首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the replication of keratinocytes in stratified squamous epithelia. Other studies have revealed functional and morphological heterogeneity in the replicating population of such cells. To examine possible kinetic heterogeneity, we determined the cell-cycle lengths of replicating cells in cultures of human epidermal keratinocytes. A double-label assay was developed, which measures the time between two successive cycles of DNA synthesis. The first cycle of DNA synthesis was marked by pulse labeling cultures for a brief period with 14C-thymidine (dThd), and the second cycle was detected by labeling at a later time with bromodeoxyuridine (BrdUrd). The time taken for the 14C-labeled DNA to become doubly labeled with BrdUrd was shown to correspond to the length of the cell cycle. In subconfluent cultures in which the cell number increased at an exponential rate, the average cell-cycle time was 21.5 h. In confluent cultures in which desquamation was balanced by cell renewal, the average cell cycle was 31.5 h. However, in confluent cultures, three populations of replicating cells were evident, these having cycle times of 22, 33, and 40 h. In subconfluent cultures, there was no clear evidence for cell-cycle heterogeneity of the replicating cells, although the most rapidly cycling cells in these cultures had a cycle time (16 h) considerably less than the most rapidly cycling cells in the confluent cultures (21 h). It is possible that the rapidly cycling cells seen in the subconfluent cultures were stem cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Epidermal growth factor (EGF) at nanomolar concentrations stimulated DNA synthesis in confluent, serum-starved cultures of calf aorta and human uterine smooth muscle cells. Stimulation of DNA synthesis in lens epithelial cells was studied for comparison. L and D-ascorbic acid potentiated the effect of serum and EGF on DNA synthesis in calf aorta cells. In contrast L-ascorbic acid had minimal potentiating effect with serum and no effect with EGF present along with serum on DNA synthesis in human uterine smooth muscle and rabbit lens epithelial cells. EGF and ascorbic acid increased cell number when added to stationary phase cultures. Specific binding of 125I-labelled EGF to smooth muscle cells was demonstrated. Receptor concentration in calf-aorta smooth muscle cells was higher in dense cultures compared to sparse cultures. The time course of binding and dissociation of 125I-labelled EGF was similar in "dense" and "sparse" cultures. Human uterine smooth muscle cells in culture exhibited a finite lifespan. There was no stimulation of DNA synthesis in response to serum and EGF in cells of high population doubling level (PDL); although 125I-labeled EGF binding was higher in old cells (high PDL) compared to young cells (low PDL). This increase in binding was shown to be due to changes in the concentration of receptors without changes in their affinity for EGF.  相似文献   

3.
Epidermal growth factor (EGF) stimulated the formation of inositol trisphosphate, inositol bisphosphate, and inositol phosphate in density-arrested BALB/c/3T3 cells pretreated for 1.5-4 h with cholera toxin, a potent activator of adenyl cyclase, and isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor. Concomitant addition of cholera toxin, IBMX, and EGF to cells did not increase inositol phosphate levels, and pretreatment with both agents was more effective than pretreatment with either alone. Pre-exposure of cells to cholera toxin and IBMX also enhanced the increase in inositol phosphates occurring in response to platelet-derived growth factor (PDGF). Preincubation of cells with cholera toxin and IBMX in the presence of cycloheximide abolished the effects of these agents on EGF- and PDGF-stimulated inositol phosphate production as well as the lesser increase in inositol phosphate formation produced by cholera toxin and IBMX in the absence of hormone. Preincubation of cells with cycloheximide did not affect EGF binding or the ability of PDGF to stimulate inositol phosphate formation. Cycloheximide also precluded EGF-induced inositol phosphate production when presented to cells 3 h after addition of cholera toxin and IBMX. These findings show that, under the appropriate conditions, EGF is capable of stimulating inositol phosphate formation in a nontransformed cell line.  相似文献   

4.
Epidermal hyperproliferation (psoriasis, wound repair) is the result of quiescent (G0) keratinocytes being recruited into the cell cycle. A detailed characterization of the cell cycle kinetic parameters of the mouse keratinocyte line (Balb/MK) has been carried out with the aid of bivariate iododeoxyuridine (IdUrd) and DNA analysis using flow cytometry, in order to establish whether it might provide a useful model for the study of the biochemical events controlling recruitment into the cell cycle. Balb/MK keratinocytes were cultured using low Ca2+ Dulbecco's modified Eagle's medium/F12 in the presence of 10% dialysed fetal bovine serum and 4 ng/ml epidermal growth factor (EGF). IdUrd labelling followed by flow cytometric analysis of trypsinized cells showed that about 95% of the population were actively cycling, with a cell cycle time of around 14 h and no significant contact inhibition. Omission of serum and EGF followed by IdUrd pulse-labelling indicated that the cells progressively withdrew from the cycle and, after 16h, less than 10% incorporated IdUrd. Subsequent restimulation with serum resulted in a synchronized cohort of cells being recruited. Entry into the S phase of the cell cycle (IdUrd incorporation) started at 8 h and was maximal between 12 h and 16 h after stimulation. Restimulation with EGF alone reached a growth fraction of 87% after 24 h continuous labelling compared with 97% using serum together with EGF. Epidermal growth factor already showed a significant stimulation at 10 pg/ml compared with the controls. There is a broad plateau centred on 5 ng/ml, followed by a slight decline above this level. We conclude that the use of a cell line with defined cell cycle kinetic parameters which can be switched between the quiescent and cycling states in a fully defined medium will provide an ideal model for biochemical studies of the relevant signal transduction pathways in keratinocytes.  相似文献   

5.
The monomorphic anti-HLA Class I monoclonal antibody 01.65 inhibits the incorporation of tritiated thymidine ([3H]TdR) in Phytohemagglutinin (PHA)-activated human T lymphocytes. Our data indicate that 01.65 affects the average duration of the cell cycle by increasing the length of the early S subphase. As a consequence of the increase in the doubling time of the cell population, the absolute number of cells at harvesting time was reduced in 01.65-treated cultures compared to that of untreated cultures. The lengthening of the S-phase and the decrease in the cell number can together quantitatively account for the reduction of [3H]TdR incorporation observed in 01.65-treated cultures.  相似文献   

6.
Cyclic AMP in relation to proliferation of the epidermal cell: a new view.   总被引:38,自引:0,他引:38  
H Green 《Cell》1978,15(3):801-811
Four agents known to increase the level of cellular cAMP by different means (cholera toxin, dibutyryl cAMP, methyl isobutyl xanthine and isoproterenol) increase the growth of colonies of cultured human epidermal cells and of keratinocytes derived from other stratified squamous epithelia. This effect is due to an increase in the overall rate of cell proliferation in the colonies. When added to cultures under hitherto optimum conditions for epidermal cell growth [in the presence of supporting 3T3 cells and epidermal growth factor (EGF)], most of the agents exert an effect of considerable magnitude, the toxin being the most potent. Since the toxin exerts an effect in the absence of supporting 3T3 cells, it must be able to act directly on the keratinocytes. It can also act in the absence of ECF and of medium conditioned by 3T3 cells, although proliferation is greatest when supporting 3T3 cells and EGF are present. The increased proliferation in the presence of the toxin is associated with an increased proportion of small cells known to include the multiplying fraction. The use of toxin makes the cultivation of keratinocytes from epidermis and other stratified squamous epithelia much easier and prolong the culture life of the cells. Whether cell proliferation in the intact epidermis is regulated through agents affecting cAMP (in a direction opposite to that suggested by much of the earlier literature) remains to be elucidated, but the existence of such a mechanism in cultured cells suggests that it may function in the intact epithelium.  相似文献   

7.
Virgin rat mammary epithelium enriched for alveoli were embedded in a collagen gel matrix to study the direct effect of mammogenic hormones and epidermal growth factor (EGF) on their growth over a 12-day culture period. Serum-supplemented medium alone caused a 3- to 4-fold increase in cell number, whereas medium containing insulin, prolactin, progesterone, cholera toxin and serum caused a 15-fold increase. Cultures resulting from this substantial cell number increase consisted of large, smooth-bordered epithelial colonies with relatively few (< 1%) single cells surrounding them. An equal increase in cell number was obtained when progesterone was replaced by hydrocortisone in the above-mentioned medium, but these cultures contained predominantly single spindle-shaped cells with a few small epithelial colonies. The smooth-bordered epithelial colonies consisted solely of mammary epithelial cells, since they contained thioesterase II, an enzyme found exclusively in mammary epithelium. The identity of the single spindle-shaped cells remains to be determined. The addition of EGF to serum or serum, hormone and cholera toxin-supplemented medium did not enhance the proliferative effect of these factors on the alveolar-enriched population.  相似文献   

8.
Epidermal growth factor (EGF) especially in combination with insulin and glucagon, has been shown to stimulate DNA synthesis in liver cells, both in the whole animal and in cell cultures. As a further development we have found that in primary monolayer cultures of freshly isolated adult rat liver parenchymal cells, in which contamination with nonparenchymal cells was negligible, DNA synthesis was substantially stimulated by these substances. In control cultures, incorporation of [3H]thymidine into DNA and labeling of nuclei in autoradiographs was low. The stimulation by EGF was enhanced by insulin and glucagon, whereas these hormones by themselves exhibited only limited activity. These observations were made in cultures of hepatocytes that were never exposed to serum, even during cell isolation and plating. Hence for stimulation of DNA synthesis under these conditions neither serum factors nor interactions with other types of cells or their products were required. The effects of glucagon were reproduced by substances that elevate intracellular concentration of cyclic-AMP, including cholera toxin, isoproterenol, and methylisobutylxanthine. These various substances, especially EGF, glucagon, or cyclic-AMP, altered the morphological characteristics of the cultures during early stages, promoting cellular spreading and aggregation.  相似文献   

9.
We have characterized an unusual cell phenotype in third passage cultures of a human keratinocyte strain derived from newborn foreskin epidermis. The cells had the same DNA fingerprint pattern as the second passage, morphologically normal, keratinocytes; they formed desmosomes and expressed the keratin profile characteristic of normal keratinocytes in culture. However, unlike normal keratinocytes, the cells did not grow as compact colonies and did not stratify or undergo terminal differentiation, even after TPA treatment or suspension culture. For these reasons we named them ndk for "nondifferentiating keratinocytes." The ndk cells also differed from normal keratinocytes in that they did not require a feeder layer and were not stimulated by cholera toxin to proliferate. The ndk cells had an absolute requirement for hydrocortisone and their growth rate was increased when epidermal growth factor was added to the medium. Although ndk failed to undergo terminal differentiation in culture, they were not transformed, since they were still sensitive to contact inhibition of growth, did not proliferate in soft agar, and had a limited lifespan in culture. The appearance of the ndk phenotype was correlated with a doubling of chromosome number and the presence of a lp marker chromosome. We suggest that these cells are a useful experimental adjunct to cultures of normal keratinocytes, in which proliferation and terminal differentiation are tightly coordinated, because in ndk cells there appears to be a block in terminal differentiation.  相似文献   

10.
The differential sensitivity of various cell lines to the mitogenic effects of epidermal growth factor (EGF) was investigated. Two lines of evidence suggest that cellular capacity to respond proliferatively to EGF is related to intracellular cyclic AMP concentration. First, the ability of three density-arrested cell lines to synthesize DNA in response to EGF was directly proportional to the basal cyclic AMP level of the cells at quiescence. Second, treatment of cultures with various agents known to promote intracellular cyclic AMP accumulation increased the sensitivity of all three cell lines to EGF. The mechanism whereby cyclic AMP modulates EGF responsiveness is not known; cholera toxin did not affect the cellular capacity to bind or internalize and process EGF. Although platelet-derived growth factor (PDGF) had no effect on cyclic AMP levels, transient treatment of quiescent cultures with this polypeptide also enhanced EGF sensitivity. In agreement with previous data and in contrast to cholera toxin, PDGF induced the down-regulation of EGF receptors in the three cell lines. These data suggest that the capacity of various cell types to respond to EGF is subject to both intracellular regulation by cyclic AMP and extracellular modulation by factors such as PDGF which can affect EGF receptor activity.  相似文献   

11.
The relationship between growth and cytodifferentiation was studied in cultured human mammary myoepithelial cells under serum-free culture conditions. Myoepithelial-cell differentiation was monitored by quantifying cells showing immunoreactivity to the muscle isoform of actin; to the membrane glycoprotein common acute lymphoblastic leukemia antigen (CALLA); and to type IV collagen. Growth was quantified either by measuring the actual increase in cell number, or in a more-sensitive assay using immunoreactivity to the cell-proliferation-associated nuclear antigen Ki-67 as a measurement of the number of cells leaving the G0-phase of the cell cycle. The results showed that: (a) Primary cultures of myoepithelial cells on DME-F12 supplemented with cholera toxin (CT) alone resulted in the formation of quiescent cell islets (in the G0-phase of the cell cycle) showing phenotypic traits preserved from the in vivo situation (actin- and CALLA-positive cells with little or no type-IV-collagen immunoreactivity). (b) After addition of epidermal growth factor (EGF), with an ED50 of 1-10 ng/ml, in the presence of CT, the cells entered the G1-phase of the cell cycle, without further increase in cell number. At the same ED50 of EGF, the frequency of CALLA-positive cells decreased, while the number of cells immunoreactive for type IV collagen increased with a maximal effect of EGF seen after 7-11 days. During the same period, the cells remained fully differentiated with respect to actin immunoreactivity. (c) Further addition of insulin (I) to the medium in the presence of EGF and CT resulted in the cells entering an exponential growth phase associated with simultaneous decrease in actin immunoreactivity with a maximal effect of I after 11 days of exposure. The dose-response curve to I was virtually identical for stimulating cell proliferation and for reducing the frequency of actin-immunoreactive cells (ED50 in the range of 30 ng/ml), suggesting that the two processes were controlled by the same initial I-receptor interaction. (d) Some reduction in the number of actin-positive cells was exerted by I-EGF-CT independently of the mitogenic response, but this reduction was further augmented if the cells were allowed to proliferate. (e) Time-course studies of quiescent (G0-phase) cells stimulated to exponential growth revealed that entrance of cells into the G1-phase of the cell cycle preceded the loss of muscle actin filaments. (f) Exponentially growing actin-negative epithelial cells did not resume a myoepithelial phenotype in density-arrested postconfluent cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Summary Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system. This work was supported by USPHS Grant CA-24844 from the National Cancer Institute and Grant CD-61B from the American Cancer Society.  相似文献   

13.
A cloned human hepatoma cell line (Li-7A), possessing epidermal growth factor (EGF) receptors numbering in the range of 10-20 pmol/10(6) cells, was inhibited in its growth by EGF as well as an antagonist monoclonal antibody (MoAb) to the EGF receptor. The mode of action of the two ligands of EGF receptors appeared to be different as indicated by the following results: 1) EGF induced marked alteration in cell morphology, whereas the antibody did not; 2) cellular protein accumulated in the EGF-treated cells but not in the antibody treated cells; and 3) ectoATPase activities were greatly enhanced in Li-7A cells treated with EGF and cholera toxin but were unaffected in cells treated with antibody and cholera toxin. The last result also suggests that expression of ectoATPase activities is under the regulation of both EGF and cholera toxin. Li-7A cells provide an additional valuable experimental system for the study of EGF action, as well as the interactive effects of EGF and cholera toxin. The enrichment of the ATPase activities in the EGF-cholera toxin-treated cells can be exploited for the detailed study and isolation of these enzymes and elucidation of their physiological functions.  相似文献   

14.
Epidermal growth factor (EGF) enhances the expression of the keratinocyte terminal differentiation marker SPRR2A, when added to monolayers of basal keratinocytes, induced to stratify by increasing the extracellular calcium concentration. A similar stimulation is found during suspension-induced differentiation in methylcellulose. This effect, which is observed after several hours of EGF addition, is restricted to terminally differentiating keratinocytes and is dependent on PKC signaling. EGF also transiently activates the Ras signaling pathway, with a maximum induction after 10 min (Medema et al., 1994, Mol. Cell. Biol. 14, 7078-7085). The cellular effects of activated Ras were determined by transient transfection of Ha-ras(Leu-61) into normal human keratinocytes. Activated Ras completely inhibited PKC-mediated expression of SPRR2A. This inhibition is mediated via c-Jun as it is reversed by a dominant-negative c-Jun mutant (cJunDelta6/194) and c-Jun can substitute for activated Ras. The inhibitory effect is targeted to a 150-bp minimal promoter region, which is essential and sufficient for SPRR2A expression during keratinocyte terminal differentiation. This indicates that the Ras and PKC pathways, which both can be triggered by EGF, although at different time points, have opposite effects on SPRR2A gene expression.  相似文献   

15.
In the skin, wounding initiates a complex array of physiological processes mediated by growth factors and inflammatory mediators which stimulate tissue repair and protect against infection. We report that primary cultures of human keratinocytes and a mouse keratinocyte cell line respond to the inflammatory stimuli gamma-interferon and lipopolysaccharide or tumor necrosis factor-alpha by producing nitric oxide and hydrogen peroxide, two reactive mediators that are important in nonspecific host defense. Nitric oxide is produced by the l-arginine- and NADPH-dependent enzyme, nitric oxide synthase. In murine keratinocytes, optimal enzymatic activity was found to be dependent on Ca2+ and calmodulin as well as on glutathione. Inflammatory mediators were also found to inhibit the growth of keratinocytes, an effect that could be reversed by a nitric oxide synthase inhibitor. Epidermal growth factor (EGF), which promotes wound healing by stimulating cellular proliferation, was found to be a potent antagonist of reactive nitrogen and reactive oxygen intermediate production by keratinocytes. EGF also reversed the growth inhibitory actions of the inflammatory mediators. These data suggest that nitric oxide produced by keratinocytes is important in the control of cellular proliferation during wound healing. Our findings that EGF effectively regulates the production of free radicals by keratinocytes may represent an important pathway by which this growth factor not only stimulates epidermal cell proliferation but also facilitates the resolution of inflammation following wounding.  相似文献   

16.
Summary Cloned mouse keratinocytes (MK-1 cells) display density-dependent growth arrest when reaching confluency in a serum-free medium with a calcium concentration <0.1 mM, supplemented only with insulin and transferrin. In this quiescent state, greater than 95% of the cell population is in the G0/1 phase of the cell cycle. Treatment of quiescent MK-1 cells with 1 to 10 ng/ml epidermal growth factor (EGF) resulted in a sharp burst of DNA synthetic activity. Both insulin and cholera toxin potentiated the mitogenic effect of EGF, but neither agent was necessary or sufficient to induce thymidine incorporation into DNA. Dexamethasone abolished the effect of insulin, but not the mitogenic effect of EGF alone. In contrast, retinoic acid (RA) did not possess any mitogenic effect for quiescent MK-1 cells, nor did it modulate the actions of EGF or dexamethasone. A number of commercially available crude extracts of bovine brain and pituitary were also capable of initiating DNA synthesis in resting MK-1 cells. Finally, transforming growth factor type beta (TGFβ) proved to be a potent inhibitor of the mitogen-induced DNA synthesis in MK-1 cells (IC50∶10pM). This defined culture system is eminently suited to study the regulation of DNA synthesis of epidermal cells. In addition, it can be used as a sensitive bioassay for the detection of epidermal mitogens, as well as inhibitors of DNA synthesis such as TGFβ. Supported by PHS Award CA-41556 from the National Cancer Institute, Bethesda, MD.  相似文献   

17.
By incubating multilayered primary cultures of human epidermal keratinocytes in a low calcium medium, the suprabasal layers can be stripped off leaving a basal cell monolayer. When this monolayer is refed normal calcium medium a reproducible series of cell kinetic, morphological and biochemical changes take place resulting in the regeneration of a multilayered tissue. The stripping procedure seems to induce the selective proliferation of a cohort of basal cells that is committed to vertical migration and rapid terminal differentiation. In contrast, when the basal cells are allowed to regenerate in the presence of the strong mitogen, cholera toxin, lateral growth and continued proliferation are favoured at the expense of the capacity of the cells to differentiate. Repeated stripping of the same cultures disclosed a considerable heterogeneity in the capacity of the basal cells to regenerate the suprabasal layers. The number of times the basal cells could restore the suprabasal layers after repeated stripping varied from four to nine times. A negative correlation between donor age and regenerative capacity was observed. The experiments with repeated stripping of the same cultures also showed that the capacity to proliferate and to restore the multilayering was fully retained for at least four cycles of stripping-regeneration, whereas the capacity to terminally differentiate was rapidly lost. It is suggested that the present system of regenerating epidermal tissue cultures may serve as an experimental model for the study of epidermal tissue homeostasis and cellular aging.  相似文献   

18.
Summary The proliferation of isolated normal prostate epithelial cells from rat and man is androgen-independent and requires cholera toxin, insulin, dexamethasone, epidermal growth factor (EGF) and one or more polypeptide factors that are concentrated in bovine neural tissue. The active agents in the neural tissue extract are heparin-binding polypeptides (prostatropins), the predominant form of which has a molecular weight of 17400 and an acetylalanine at the aminoterminus. Prostatropins supported a half-maximal increase in normal prostate epithelial cell number at 50 picomolar. The proliferation of primary and serially-cultured epithelial cells from androgen-responsive Dunning R3327 rat prostate tumors was also androgen-independent, but exhibited dramatic alterations in response to hormones that stimulated normal cell proliferation. At low cell density, androgen-independent growth of isolated tumor-derived epithelial cells was independent on cholera toxin, was stimulated by dexamethasone, required insulin andeither EGFor prostatropin. The presence of either EGF or prostatropin masked the response to the other factor. In the absence of EGF, purified prostatropins supported a half-maximal increase in tumor cell number at 7 picomolar. Endogenous production of EGF-like and prostatropin-like factors or both was suggested by the reduced requirement for EGF and prostatropin at high prostate tumor cell density. These results suggest that anti-hormonal therapies against prostate tumor growth should be based on intervention with the activity of insulin (or insulin-like factors) or simultaneous intervention with both EGF and prostatropin (or their homologues). This work was supported by NIH grants CA 37589 and HL 33847, and grant 1718 from the Council for Tobacco Research. Editor’s Statement This paper is the first report of the comparison of the hormone requirements of primary cultures of normal and tumor prostate epithelial cells from the same system.  相似文献   

19.
20.
BALB/MK mouse epidermal keratinocytes require epidermal growth factor (EGF) for proliferation and terminally differentiate in response to high calcium concentrations. We show that EGF is an extremely potent mitogen, causing BALB/MK cultures to enter the cell cycle in a synchronous manner associated with a greater than 100-fold increase in DNA synthesis. Analysis of the expression of proto-oncogenes which have been reported to be activated during the cascade of events following growth factor stimulation of fibroblasts or lymphoid cells revealed a very rapid but transient 100-fold increase in c-fos RNA but little or no effect on the other proto-oncogenes analyzed. Exposure of EGF-synchronized BALB/MK cells to high levels of calcium was associated with a striking decrease in the early burst of c-fos RNA as well as the subsequent peak of cell DNA synthesis. Since the inhibitory effect of high calcium on c-fos RNA expression was measurable within 30 min, our studies imply that the EGF proliferative and calcium differentiation signals must interact very early in the pathway of EGF-induced proliferation. Our results also establish that c-fos RNA modulation is an important early marker of cell proliferation in epithelial as well as mesenchymal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号