status of proteins have been implicated in the pathology of several neurodegenerative diseases including Alzheimer's and Parkinson's. We report that peroxynitrite and H2O2-induced disulfides in the porcine brain microtubule-associated proteins tau and microtubule-associated protein-2 are substrates for the glutaredoxin reductase system composed of glutathione reductase, human or Escherichia coli glutaredoxin, reduced glutathione, and NADPH. Oxidation and reduction of cysteines in tau and microtubule-associated protein-2 were quantitated by monitoring the incorporation of 5-iodoacetamido-fluorescein, a thiol-specific labeling reagent. Reduction of disulfide bonds in the microtubule-associated proteins by the glutaredoxin reductase system restored their ability to promote the assembly of microtubules composed of purified porcine tubulin. Thiol-disulfide exchange between oxidized glutathione and the microtubule-associated proteins was detected by monitoring protein oxidation and was quantitated by measuring reduced glutathione by HPLC.  相似文献   

17.
Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A (51)Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.  相似文献   

18.
Nfa1 protein expressed by the nfa1 gene that was cloned recently from pathogenic Naegleria fowleri was found in pseudopodia, especially food-cups, and concerned with a mechanism of pathogenicity of N. fowleri. In the present study, N. fowleri nfa1 gene was knocked down using double-stranded RNAs, and the expression of Nfa1 protein was observed. Using synthetic double-stranded RNA of the nfa1 gene in vitro, the nfa1 gene and Nfa1 protein were knocked down about 50.4+/-3.1% and 52+/-2%, respectively. These results suggest that RNA interference (RNAi) may be an effective technique for gene knock-down in N. fowleri trophozoites.  相似文献   

19.
Trypanosomatids differ from other cells in their ability to conjugate glutathione with the polyamine spermidine to form the antioxidant metabolite trypanothione (N1,N8-bis(glutathionyl)spermidine). In Trypanosoma cruzi, trypanothione is synthesized by an unusual trypanothione synthetase/amidase (TcTryS) that forms both glutathionylspermidine and trypanothione. Because T. cruzi is unable to synthesize putrescine and is dependent on uptake of exogenous polyamines by high affinity transporters, synthesis of trypanothione may be circumstantially limited by lack of spermidine. Here, we show that the parasite is able to circumvent the potential shortage of spermidine by conjugating glutathione with other physiological polyamine substrates from exogenous sources (spermine, N8-acetylspermidine, and N-acetylspermine). Novel thiols were purified from epimastigotes, and structures were determined by matrix-assisted laser desorption ionization time-of-flight analysis to be N1,N12-bis(glutathionyl)spermine, N1-glutathionyl-N8-acetylspermidine, and N1-glutathionyl-N12-acetylspermine, respectively. Structures were confirmed by enzymatic synthesis with recombinant TcTryS, which catalyzes formation of these compounds with kinetic parameters equivalent to or better than those of spermidine. Despite containing similar amounts of spermine and spermidine, the epimastigotes, trypomastigotes, and amastigotes of T. cruzi preferentially synthesized trypanothione. Bis(glutathionyl)spermine disulfide is a physiological substrate of recombinant trypanothione reductase, comparable to trypanothione and homotrypanothione disulfides. The broad substrate specificity of TcTryS could be exploited in the design of polyamine-based inhibitors of trypanothione metabolism.  相似文献   

20.
One route to the design of lead compounds for rational drug design approaches to developing drugs against trypanosomiasis, Chagas' disease and leishmaniasis is to develop novel inhibitors of the parasite-specific enzyme trypanothione reductase. A lead inhibitor based on a peptoid structure was designed in the present study based on the known strong competitive inhibition of trypanothione reductase by N-benzoyl-Leu-Arg-Arg-beta-naphthylamide and N-benzyloxycarbonyl-Ala-Arg-Arg-4-methoxy- beta-naphthylamide. In the target peptoid the arginyl residues were replaced by alkylimidazolium units and the benzyloxycarbonyl group by the benzylaminocarbonyl function. The peptoid was synthesised using t-butoxycarbonyl protection chemistry and couplings were activated by 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate. The resulting peptoid was shown to be a competitive inhibitor of recombinant trypanothione reductase from Trypanosoma cruzi with a K(i) value of 179 microM and with only weak inhibition of human erythrocyte glutathione reductase (the inhibition of glutathione reductase was at least 291-fold weaker than of trypanothione reductase).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号