首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to immunogenic cell death inducers, calreticulin (CRT) translocates from its orthotopic localization in the lumen of the endoplasmic reticulum (ER) to the surface of the plasma membrane where it serves as an engulfment signal for antigen-presenting cells.1 Here, we report that yet another ER protein, the lysyl-tRNA synthetase (KARS), was exposed on the surface of stressed cells, on which KARS co-localized with CRT in lipid rafts. Depletion of KARS with small interfering RNAs suppressed CRT exposure induced by anthracyclines or UVC light. In contrast to CRT, KARS was also found in the supernatant of stressed cells. Recombinant KARS protein was unable to influence the binding of recombinant CRT to the cell surface. Moreover, recombinant KARS protein was unable to stimulate macrophages in vitro. These results underscore the contribution of KARS to the emission of (one of) the principal signal(s) of immunogenic cell death, CRT exposure.  相似文献   

2.
Calreticulin exposure dictates the immunogenicity of cancer cell death   总被引:1,自引:0,他引:1  
Anthracyclin-treated tumor cells are particularly effective in eliciting an anticancer immune response, whereas other DNA-damaging agents such as etoposide and mitomycin C do not induce immunogenic cell death. Here we show that anthracyclins induce the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface. Blockade or knockdown of CRT suppressed the phagocytosis of anthracyclin-treated tumor cells by dendritic cells and abolished their immunogenicity in mice. The anthracyclin-induced CRT translocation was mimicked by inhibition of the protein phosphatase 1/GADD34 complex. Administration of recombinant CRT or inhibitors of protein phosphatase 1/GADD34 restored the immunogenicity of cell death elicited by etoposide and mitomycin C, and enhanced their antitumor effects in vivo. These data identify CRT as a key feature determining anticancer immune responses and delineate a possible strategy for immunogenic chemotherapy.  相似文献   

3.
Dying tumour cells can elicit a potent anticancer immune response by exposing the calreticulin (CRT)/ERp57 complex on the cell surface before the cells manifest any signs of apoptosis. Here, we enumerate elements of the pathway that mediates pre‐apoptotic CRT/ERp57 exposure in response to several immunogenic anticancer agents. Early activation of the endoplasmic reticulum (ER)‐sessile kinase PERK leads to phosphorylation of the translation initiation factor eIF2α, followed by partial activation of caspase‐8 (but not caspase‐3), caspase‐8‐mediated cleavage of the ER protein BAP31 and conformational activation of Bax and Bak. Finally, a pool of CRT that has transited the Golgi apparatus is secreted by SNARE‐dependent exocytosis. Knock‐in mutation of eIF2α (to make it non‐phosphorylatable) or BAP31 (to render it uncleavable), depletion of PERK, caspase‐8, BAP31, Bax, Bak or SNAREs abolished CRT/ERp57 exposure induced by anthracyclines, oxaliplatin and ultraviolet C light. Depletion of PERK, caspase‐8 or SNAREs had no effect on cell death induced by anthracyclines, yet abolished the immunogenicity of cell death, which could be restored by absorbing recombinant CRT to the cell surface.  相似文献   

4.
The exposure of calreticulin (CRT) on the plasma membrane can precede anthracycline-induced apoptosis and is required for cell death to be perceived as immunogenic. Mass spectroscopy, immunofluorescence and immunoprecipitation experiments revealed that CRT co-translocates to the surface with another endoplasmic reticulum-sessile protein, the disulfide isomerase ERp57. The knockout and knockdown of CRT or ERp57 inhibited the anthracycline-induced translocation of ERp57 or CRT, respectively. CRT point mutants that fail to interact with ERp57 were unable to restore ERp57 translocation upon transfection into crt(-/-) cells, underscoring that a direct interaction between CRT and ERp57 is strictly required for their co-translocation to the surface. ERp57(low) tumor cells generated by retroviral introduction of an ERp57-specific shRNA exhibited a normal apoptotic response to anthracyclines in vitro, yet were resistant to anthracycline treatment in vivo. Moreover, ERp57(low) cancer cells (which failed to expose CRT) treated with anthracyclines were unable to elicit an anti-tumor response in conditions in which control cells were highly immunogenic. The failure of ERp57(low) cells to elicit immune responses and to respond to chemotherapy could be overcome by exogenous supply of recombinant CRT protein. These results indicate that tumors that possess an intrinsic defect in the CRT-translocating machinery become resistant to anthracycline chemotherapy due to their incapacity to elicit an anti-cancer immune response.  相似文献   

5.
Apoptotic cell death generally characterized by a morphologically homogenous entity has been considered to be essentially non-immunogenic. However, apoptotic cancer cell death, also known as type 1 programmed cell death (PCD), was recently found to be immunogenic after treatment with several chemotherapeutic agents and oncolytic viruses through the emission of various danger-associated molecular patterns (DAMPs). Extensive studies have revealed that two different types of immunogenic cell death (ICD) inducers, recently classified by their distinct actions in endoplasmic reticulum (ER) stress, can reinitiate immune responses suppressed by the tumor microenvironment. Indeed, recent clinical studies have shown that several immunotherapeutic modalities including therapeutic cancer vaccines and oncolytic viruses, but not conventional chemotherapies, culminate in beneficial outcomes, probably because of their different mechanisms of ICD induction. Furthermore, interests in PCD of cancer cells have shifted from its classical form to novel forms involving autophagic cell death (ACD), programmed necrotic cell death (necroptosis), and pyroptosis, some of which entail immunogenicity after anticancer treatments. In this review, we provide a brief outline of the well-characterized DAMPs such as calreticulin (CRT) exposure, high-mobility group protein B1 (HMGB1), and adenosine triphosphate (ATP) release, which are induced by the morphologically distinct types of cell death. In the latter part, our review focuses on how emerging oncolytic viruses induce different forms of cell death and the combinations of oncolytic virotherapies with further immunomodulation by cyclophosphamide and other immunotherapeutic modalities foster dendritic cell (DC)-mediated induction of antitumor immunity. Accordingly, it is increasingly important to fully understand how and which ICD inducers cause multimodal ICD, which should aid the design of reasonably multifaceted anticancer modalities to maximize ICD-triggered antitumor immunity and eliminate residual or metastasized tumors while sparing autoimmune diseases.  相似文献   

6.
While physiological cell death is non-immunogenic, pathogen induced cell death can be immunogenic and hence stimulate an immune response against antigens that derive from dying cells and are presented by dendritic cells (DCs). The obligate immunogenic “eat-me” signal generated by dying cells consists in the exposure of calreticulin (CRT) at the cell surface. This particular “eat-me” signal, which facilitates engulfment by DCs, can only be found on cells that succumb to immunogenic apoptosis, while it is not present on cells dying in an immunologically silent fashion. CRT normally resides in the lumen of the endoplasmic reticulum (ER), yet can translocate to the plasma membrane surface through a complex pathway that involves elements of the ER stress response (e.g., the eIF2α-phosphorylating kinase PERK), the apoptotic machinery (e.g., caspase-8 and its substrate BAP31, Bax, Bak), the anterograde transport from the ER to the Golgi apparatus, and SNARE-dependent exocytosis. A large panoply of viruses encodes proteins that inhibit eIF2α kinases, catalyze the dephosphorylation of eIF2α, bind to caspase-8, Bap31, Bax or Bak, or perturb exocytosis. We therefore postulate that obligate intracellular pathogens have developed a variety of strategies to subvert CRT exposure, thereby avoiding immunogenic cell death.  相似文献   

7.
In response to ionizing irradiation and certain chemotherapeutic agents, dying tumor cells elicit a potent anticancer immune response. However, the potential effect of wogonin (5,7-dihydroxy-8-methoxyflavone) on cancer immunogenicity has not been studied. Here we demonstrated for the first time that wogonin elicits a potent antitumor immunity effect by inducing the translocation of calreticulin (CRT) and Annexin A1 to cell plasma membrane as well as the release of high-mobility group protein 1 (HMGB1) and ATP. Signal pathways involved in this process were studied. We found that wogonin-induced reactive oxygen species (ROS) production causes an endoplasmic reticulum (ER) stress response, including the phosphorylation of PERK (PKR-like endoplasmic reticulum kinase)/PKR (protein kinase R) and eIF2α (eukaryotic initiation factor 2α), which served as upstream signal for the activation of phosphoinositide 3-kinase (PI3K)/AKT, inducing calreticulin (CRT)/Annexin A1 cell membrane translocation. P22/CHP, a Ca2+-binding protein, was associated with CRT and was required for CRT translocation to cell membrane. The releases of HMGB1 and ATP from wogonin treated MFC cells, alone or together with other possible factors, activated dendritic cells and induced cytokine releases. In vivo study confirmed that immunization with wogonin-pretreated tumor cells vaccination significantly inhibited homoplastic grafted gastric tumor growth in mice and a possible inflammatory response was involved. In conclusion, the activation of PI3K pathway elicited by ER stress induced CRT/Annexin A1 translocation (“eat me” signal) and HMGB1 release, mediating wogonin-induced immunity of tumor cell vaccine. This indicated that wogonin is a novel effective candidate of immunotherapy against gastric tumor.  相似文献   

8.
Some chemotherapeutic agents can elicit apoptotic cancer cell death, thereby activating an anticancer immune response that influences therapeutic outcome. We previously reported that anthracyclins are particularly efficient in inducing immunogenic cell death, correlating with the pre-apoptotic exposure of calreticulin (CRT) on the plasma membrane surface of anthracyclin-treated tumor cells. Here, we investigated the role of cellular Ca(2+) homeostasis on CRT exposure. A neuroblastoma cell line (SH-SY5Y) failed to expose CRT in response to anthracyclin treatment. This defect in CRT exposure could be overcome by the overexpression of Reticulon-1C, a manipulation that led to a decrease in the Ca(2+) concentration within the endoplasmic reticulum lumen. The combination of Reticulon-1C expression and anthracyclin treatment yielded more pronounced endoplasmic reticulum Ca(2+) depletion than either of the two manipulations alone. Chelation of intracellular (and endoplasmic reticulum) Ca(2+), targeted expression of the ligand-binding domain of the IP(3) receptor and inhibition of the sarco-endoplasmic reticulum Ca(2+)-ATPase pump reduced endoplasmic reticulum Ca(2+) load and promoted pre-apoptotic CRT exposure on the cell surface, in SH-SY5Y and HeLa cells. These results provide evidence that endoplasmic reticulum Ca(2+) levels control the exposure of CRT.  相似文献   

9.
10.
Few conventional cytotoxic anticancer therapeutics induce immunogenic cell death (ICD). This means that they induce tumor cells to undergo apoptosis while eliciting the emission of a spatiotemporal-defined combination of damage-associated molecular patterns (DAMPs) decoded by the immune system to activate antitumor immunity effective for long-term therapeutic success. The neurotoxin capsaicin (CPS) can induce both cancer cell apoptosis and immune-mediated tumor regression. In the present study, we investigated whether CPS is capable of eliciting the emission of ICD hallmarks in human bladder cancer cell lines undergoing apoptosis. We demonstrated that CPS induces pre- and early apoptotic cell surface exposure of calreticulin (CRT), HSP90, and HSP70 as well as ATP release. Moreover, CRT exposure was prevented by inhibition of endoplasmic reticulum–Golgi traffic by brefeldin A. Furthermore, high-mobility group box 1, HSP90, and HSP70 were passively released at late apoptotic stages. We provide the first evidence that CPS is an inducer of ICD hallmarks, suggesting CPS as a novel potential immunogenic cytotoxic agent.  相似文献   

11.
探讨ERp57基因表达沉默对人小细胞肺癌A549细胞中CRT表达和定位的影响。利用siRNA技术获得ERp57基因表达沉默的人A549肺癌细胞株,分析该细胞株中ERp57基因以及CRT基因的蛋白表达水平,免疫荧光法检测细胞中CRT的表达和亚细胞定位,荧光法检测细胞凋亡。成功获得ERp57基因表达沉默的人A549肺癌细胞株。在该细胞中,CRT表达上调但仍定位于内质网中。用米托蒽醌处理对照细胞14 h后,可使CRT大量转移到细胞膜表面并发生簇集,但在ERp57表达沉默的细胞中,CRT的膜转移和簇集现象不明显。细胞凋亡分析显示,米托蒽醌处理细胞48 h后,所有细胞均出现凋亡细胞典型细胞核固缩、分裂现象。试验证明抑制ERp57蛋白表达会增加A549肺癌细胞中CRT的含量,但同时也阻断蒽环类药物诱导的CRT膜转移,提示ERp57也是介导肿瘤细胞免疫原性凋亡的重要因子。  相似文献   

12.
NF-kappaB is critical for determining cellular sensitivity to apoptotic stimuli by regulating both mitochondrial and death receptor apoptotic pathways. The endoplasmic reticulum (ER) emerges as a new apoptotic signaling initiator. However, the mechanism by which ER stress activates NF-kappaB and its role in regulation of ER stress-induced cell death are largely unclear. Here, we report that, in response to ER stress, IKK forms a complex with IRE1alpha through the adapter protein TRAF2. ER stress-induced NF-kappaB activation is impaired in IRE1alpha knockdown cells and IRE1alpha(-/-) MEFs. We found, however, that inhibiting NF-kappaB significantly decreased ER stress-induced cell death in a caspase-8-dependent manner. Gene expression analysis revealed that ER stress-induced expression of tumor necrosis factor alpha (TNF-alpha) was IRE1alpha and NF-kappaB dependent. Blocking TNF receptor 1 signaling significantly inhibited ER stress-induced cell death. Further studies suggest that ER stress induces down-regulation of TRAF2 expression, which impairs TNF-alpha-induced activation of NF-kappaB and c-Jun N-terminal kinase and turns TNF-alpha from a weak to a powerful apoptosis inducer. Thus, ER stress induces two signals, namely TNF-alpha induction and TRAF2 down-regulation. They work in concert to amplify ER-initiated apoptotic signaling through the membrane death receptor.  相似文献   

13.
14.
Two major chaperones, calreticulin (CRT) and binding immunoglobulin protein (GRP78/BiP) dependent on their location, have immunoregulatory or anti-inflammatory functions respectively. CRT induces pro-inflammatory cytokines, dendritic cell (DC) maturation and activates cytotoxic T cells against tumours. By contrast, GRP78/BiP induces anti-inflammatory cytokines, inhibits DC maturation and heightens T-regulatory cell responses. These latter functions rebalance immune homeostasis in inflammatory diseases, such as rheumatoid arthritis. Both chaperones are therapeutically relevant agents acting primarily on monocytes/DCs. Endogenous exposure of CRT on cancer cell surfaces acts as an ‘eat-me’ signal and facilitates improved elimination of stressed and dying tumour cells by DCs. Therefore, therapeutics that promote endogenous CRT translocation to the cell surface can improve the removal of cancer cells. However, infused recombinant CRT dampens this cancer cell eradication by binding directly to the DCs. Low levels of endogenous BiP appear as a surface biomarker of endoplasmic reticulum (ER) stress in some types of tumour cells, a reflection of cells undergoing proliferation, in which resulting hypoxia and nutrient deprivation perturb ER homeostasis triggering the unfolded protein response, leading to increased expression of GRP78/BiP and altered cellular location. Conversely, infusion of an analogue of GRP78/BiP (IRL201805) can lead to long-term immune resetting and restoration of immune homeostasis. The therapeutic potential of both chaperones relies on them being relocated from their intracellular ER environment. Ongoing clinical trials are employing therapeutic interventions to either enhance endogenous cell surface CRT or infuse IRL201805, thereby triggering several disease-relevant immune responses leading to a beneficial clinical outcome.  相似文献   

15.
Retention of misfolded proteins by the endoplasmic reticulum (ER) is a quality control mechanism involving the participation of endogenous chaperones such as calnexin (CANX). CANX interacts with and restricts plasma membrane expression (PME) of the gonadotropin releasing hormone receptor (GnRHR), a G protein‐coupled receptor. CANX also interacts with ERP‐57 a thiol oxidoreductase chaperone present in the ER. CANX along with ERP‐57 promotes the formation of disulfide bond bridges in nascent proteins. The human GnRH receptor (hGnRHR) is stabilized by two disulfide bond bridges (C14‐C200 and C114‐C196), that, when broken, lead to a decrease in receptor expression at the plasma membrane. To determine if the presence of chaperones CANX and ERP‐57 exerts an influence over membrane routing and second messenger activation, we assessed the effect of various mutants including those with broken disulfide bridges (Cys → Ala) along with the hGnRHR. The effect of chaperones on mutants was insignificant, whereas the over expression of ERP‐57 led to an hGnRHR retention. This effect was further enhanced by cotransfection with cDNA for CANX showing receptor retention by ERP‐57 augmented by CANX, suggesting utilization of these chaperones for quality control of the GnRHR. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Autophagy is an evolutionary conserved process that recycles cellular materials in times of nutrient restriction to maintain viability. In cancer therapeutics, the role of autophagy in response to multi-kinase inhibitors, alone or when combined with histone deacetylase (HDAC) inhibitors acts, generally, to facilitate the killing of tumor cells. Furthermore, the formation of autophagosomes and subsequent degradation of their contents can reduce the expression of HDAC proteins themselves as well as of other signaling regulatory molecules such as protein chaperones and mutated RAS proteins. Reduced levels of HDAC6 causes the acetylation and inactivation of heat shock protein 90, and, together with reduced expression of the chaperones HSP70 and GRP78, generates a strong endoplasmic reticulum (ER) stress response. Prolonged intense ER stress signaling causes tumor cell death. Reduced expression of HDACs 1, 2 and 3 causes the levels of programed death ligand 1 (PD-L1) to decline and the expression of Class I MHCA to increase which correlates with elevated immunogenicity of the tumor cells in vivo. This review will specifically focus on the downstream implications that result from autophagic-degradation of HDACs, RAS and protein chaperones.  相似文献   

17.
Chemotherapeutic agents have been linked to immunogenic cell death (ICD) induction that is capable of augmenting anti-tumor immune surveillance. The cardiac glycoside oleandrin, which inhibits Na+/K+-ATPase pump (NKP), has been shown to suppress breast cancer growth via inducing apoptosis. In the present study, we showed that oleandrin treatment triggered breast cancer cell ICD by inducing calreticulin (CRT) exposure on cell surface and the release of high-mobility group protein B1 (HMGB1), heat shock protein 70/90 (HSP70/90), and adenosine triphosphate (ATP). The maturation and activation of dendritic cells (DCs) were increased by co-culturing with the oleandrin-treated cancer cells, which subsequently enhanced CD8+ T cell cytotoxicity. Murine breast cancer cell line EMT6 was engrafted into BALB/c mice, and tumor-bearing mice were administered with oleandrin intraperitoneally every day. Oleandrin inhibited tumor growth and increased tumor infiltrating lymphocytes including DCs and T cells. Furthermore, the differential mRNA expression incurred by oleandrin was investigated by mRNA sequencing and subsequently confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Mechanistically, oleandrin induced endoplasmic reticulum (ER) stress-associated, caspase-independent ICD mainly through PERK/elF2α/ATF4/CHOP pathway. Pharmacological and genetic inhibition of protein kinase R-like ER kinase (PERK) suppressed oleandrin-triggered ICD. Taken together, our findings showed that oleandrin triggered ER stress and induced ICD-mediated immune destruction of breast cancer cells. Oleandrin combined with immune checkpoint inhibitors might improve the efficacy of immunotherapy.Subject terms: Tumour immunology, Preclinical research  相似文献   

18.
The 23-kDa integral membrane proteins of Schistosoma mansoni and Schistosoma japonicum (Sm23 and Sj23) are Ag of some interest in terms of both antiparasite vaccination and immunodiagnosis. We have raised an antiserum against a recombinant fusion protein expressing the extracellular hydrophyllic domain of Sm23 (Sm23HD-pGEX) and used this serum, as well as other antibody reagents reacting with Sm/Sj23, in immunochemical analyses. The immunogenicity and antigenicity of Sm23HD-pGEX, and the surprising lack of cross-reactivity between Sm23 and Sj23 support the hypothesis that Sm/Sj23 are host-like molecules with a very limited number of B cell epitopes that are likely to reside in the extracellular hydrophilic domain. We also present evidence that, unlike the highly immunogenic Sj23, Sm23 is not immunogenic in chronically infected mice. Moreover, we confirm a surface location for Sj23 in adult worms, in S. japonicum.  相似文献   

19.
20.
Antitumor effects of CD40 ligation appear to involve distinct antitumor effector cells in different experimental models. In this study, we tested whether T cells were required for antitumor effects of agonistic anti-CD40 mAb (alphaCD40) against immunogenic versus poorly immunogenic tumors. Treatment of mice bearing poorly immunogenic B16 melanoma and its more immunogenic variant, B16-hsp72.1, with alphaCD40 resulted in a similar level of tumor growth suppression. Depletion of T cells did not reduce the antitumor effects in these 2 tumor models. To generate antitumor T cell responses, C57BL/6 mice were immunized with irradiated B16-hsp72.1. Treatment of these vaccinated mice challenged with a high dose of B16-hsp72.1 tumor cells with alphaCD40 induced tumor growth suppression, which was reduced by T-cell depletion, demonstrating that T cells were involved in the antitumor effect of alphaCD40. However, immunized mice depleted of T cells and treated with alphaCD40 were still able to suppress tumor growth as compared to tumor growth in immunized, T cell-depleted mice not treated with alphaCD40, suggesting that T cells were not required for the antitumor effect of alphaCD40. To confirm a lack of correlation between tumor immunogenicity and T-cell requirement in antitumor effects of CD40 ligation, we found that alphaCD40 induced tumor growth suppression in nude and SCID/beige mice bearing highly immunogenic tumors such as Meth A sarcoma, suggesting that macrophages may play a role. Indeed, both poorly immunogenic and highly immunogenic tumors were sensitive to in vitro growth inhibition by macrophages from alphaCD40-treated mice. Taken together, our results indicate that antitumor effects induced by alphaCD40, even against immunogenic tumors, can be observed in the absence of T cells and may involve macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号