首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
gammadelta T cells participate in the innate immune response to a variety of infectious microorganisms. They also link to the adaptive immune response through their induction of maturation of dendritic cells (DC) during the early phase of an immune response when the frequency of Ag-specific T cells is very low. We observe that in the presence of Borrelia burgdorferi, synovial Vdelta1 T cells from Lyme arthritis synovial fluid potently induce maturation of DC, including production of IL-12, and increased surface expression of CD40 and CD86. The activated DC are then able to stimulate the Vdelta1 T cells to up-regulate CD25. Both of these processes are initiated primarily by Fas stimulation rather than CD40 activation of DC via high expression of Fas ligand by the Vdelta1 T cells. DC are resistant to Fas-induced death due to expression of high levels of the Fas inhibitor c-FLIP. This effect serves to divert Fas-mediated signals from the caspase cascade to the ERK MAPK and NF-kappaB pathways. The findings affirm the importance of the interaction of certain T cell populations with DC during the early phases of the innate immune response. They also underscore the view that as levels of c-FLIP increase, Fas signaling can be diverted from induction of apoptosis to pathways leading to cell effector function.  相似文献   

2.
Innate immune cells mediate a first line of defense against pathogens and determine the nature of subsequent acquired immune responses, mainly by producing profound amounts of cytokines. Given these diverse tasks, it is predictable that defective NK and gammadelta(+) T cell responses could be the underlying mechanism for the immunological alterations observed in atopic dermatitis (AD). Indeed, the frequencies of circulating NK cells and gammadelta(+) T cells were profoundly reduced in AD patients. They also displayed a defective ability to sustain TNF-alpha and IFN-gamma, but not IL-4, production after in vitro stimulation, and the defect was restricted to innate immune cells. Surprisingly, on the depletion of CD14(+) monocytes, this selective impairment of TNF-alpha and IFN-gamma production was restored to levels comparable to that observed in controls. Release of IL-10 from monocytes was not a major mechanism of the NK and gammadelta(+) T cell dysfunction. Apoptosis as revealed by annexin V binding, was preferentially observed in NK and gammadelta(+) T cells from AD patients when stimulated in the presence of monocytes, and depletion of monocytes significantly protected these cells from apoptotic cell death. Preferential apoptosis of NK cells by activated monocytes in AD patients was cell-contact-dependent. These results indicate that, once NK and gammadelta(+) T cells in AD patients are in immediate contact with activated monocytes, these cells are specifically targeted for apoptosis, leading to the reduced type 1 cytokine production, thereby directing subsequent acquired immune responses toward a type-2 pattern and increasing susceptibility to infection.  相似文献   

3.
Pattern recognition receptors (PRR), like Toll-like receptors (TLR) and NOD-like receptors (NLR), are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR). This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions.  相似文献   

4.
Type I IFNs represent a major antimicrobial defense mechanism due to their property of enhancing immune responses by priming both innate and adaptive immune cells. Plasmacytoid dendritic cells (pDC) are the major source of type I IFN in the human body and represent innate immune cells involved in first-line defense against invading pathogens. Although pDC activation has been extensively studied upon stimulation with synthetic TLR ligands, viruses, and intracellular bacteria, there is only scarce information on extracellular bacteria. In this study we show that the triggering of human pDC-derived IFN-alpha secretion by Staphylococcus aureus is independent of TLR2 and specific for coagulase-positive staphylococci. Specificity of the pDC response to S. aureus is independent of the bacterial virulence factors protein A and alpha-toxin but is mediated by Ag-specific IgG and CD32. S. aureus-induced pDC activation can be blocked by inhibitory DNA oligonucleotides and chloroquine, suggesting that engagement of TLR7/9 by bacterial nucleic acids after CD32-mediated uptake of these compounds may play a central role in this process. Altogether, we propose that in marked contrast to nonselective TLR2-dependent activation of most innate immune cells, pDC activation by S. aureus represents an Ag-specific memory response since it requires the presence of class-switched immunoglobulins.  相似文献   

5.
Lymphatic filariasis is a disease characterized by immune dysregulation involving APC and T cell populations. To assess the contribution of TLR in mediating this dysregulation, we examined the expression of TLR1, TLR2, TLR4, and TLR9 on B cells and monocytes of filaria-infected and uninfected individuals. Baseline expression of TLR was significantly lower in B cells but not in monocytes of the filaria-infected group compared with the uninfected group. Upon stimulation with filarial Ag, a diminished up-regulation of TLR was observed in both B cells and monocytes of infected individuals. Finally, stimulation of B cells and monocytes with TLR ligands resulted in decreased B cell and monocyte activation/cytokine production, indicating a state of immune tolerance. This dysregulation is associated with diminished CD4(+) T cell production of IFN-gamma and IL-5. The diminished expression and function of TLR is thus a likely consequence of chronic Ag stimulation and could serve as a novel mechanism underlying the dysfunctional immune response in filariasis.  相似文献   

6.
Neutrophils infiltrate the site of infection and play critical roles in host defense, especially against extracellular bacteria. In the present study, we found a rapid and transient production of IL-17 after i.p. infection with Escherichia coli, preceding the influx of neutrophils. Neutralization of IL-17 resulted in a reduced infiltration of neutrophils and an impaired bacterial clearance. Ex vivo intracellular cytokine flow cytometric analysis revealed that gammadelta T cell population was the major source of IL-17. Mice depleted of gammadelta T cells by mAb treatment or mice genetically lacking Vdelta1 showed diminished IL-17 production and reduced neutrophil infiltration after E. coli infection, indicating an importance of Vdelta1(+) gammadelta T cells as the source of IL-17. It was further revealed that gammadelta T cells in the peritoneal cavity of naive mice produced IL-17 in response to IL-23, which was induced rapidly after E. coli infection in a TLR4 signaling-dependent manner. Thus, although gammadelta T cells are generally regarded as a part of early induced immune responses, which bridge innate and adaptive immune responses, our study demonstrated a novel role of gammadelta T cells as a first line of host defense controlling neutrophil-mediated innate immune responses.  相似文献   

7.
We used multiparameter flow cytometry to characterize leukocyte immunophenotypes and cytokines in skin and peripheral blood of patients with erythema migrans (EM). Dermal leukocytes and cytokines were assessed in fluids aspirated from epidermal suction blisters raised over EM lesions and skin of uninfected controls. Compared with corresponding peripheral blood, EM infiltrates were enriched for T cells, monocytes/macrophages, and dendritic cells (DCs), contained lower proportions of neutrophils, and were virtually devoid of B cells. Enhanced expression of CD14 and HLA-DR by lesional neutrophils and macrophages indicated that these innate effector cells were highly activated. Staining for CD45RO and CD27 revealed that lesional T lymphocytes were predominantly Ag-experienced cells; furthermore, a subset of circulating T cells also appeared to be neosensitized. Lesional DC subsets, CD11c(+) (monocytoid) and CD11c(-) (plasmacytoid), expressed activation/maturation surface markers. Patients with multiple EM lesions had greater symptom scores and higher serum levels of IFN-alpha, TNF-alpha, and IL-2 than patients with solitary EM. IL-6 and IFN-gamma were the predominant cytokines in EM lesions; however, greater levels of both mediators were detected in blister fluids from patients with isolated EM. Circulating monocytes displayed significant increases in surface expression of Toll-like receptor (TLR)1 and TLR2, while CD11c(+) DCs showed increased expression of TLR2 and TLR4; lesional macrophages and CD11c(+) and CD11c(-) DCs exhibited increases in expression of all three TLRs. These results demonstrate that Borrelia burgdorferi triggers innate and adaptive responses during early Lyme disease and emphasize the interdependence of these two arms of the immune response in the efforts of the host to contain spirochetal infection.  相似文献   

8.
In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response.  相似文献   

9.
10.
Borrelia burgdorferi lipoproteins activate inflammatory cells through Toll-like receptor 2 (TLR2), suggesting that TLR2 could play a pivotal role in the host response to B. burgdorferi. TLR2 does play a critical role in host defense, as infected TLR2(-/-) mice harbored up to 100-fold more spirochetes in tissues than did TLR2(+/+) littermates. Spirochetes persisted at extremely elevated levels in TLR2-deficient mice for at least 8 wk following infection. Infected TLR2(-/-) mice developed normal Borrelia-specific Ab responses, as measured by quantity of Borrelia-specific Ig isotypes, the kinetics of class switching to IgG, and the complexity of the Ags recognized. These findings indicate that the failure to control spirochete levels in tissues is not due to an impaired acquired immune response. While macrophages from TLR2(-/-) mice were not responsive to lipoproteins, they did respond to nonlipoprotein components of sonicated spirochetes. These TLR2-independent responses could play a role during the inflammatory response to B. burgdorferi, as infected TLR2(-/-) mice developed greater ankle swelling than wild-type littermates. Thus, while TLR2-dependent signaling pathways play a major role in the innate host defense to B. burgdorferi, both inflammatory responses and the development of the acquired humoral response can occur in the absence of TLR2.  相似文献   

11.
B cells possess functional characteristics of innate immune cells, as they can present Ag to T cells and can be stimulated with microbial molecules such as TLR ligands. Because crude preparations of Staphylococcus aureus are frequently used as polyclonal B cell activators and contain potent TLR2 activity, the scope of this study was to analyze the impact of S. aureus-derived TLR2-active substances on human B cell activation. Peripheral B cells stimulated with chemically modified S. aureus cell wall preparations proliferated in response to stimulation with crude cell wall preparations but failed to be activated with pure peptidoglycan, indicating that cell wall molecules other than peptidoglycan are responsible for B cell proliferation. Subsequent analysis revealed that surface protein A (SpA), similar to BCR cross-linking with anti-human Ig, sensitizes B cells for the recognition of cell wall-associated TLR2-active lipopeptides (LP). In marked contrast to TLR7- and TLR9-triggered B cell stimulation, stimulation with TLR2-active LP and SpA or with crude cell wall preparations failed to induce IgM secretion, thereby revealing qualitative differences in TLR2 signaling compared with TLR7/9 signaling. Notably, combined stimulation with SpA plus TLR2 ligands induced vigorous proliferation of a defined B cell subset that expressed intracellular IgM in the presence of IL-2. Conclusion: S. aureus triggers B cell activation via SpA-induced sensitization of B cells for TLR2-active LP. Combined SpA and TLR2-mediated B cell activation promotes B cell proliferation but fails to induce polyclonal IgM secretion as seen after TLR7 and TLR9 ligation.  相似文献   

12.
TLR9 recognizes DNA sequences containing hypomethylated CpG motifs and is a component of the innate immune system highly conserved during eukaryotic evolution. Previous reports suggested that the expression of TLR9 is restricted to plasmacytoid dendritic cells and B lymphocytes. Our results indicate that low levels of TLR9 are present on the cell surface of freshly isolated human monocytes, and expression is greatly increased by infection with Yersinia pestis. Enhanced cell surface TLR9 coincided with elevated levels of cytoplasmic TLR9 and recruitment of MyD88. Infected monocytes differentiated into mature dendritic cells, expressed IFN-alpha, and stimulated proliferative and cytotoxic T cell responses specific to Y. pestis. Furthermore, uninfected B cells and monocytes both increased cell surface TLR9, CD86, and HLA-DR in response to treatment with CpG-containing oligonucleotides, whereas cell surface TLR9 was down-modulated on infected dendritic cells by the addition of agonist oligonucleotide. Our results suggest that increased expression of TLR9 on the surface of infected cells may serve a role as an activation signal to other cells of the immune system.  相似文献   

13.
Staphylococcus aureus infection elicits through its mature lipoproteins an innate immune response by TLR2-MyD88 signaling, which improves bacterial clearing and disease outcome. The role of dendritic cells (DCs) and T cells in this immune activation and the function of T and B cells in defense against S. aureus infection remain unclear. Therefore, we first evaluated DC and T cell activation after infection with S. aureus wild type (WT) and its isogenic mutant, which is deficient in lipoprotein maturation, in vitro. Lipoproteins in viable S. aureus contributed via TLR2-MyD88 to activation of DCs, which promoted the release of IFN-γ and IL-17 in CD4(+) T cells. This strong effect was independent of superantigens and MHC class II. We next evaluated the function of T cells and their cytokines IFN-γ and IL-17 in infection in vivo. Six days after systemic murine infection IFN-γ, IL-17, and IL-10 production in total spleen cells were MyD88-dependent and their levels increased until day 21. The comparison of CD3(-/-), Rag2(-/-), and C57BL/6 mice after infection revealed that IFN-γ and IL-17 originated from T cells and IL-10 originated from innate immune cells. Furthermore, vaccination of mice to activate T and B cells did not improve eradication of S. aureus from organs. In conclusion, S. aureus enhances DC activation via TLR2-MyD88 and thereby promotes T(H)1 and T(H)17 cell differentiation. However, neither T cells and their MyD88-regulated products, IFN-γ and IL-17, nor B cells affected bacterial clearing from organs and disease outcome.  相似文献   

14.
Until recently, adaptive immunity and cytotoxic T cells were considered as the only essential components of the antiviral defence arsenal. Additional data that do not rule out the crucial role of these cells in the clearance of viral pathogens have, however, recently emerged. They indicate that innate immune cells such as macrophages, dendritic cells, gammadelta T cells as well as natural killer (NK) cells play a primordial role in this mechanism. It is now well established that innate immune cells can detect various pathogens (bacteria, viruses, fungi or parasites) very rapidly and respond to their presence through the activation of specific receptors. Once activated, these molecules trigger several signalling cascades that culminate in the establishment of very potent defence mechanisms. In addition, cytokines produced during this initial response are essential for the activation of the adaptive immune response which will add specificity and memory to the system. Among the innate immune receptors, attention has focused on the Toll-like receptors (TLR) and many reports indicate that some of the TLRs are clearly involved in defence against viral pathogens. However, new molecules, acting independently from any TLR, have recently been discovered. They define a second antiviral pathway which is presently the subject of intense research. In this article, we will review the role of the different molecules involved in each pathway within the framework of innate antiviral defence.  相似文献   

15.
The ability of innate immune cells to sense and respond to impending danger varies by anatomical location. The liver is considered tolerogenic but is still capable of mounting a successful immune response to clear various infections. To understand whether hepatic immune cells tune their response to different infectious challenges, we probed mononuclear cells purified from human healthy and diseased livers with distinct pathogen-associated molecules. We discovered that only the TLR8 agonist ssRNA40 selectively activated liver-resident innate immune cells to produce substantial quantities of IFN-γ. We identified CD161Bright mucosal-associated invariant T (MAIT) and CD56Bright NK cells as the responding liver-resident innate immune cells. Their activation was not directly induced by the TLR8 agonist but was dependent on IL-12 and IL-18 production by ssRNA40-activated intrahepatic monocytes. Importantly, the ssRNA40-induced cytokine-dependent activation of MAIT cells mirrored responses induced by bacteria, i.e., generating a selective production of high levels of IFN-γ, without the concomitant production of TNF-α or IL-17A. The intrahepatic IFN-γ production could be detected not only in healthy livers, but also in HBV- or HCV-infected livers. In conclusion, the human liver harbors a network of immune cells able to modulate their immunological responses to different pathogen-associated molecules. Their ability to generate a strong production of IFN-γ upon stimulation with TLR8 agonist opens new therapeutic opportunities for the treatment of diverse liver pathologies.  相似文献   

16.
The urokinase-type plasminogen activator receptor (uPAR), a glycosylphosphatidylinositol (GPI) anchored membrane protein, regulates urokinase (uPA) protease activity, chemotaxis, cell-cell interactions, and phagocytosis of apoptotic cells. uPAR expression is increased in cytokine or bacteria activated cell populations, including macrophages and monocytes. However, it is unclear if uPAR has direct involvement in the response of inflammatory cells, such as neutrophils and macrophages, to Toll like receptor (TLR) stimulation. In this study, we found that uPAR is required for optimal neutrophil activation after TLR2, but not TLR4 stimulation. We found that the expression of TNF-α and IL-6 induced by TLR2 engagement in uPAR-/- neutrophils was less than that in uPAR+/+ (WT) neutrophils. Pretreatment of neutrophils with PI-PLC, which cleaves GPI moieties, significantly decreased TLR2 induced expression of TNF-α in WT neutrophils, but demonstrated only marginal effects on TNF-α expression in PAM treated uPAR-/- neutrophils. IκB-α degradation and NF-κB activation were not different in uPAR-/- or WT neutrophils after TLR2 stimulation. However, uPAR is required for optimal p38 MAPK activation after TLR2 engagement. Consistent with the in vitro findings that uPAR modulates TLR2 engagement induced neutrophil activation, we found that pulmonary and systemic inflammation induced by TLR2, but not TLR4 stimulation is reduced in uPAR-/- mice compared to WT counterparts. Therefore, our data suggest that neutrophil associated uPAR could be a potential target for treating acute inflammation, sepsis, and organ injury related to severe bacterial and other microbial infections in which TLR2 engagement plays a major role.  相似文献   

17.
Toll-like receptor (TLR)-dependent pathways control the production of IFNalphabeta, a key cytokine in innate immune control of viruses including mouse cytomegalovirus (MCMV). The lymphotoxin (LT) alphabeta-LTbeta receptor signaling pathway is also critical for defense against MCMV and thought to aid in the IFNbeta response. We find that upon MCMV infection, mice deficient for lymphotoxin (LT)alphabeta signaling cannot mount the initial part of a biphasic IFNalphabeta response, but show normal levels of IFNalphabeta during the sustained phase of infection. Significantly, the LTalphabeta-dependent, IFNalphabeta response is independent of TLR signaling. B, but not T, cells expressing LTbeta are essential for promoting the initial IFNalphabeta response. LTbetaR expression is required strictly in splenic stromal cells for initial IFNalphabeta production to MCMV and is dependent upon the NF-kappaB-inducing kinase (NIK). These results reveal a TLR-independent innate host defense strategy directed by B cells in communication with stromal cells via the LTalphabeta cytokine system.  相似文献   

18.
To assess the contribution of TLR signaling in the host response to Borrelia burgdorferi, mice deficient in the common TLR adaptor protein, myeloid differentiation factor 88 (MyD88), were infected with B. burgdorferi. MyD88-deficient mice harbored extremely high levels of B. burgdorferi in tissues when compared with wild-type littermates and greater amounts of spirochetes in tissues than TLR2-deficient mice. These findings suggest that, in addition to TLR2, other MyD88-dependent pathways play a significant role in the host defense to B. burgdorferi. MyD88(-/-) mice maintained the ability to produce Abs directed against B. burgdorferi. Partial clearance of spirochetes was evident in long term infection studies and immune sera from MyD88-deficient mice were able to protect naive mice from infection with B. burgdorferi. Thus, the acquired immune response appeared to be functional in MyD88(-/-) mice, and the inability to control spirochete numbers was due to a failure of cells involved in innate defenses. Although macrophages from MyD88(-/-) mice responded poorly to Borrelia sonicate in vitro, MyD88(-/-) mice still developed an inflammatory arthritis after infection with B. burgdorferi characterized by an influx of neutrophils and mononuclear cells. The findings presented here point to a dichotomy between the recruitment of inflammatory cells to tissue and an inability of these cells to kill localized spirochetes.  相似文献   

19.
The innate immune system provides the first line of defence against infection. Through a limited number of germline-encoded receptors called pattern recognition receptors (PRRs), innate cells recognize and are activated by highly conserved structures expressed by large group of microorganisms called pathogen-associated molecular patterns (PAMPs). PRRs are involved either in recognition (scavenger receptors, C-type lectins) or in cell activation (Toll-like receptors or TLR, helicases and NOD molecules). TLRs play a pivotal role in cell activation in response to PAMPs. TLR are type I transmembrane proteins characterized by an intracellular Toll/IL 1 receptor homology domain that are expressed by innate immune cells (dendritic cells, macrophages, NK cells), cells of the adaptive immunity (T and B lymphocytes) and non immune cells (epithelial and endothelial cells, fibroblasts). In all the cell types analyzed, TLR agonists, alone or in combination with costimulatory molecules, induce cell activation. The crucial role played by TLR in immune cell activation has been detailed in dendritic cells. A TLR-dependent activation of dendritic cells is required to induce their maturation and migration to regional lymph nodes and to activate na?ve T cells. The ability of different cell types to respond to TLR agonists is related to the pattern of expression of the TLRs and its regulation as well as their intracellular localization. Recent studies suggest that the nature of the endocytic and signaling receptors engaged by PAMPs may determine the nature of the immune response generated against the microbial molecules, highlighting the role of TLRs as molecular interfaces between innate and adaptive immunity. In this review are summarized the main biological properties of the TLR molecules.  相似文献   

20.
Microglia are the resident macrophage-like population in the CNS. Microglia remain quiescent until injury or infection activates the cells to perform effector inflammatory and APC functions. Our previous studies have shown that microglia infected with a neurotropic strain of Theiler's murine encephalomyelitis virus secreted innate immune cytokines and up-regulated costimulatory molecules and MHC class II, enabling the cells to present viral and myelin Ags to CD4+ T cells. Recently, TLRs have been shown to recognize pathogen-associated molecular patterns and initiate innate immune responses upon interaction with infectious agents. We examined TLR expression on brain microglia and their functional responses upon stimulation with various TLR agonists. We report that mouse microglia express mRNA for all of the recently identified TLRs, TLR1-9, used for recognition of bacterial and viral molecular patterns. Furthermore, stimulation of quiescent microglia with various TLR agonists, including LPS (TLR4), peptidoglycan (TLR2), polyinosinic-polycytidylic acid (TLR3), CpG DNA (TLR9), and infection with viable Theiler's murine encephalomyelitis virus, activated the cells to up-regulate unique patterns of innate and effector immune cytokines and chemokines at the mRNA and protein levels. In addition, TLR stimulation activated up-regulation of MHC class II and costimulatory molecules, enabling the microglia to efficiently present myelin Ags to CD4+ T cells. Thus, microglia appear to be a unique and important component of both the innate and adaptive immune response, providing the CNS with a means to rapidly and efficiently respond to a wide variety of pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号