首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caspase-8, FADD, and FLIP orchestrate apoptosis in response to death receptor ligation. Mysteriously however, these proteins are also required for normal embryonic development and immune cell proliferation, an observation that has led to their implication in several nonapoptotic processes. While many scenarios have been proposed, recent genetic and biochemical evidence points to unregulated signaling by the receptor-interacting protein kinases-1 (RIPK1) and RIPK3 as the lethal defect in caspase-8-, FADD-, and FLIP-deficient animals and tissues. The RIPKs are known killers, being responsible for a nonapoptotic form of cell death with features similar to necrosis. However, the mechanism by which caspase-8, FADD, and FLIP prevent runaway RIPK activation is unknown, and the signals that trigger these events during development and immune cell activation remain at large. In this review, we will lay out the evidence as it now stands, reinterpreting earlier observations in light of new clues and considering where the investigation might lead.  相似文献   

2.
Caspase-8, a cysteine-protease, initiates apoptosis when activated by death receptors. Caspase-8 is also essential for initiating T lymphocyte proliferation following T-cell antigen receptor (TCR) signaling. Given these disparate functions of caspase-8, we sought to determine whether this represented only a difference in the magnitude of caspase-8 activation, or different intracellular locations of active caspase-8. We demonstrate by high-resolution multicolor confocal laser scanning microscopy an aggregation of active caspase-8 within membrane lipid rafts in T cells stimulated with anti-CD3. This suggests that following TCR stimulation active caspase-8 physically interacts with lipid raft proteins, possibly to form a signaling platform. In contrast, Fas stimulation of T cells resulted in a much more profound activation of caspase-8 that was exclusively cytosolic. These confocal microscopic findings were confirmed using discontinuous sucrose gradient ultracentrifugation to isolate lipid raft versus cytosolic components. This sequestration model of caspase-8 activation was further supported by the observation that a classic caspase-8 substrate, BID, was not cleaved in CD3-stimulated T cells, but was cleaved after Fas engagement. Our data support a model that the location of active caspase-8 may profoundly influence its functional capacity as a regulator of either cell cycling or cell death.  相似文献   

3.
The relation between activation of caspase-8 and polyglutamine aggregates has been focused. We prepared an antiserum (anti-m8D387) that recognizes the active form but not the proform of mouse caspase-8. We used immunostaining with anti-m8D387 antiserum to compare the localizations of activated mcaspase-8 in L929 (clone 1422) cells induced by TNF and polyglutamine aggregates. Anti-m8D387 was positive throughout cytoplasm of the TUNEL-positive cells induced by TNF treatment, whereas the anti-m8D387 reactivity was not positive throughout cytoplasm of the cells expressing polyglutamine but was restricted to polyglutamine aggregates. In contrast with TNF-treated cells, cells expressing anti-m8D387-positive cytoplasmic polyglutamine aggregates did not undergo TUNEL-positive apoptosis. Thus activated caspase-8 associated with polyglutamine aggregates alone was not sufficient to induce TUNEL-positive apoptosis of L929 (clone 1422) cells. The distribution of activated caspase-8 associated with polyglutamine aggregates may be essential for the polyglutamine-mediated cell death or downstream of caspase-8 may be different in the TNF-treated cells and cells expressing polyglutamine.  相似文献   

4.
The extrinsic, or death receptor, pathway integrates apoptotic signals through the protease caspase-8 (casp8). Beyond cell death regulation, non-apoptotic functions of casp8 include its essential requirement for hematopoiesis and lymphocyte clonal expansion, and tempering of autophagy in T cells. However, the mechanistic basis for the control of these disparate cellular processes remains elusive. Here, we show that casp8-deficient T-cell survival was rescued by enzymatically active, but not inactive, casp8-expressing retroviruses. The casp8 catalytic induction in proliferating T cell occurred independent of extrinsic and intrinsic apoptotic-signaling cascades and did not induce casp8 proteolytic processing. Using a biotinylated probe selectively targeting enzymatically active caspases, catalytically active full-length casp8 was found in vivo in dividing T cells. A casp8 D387A processing mutant was able to rescue casp8-deficient T-cell proliferation, validating that casp8 self-processing is not required for its non-apoptotic function(s). Finally, casp8 activity was highest in CD8+ T cells, the most rapidly proliferating subset. These results show that the catalytically competent form of casp8 is required for rapid T-cell proliferation in response to TCR ligation, but that processing of the caspase is only necessary to promote apoptosis.  相似文献   

5.
Dysregulation of either the extrinsic or intrinsic apoptotic pathway can lead to various diseases including immune disorders and cancer. In addition to its role in the extrinsic apoptotic pathway, caspase-8 plays nonapoptotic functions and is essential for T cell homeostasis. The pro-apoptotic BH3-only Bcl-2 family member Bim is important for the intrinsic apoptotic pathway and its inactivation leads to autoimmunity that is further exacerbated by loss of function of the death receptor Fas. We report that inactivation of caspase-8 in T cells of Bim(-/-) mice restrained their autoimmunity and extended their life span. We show that, similar to caspase-8(-/-) T cells, Bim(-/-) T cells that also lack caspase-8 displayed elevated levels of necroptosis and that inhibition of this cell death process fully rescued the survival and proliferation of these cells. Collectively, our data demonstrate that inactivation of caspase-8 suppresses the survival and proliferative capacity of Bim(-/-) T cells and restrains autoimmunity in Bim(-/-) mice.  相似文献   

6.
Polyphenol phytoalexin (resveratrol), found in grapes and red wine is a strong chemopreventive agent with promising safety records with human consumption and unique forms of cell death induction in a variety of tumor cells. However, the mechanism of resveratrol-induced apoptosis upstream of mitochondria is still not defined. The results from this study suggest that caspase-2 activation occurs upstream of mitochondria in resveratrol-treated cells. The upstream activation of caspase-2 is not dependent on its antioxidant property or NF-kappaB inhibition. The activated caspase-2 triggers mitochondrial apoptotic events by inducing conformational changes in Bax/Bak with subsequent release of cytochrome c, apoptosis-inducing factor, and endonuclease G. Caspase-8 activation seems to be independent of these events and does not appear to be mediated by classical death receptor processing or downstream caspases. Both caspase-2 and caspase-8 contribute toward the mitochondrial translocation of Bid, since neither caspase-8 inhibition nor caspase-2 inhibition could prevent translocation of Bid DsRed into mitochondria. Caspase-2 inhibitors or antisense silencing of caspase-2 prevented cell death induced by resveratrol and partially prevented processing of downstream caspases, including caspase-9, caspase-3, and caspase-8. Studies using mouse embryonic fibroblasts deficient for both Bax and Bak indicate the contribution of both Bax and Bak in mediating cell death induced by resveratrol and the existence of Bax/Bak-independent cell death possibly through caspase-8- or caspase-2-mediated mitochondria-independent downstream caspase processing.  相似文献   

7.
Caspase-8 is a member of the cysteine proteases, which are implicated in apoptosis and cytokine processing. Like all caspases, caspase-8 is synthesized as an inactive single polypeptide chain zymogen procaspase and is activated by proteolytic cleavage, through either autoactivation after recruitment into a multimeric complex or trans-cleavage by other caspases. Thus, ligand binding-induced trimerization of death receptors results in recruitment of the receptor-specific adapter protein Fas-associated death domain (FADD), which then recruits caspase-8. Activated caspase-8 is known to propagate the apoptotic signal either by directly cleaving and activating downstream caspases or by cleaving the BH3 Bcl2-interacting protein, which leads to the release of cytochrome c from mitochondria, triggering activation of caspase-9 in a complex with dATP and Apaf-1. Activated caspase-9 then activates further "downstream caspases," including caspase-8. Knockout data indicate that caspase-8 is required for killing induced by the death receptors Fas, tumor necrosis factor receptor 1, and death receptor 3. Moreover, caspase-8-/- mice die in utero as a result of defective development of heart muscle and display fewer hematopoietic progenitor cells, suggesting that the FADD/caspase-8 pathway is absolutely required for growth and development of specific cell types.  相似文献   

8.
9.
Although ovarian tumours initially respond to chemotherapy, they gradually acquire drug resistance. The aims of this study were to identify how chemotherapeutic drugs with diverse cellular targets activate apoptotic pathways and to investigate the mechanism by which exposure to a combination of drugs plus death receptor ligands can increase tumour cell kill. The results show that drugs with distinct cellular targets differentially up-regulate TRAIL and TNF as well CD95L, but do not require interaction of these ligands with their receptor partners to induce cell death. Factors that were critical in drug-induced apoptosis were activation of caspases, with caspase-8 being activated by diverse drugs in a FADD-independent manner. Certain drugs also demonstrated some dependence on FADD in the induction of cell death. Caspase-9 was activated more selectively by chemotherapeutic agents. Combining ligation of death receptors with exposure to drugs increased tumour cell kill in both drug resistant cell lines and primary ovarian carcinoma cells, even though these cells were not sensitive to death receptor ligation alone. CD95L was more consistent at combining with drugs than TRAIL or TNF. Investigation of the mechanism by which a combination of drugs plus CD95 ligation can increase cell death showed that caspase-8 was activated in cells exposed to a combination of cisplatin and anti-CD95, but not in cells exposed to either agent alone.  相似文献   

10.
Employing fluorescence resonance energy transfer (FRET) imaging, we previously demonstrated that effector caspase activation is often an all-or-none response independent of drug choice or dose administered. We here investigated the signaling dynamics during apoptosis initiation via the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor pathway to investigate how variability in drug exposure can be translated into largely kinetically invariant cell death execution pathways. FRET-based microscopy demonstrated dose-dependent responses of caspase-8 activation and activity within individual living HeLa cells. Caspase-8 on average was activated 45-600 min after TRAIL/cycloheximide addition. Caspase-8-like activities persisted for 15-60 min before eventually inducing mitochondrial outer membrane permeabilization. Independent of the TRAIL concentrations used or the resulting caspase-8-like activities, mitochondrial outer membrane permeabilization was induced when 10% of the FRET substrate was cleaved. In contrast, in Bid-depleted cells, caspase-8-like activity persisted for hours without causing immediate cell death. Our findings provide detailed insight into the intracellular signaling kinetics during apoptosis initiation and describe a threshold mechanism controlling the induction of apoptosis execution.  相似文献   

11.
The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DED)s, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156) in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence.  相似文献   

12.
In contrast to positive signaling leading to proliferation, the mechanisms involved in negative signaling culminating in apoptosis after B cell Ag receptor (BCR) ligation have received little study. We find that apoptosis induced by BCR cross-linking on EBV-negative mature and immature human B cell lines involves the following sequential, required events: a cyclosporin A-inhibitable, likely calcineurin-mediated step; and activation of caspase-2, -3, and -9. Caspase-2 is activated early and plays a major role in the apoptotic pathway, while caspase-9 is activated later in the apoptotic pathway and most likely functions to amplify the apoptotic signal. Caspase-8 and -1, which are activated by ligation of the CD95 and TNF-R1 death receptors, are not involved. Apoptosis induced by BCR ligation thus proceeds via a previously unreported intracellular signaling pathway.  相似文献   

13.
Caspase-8 has an important role as an initiator caspase during death receptor-mediated apoptosis. Moreover, it has been reported to contribute to the regulation of cell fate in various types of cells including T-cells. In this report, we show that caspase-8 has an essential role in cell survival in mouse T-lymphoma-derived L5178Y cells. The knockdown of caspase-8 expression decreased the growth rate and increased cell death, both of which were induced by the absence of protease activity of procaspase-8. The cell death was associated with reactive oxygen species (ROS) accumulation, caspase activation, and autophagosome formation. The cell death was inhibited completely by treatment with ROS scavengers, but only partly by treatment with caspase inhibitors, expression of Bcl-xL, and knockdown of caspase-3 or Atg-7 which completely inhibits apoptosis or autophagosome formation, respectively, indicating that apoptosis and autophagy-associated cell death are induced simultaneously by the knockdown of caspase-8 expression. Further analysis indicated that RIP1 and RIP3 regulate this multiple cell death, because the cell death as well as ROS production was completely inhibited by not only treatment with the RIP1 inhibitor necrostatin-1, but also by knockdown of RIP3. Thus, in the absence of protease activity of procaspase-8, RIP1 and RIP3 simultaneously induce not only nonapoptotic cell death conceivably including autophagic cell death and necroptosis but also apoptosis through ROS production in mouse T-lymphoma cells.  相似文献   

14.
Short-term culture of activated T cells with IL-2 renders them highly susceptible to apoptotic death triggered by TCR cross-linking. Activation-induced apoptosis is contingent upon caspase activation and this is mediated primarily by Fas/Fas ligand (FasL) interactions that, in turn, are optimized by p38 mitogen-activated protein kinase (MAPK)-regulated signals. Although T cells from mice bearing mutations in Fas (lpr) or FasL (gld) are more resistant to activation-induced cell death (AICD) than normal T cells, a significant proportion of CD8(+) T cells and to a lesser extent CD4(+) T cells from mutant mice die after TCR religation. Little is known about this Fas-independent death process. In this study, we demonstrate that AICD in lpr and gld CD4(+) and CD8(+) T cells occurs predominantly by a novel mechanism that is TNF-alpha-, caspase-, and p38 MAPK-independent and has morphologic features more consistent with oncosis/primary necrosis than apoptosis. A related Fas- and caspase-independent, nonapoptotic death process is revealed in wild-type (WT) CD8(+) T cell blasts following TCR ligation and treatment with caspase inhibitors, the p38 MAPK inhibitor, SB203580, or neutralizing anti-FasL mAb. In parallel studies with WT CD4(+) T cells, two minor pathways leading to nonapoptotic, caspase-independent AICD were identified, one contingent upon Fas ligation and p38 MAPK activation and the other Fas- and p38 MAPK-independent. These data indicate that TCR ligation can activate nonapoptotic death programs in WT CD8(+) and CD8(+) T blasts that normally are masked by Fas-mediated caspase activation. Selective use of potentially proinflammatory oncotic death programs by activated lpr and gld T cells may be an etiologic factor in autosensitization.  相似文献   

15.
Caspase-8, the initiator caspase of the death receptor pathway of apoptosis, its adapter molecule, FADD, required for caspase-8 activation, and cFLIPL, a caspase-8-like protein that lacks a catalytic site and blocks caspase-8-mediated apoptosis, are each essential for embryonic development. Animals deficient in any of these genes present with E10.5 embryonic lethality. Recent studies have shown that development in caspase-8-deficient mice is rescued by ablation of RIPK3, a kinase that promotes a form of programmed, necrotic cell death. Here, we show that FADD, RIPK3 double-knockout mice develop normally but that the lethal effects of cFLIP deletion are not rescued by RIPK3 deficiency. Remarkably, in mice lacking FADD, cFLIP, and RIPK3, embryonic development is normal. This can be explained by the convergence of two cell processes: the enzymatic activity of the FADD-caspase-8-cFLIPL complex blocks RIPK3-dependent signaling (including necrosis), whereas cFLIPL blocks RIPK3-independent apoptosis promoted by the FADD-caspase-8 complex.  相似文献   

16.
17.
The thymus is the primary organ responsible for de novo generation of immunocompetent T cells that have a diverse repertoire of antigen recognition. During the developmental process, 98% of thymocytes die by apoptosis. Thus apoptosis is a dominant process in the thymus and occurs through either death by neglect or negative selection or through induction by stress/aging. Caspase activation is an essential part of the general apoptosis mechanism, and data suggest that caspases may have a role in negative selection; however, it seems more probable that caspase-8 activation is involved in death by neglect, particularly in glucocorticoid-induced thymocyte apoptosis. Caspase-8 is active in double-positive (DP) thymocytes in vivo and can be activated in vitro in DP thymocytes by T-cell receptor (TCR) crosslinking to induce apoptosis. Caspase-8 is a proapoptotic member of the caspase family and is considered an initiator caspase, which is activated upon stimulation of a death receptor (e.g., Fas), recruitment of the adaptor molecule FADD, and recruitment and subsequent processing of procaspase-8. The main role of caspase-8 seems to be pro-apoptotic and, in this review, we will discuss about the involvement of caspase-8 in (1) TCR-triggered thymic apoptosis; (2) death receptor-mediated thymic apoptosis; and (3) glucocorticoid-induced thymic apoptosis. Regarding TCR triggering, caspase-8 is active in medullary, semi-mature heat-stable antigenhi (HAShi SP) thymocytes as a consequence of strong TCR stimulation. The death receptors Fas, FADD, and FLIP are involved upstream of caspase-8 activation in apoptosis; whereas, Bid and HDAC7 are involved downstream of caspase-8. Finally, caspase-8 is involved in glucocortocoid-induced thymocyte apoptosis through an activation loop with the protein GILZ. GILZ activates caspase-8, promoting GILZ sumoylation and its protection from proteasomal degradation.  相似文献   

18.
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.  相似文献   

19.
Inflammasomes are innate immune mechanisms that promote inflammation by activating the protease caspase-1. Active caspase-1 induces pyroptosis, a necrotic form of regulated cell death, which facilitates the release of intracellular proinflammatory molecules, including IL-1 family cytokines. Recent studies identified mediators of inflammasome-associated cell death and suggested that inflammasomes induce not only pyroptosis, but also apoptosis. Caspase-1 has the potential to induce pyroptosis and apoptosis in a manner that is dependent on the expression of the pyroptosis mediator gasdermin D. Caspase-1-induced apoptosis is mediated by Bid and caspase-7. Caspase-8 is also activated following the formation of inflammasomes and may induce apoptosis. Because inflammasomes contribute to the pathogenesis of inflammatory disorders and host defenses against microbial pathogens, a more detailed understanding of the mechanisms underlying inflammasome-associated cell death may contribute to the development of novel therapeutic strategies for inflammasome-related diseases. Pyroptosis has been implicated in inflammasome-related diseases, and compounds that inhibit this process have been reported. The molecular mechanisms of inflammasome-associated cell death and its physiological implications are discussed herein.  相似文献   

20.
Jiao S  Li Z 《Neuron》2011,70(4):758-772
It has recently been found that caspases not only function in apoptosis, but are also crucial for nonapoptotic processes such as NMDA receptor-dependent long-term depression (LTD) of synaptic transmission. It remains unknown, however, how caspases are activated and how neurons escape death in LTD. Here we show that caspase-3 is activated by the BAD-BAX cascade for LTD induction. This cascade is required specifically for NMDA receptor-dependent LTD but not for mGluR-LTD, and its activation is sufficient to induce synaptic depression. In contrast to apoptosis, however, BAD is activated only moderately and transiently and BAX is not translocated to mitochondria, resulting in only modest caspase-3 activation. We further demonstrate that the intensity and duration of caspase-3 activation determine whether it leads to cell death or LTD, thus fine-tuning of caspase-3 activation is critical in distinguishing between these two pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号