首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and simple liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed for the detection of alginate oligosaccharides (AOs) in mouse plasma and urine after oral administration. In an AO mixture, dimer, trimer, and tetramer were detected by LC-MS/MS equipped with an anion-exchange column with extremely high sensitivity. By this method, we detected certain levels of AOs in samples prepared from mouse plasma and urine after a single oral administration of the AO mixture. Based on a calibration curve made with an AO trimer peak area as a standard, the maximum plasma and urine concentrations of AOs were estimated to be 24.5 μg/ml at 5 min and 425.5 μg/ml at 30 min, respectively. These results suggest that the LC-MS/MS method is well suited to pharmacokinetic analysis of AOs in an in vivo system, and that some of orally administered AOs, at least from dimer to tetramer, are absorbed by digestive organs promptly, and that unaltered, these oligomers were excreted into an urine after a single oral administration to a mouse.  相似文献   

2.
A liquid chromatographic-tandem mass spectrometric method (LC-MS/MS) for the determination of ulifloxacin, the active metabolite of prulifloxacin, in human plasma is described. After sample preparation by protein precipitation with methanol, ulifloxacin and ofloxacin (internal standard) were chromatographically separated on a C(18) column using a mobile phase consisting of methanol, water and formic acid (70:30:0.2, v/v/v) at a flow rate of 0.5 ml/min and then were detected using MS/MS by monitoring their precursor-to-product ion transitions, m/z 350-->m/z 248 for ulifloxacin and m/z 362-->m/z 261 for ofloxacin, in selected reaction monitoring (SRM) mode. Positive electrospray ionization was used for the ionization process. The linear range was 0.025-5.0 microg/ml for ulifloxacin with a lower limit of quantitation of 0.025 microg/ml. Within- and between-run precision was less than 6.6 and 7.8%, respectively, and accuracy was within 2.0%. The recovery ranged from 92.1 to 98.2% at the concentrations of 0.025, 0.50 and 5.0 microg/ml. Compared with the reported LC method, the present LC-MS/MS method can directly determine the ulifloxacin in human plasma without any need of derivatization. The present method has been successfully used for the pharmacokinetic studies of a prulifloxacin formulation product after oral administration to healthy volunteers.  相似文献   

3.
A rapid method for the quantification of amiodarone and desethylamiodarone in animal plasma using high-performance liquid chromatography combined with UV detection (HPLC-UV) is presented. The sample preparation includes a simple deproteinisation step with acetonitrile. In addition, a sensitive method for the quantification of amiodarone and desethylamiodarone in horse plasma and urine using high-performance liquid chromatography combined with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) is described. The sample preparation includes a solid-phase extraction (SPE) with a SCX column. Tamoxifen is used as an internal standard for both chromatographic methods. Chromatographic separation is achieved on an ODS Hypersil column using isocratic elution with 0.01% diethylamine and acetonitrile as mobile phase for the HPLC-UV method and with 0.1% formic acid and acetonitrile as mobile phase for the LC-MS/MS method. For the HPLC-UV method, good linearity was observed in the range 0-5 microg ml(-1), and in the range 0-1 microg ml(-1) for the LC-MS/MS method. The limit of quantification (LOQ) was set at 50 and 5 ng ml(-1) for the HPLC-UV method and the LC-MS/MS method, respectively. For the UV method, the limit of detection (LOD) was 15 and 10 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The LODs of the LC-MS/MS method in plasma were much lower, i.e. 0.10 and 0.04 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The LODs obtained for the urine samples were 0.16 and 0.09 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The methods were shown to be of use in horses. The rapid HPLC-UV method was used for therapeutic drug monitoring after amiodarone treatment, while the LC-MS/MS method showed its applicability for single dose pharmacokinetic studies.  相似文献   

4.
A liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed to quantify colistin in human plasma and urine, and perfusate and urine from the isolated perfused rat kidney (IPK). Solid phase extraction (SPE) preceded chromatography on a Synergi Fusion-RP column with a mobile phase of acetonitrile, water and acetic acid (80/19/1) at 0.2mL/min. Ions were generated using electrospray ionization and detected in the positive-ion mode. Multiple reaction monitoring was performed using precursor-product ion combinations. Calibration curves were linear from 0.028microg/mL (human plasma, IPK perfusate and urine)/0.056microg/mL (human urine) to 1.78microg/mL (all four media) for colistin A sulfate; corresponding values for colistin B sulfate were 0.016/0.032 to 1.01microg/mL. Accuracy and precision were within 10%. The LLOQ for colistin A sulfate was 0.028microg/mL in human plasma, IPK perfusate and urine and 0.056microg/mL in human urine; corresponding values for colistin B sulfate were 0.016 and 0.032microg/mL. The low sample volume, short analysis time and low LLOQ are ideal for pre-clinical and human pharmacokinetic studies of colistin.  相似文献   

5.
Rasagiline is a highly potent, selective and irreversible second-generation monoamine oxidase inhibitor with selectivity for type B of the enzyme (MAO-B). The present studies aimed at developing and validating a rapid and sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for determination of rasagiline in human plasma and urine. LC-MS/MS analysis was carried out on a Finnigan LC-TSQ Quantum mass spectrometer using positive ion electrospray ionization (ESI(+)) and selected reaction monitoring (SRM). The assay for rasagiline was linear over the range of 0.01-40 ng/mL in plasma and 0.025-40 ng/mL in urine. It took 5.5 min to analyze a sample. The average recoveries in plasma and urine samples were both >85%. The RSD of precision and bias of accuracy were less than 15% and 10%, respectively, of their nominal values based on the intra- and inter-day analysis. The developed method was proved to be suitable for use in clinical pharmacokinetic study after single oral administration of 0.5, 1 and 2 mg rasagiline mesylate tablets in healthy Chinese volunteers.  相似文献   

6.
A method is described for the determination of metabolites of mesocarb in human urine by combining gradient liquid chromatography and electrospray ionization (ESI)-ion trap mass spectrometry. Seven metabolites (two isomers of hydroxymesocarb, p-hydroxymesocarb, two isomers of dihydroxymesocarb and two isomers of trihydroxymesocarb) and parent drug were detected in human urine after the administration of a single oral dose 10 mg of mesocarb (Sydnocarb, two tablets of 5 mg). Various extraction techniques (free fraction, enzyme hydrolyses and acid hydrolyses) and their comparison were carried out for investigation of the metabolism of mesocarb. After extraction procedure the residue was dissolved in methanol and injected into the column HPLC (Zorbax SB-C18 (Narrow-Bore 2.1 x 150 mm i.d., 5 microm particles)) with mobile phase (0.2 ml/min) of methanol/0.2 mM ammonium acetate. Conformation of the results and identification of all metabolites are performed by LC-MS and LC-MS/MS. The major metabolites of mesocarb in urine of the human were p-hydroxylated derivative of the phenylcarbamoyl group of the parent drug (p-hydrohymesocarb) and dihydroxylated derivative of mesocarb (two isomers of dihydroxymesocarb). This analytical method for dihydrohymesocarb was very sensitive for discriminating the ingestion of mesocarb longer than the parent drug or other metabolites in human urine. The dihydroxymesocarb was detected in urine until 168-192 h after administration of the drug.  相似文献   

7.
A sensitive and specific method for the analysis of anisodamine and its metabolites in rat urine by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS) was developed. Various extraction techniques (free fraction, acid hydrolyses and enzyme hydrolyses) and their comparison were carried out for investigation of the metabolism of anisodamine. After extraction procedure the pretreated samples were injected on a reversed-phase C18 column with mobile phase (0.2 ml/min) of methanol/0.01% triethylamine solution (adjusted to pH 3.5 with formic acid) (60:40, v/v) and detected by MS/MS. Identification and structural elucidation of the metabolites were performed by comparing their changes in molecular masses (DeltaM), retention-times and full scan MS(n) spectra with those of the parent drug. At least 11 metabolites (N-demethyl-6beta-hydroxytropine, 6beta-hydroxytropine, tropic acid, N-demethylanisodamine, hydroxyanisodamine, anisodamine N-oxide, hydroxyanisodamine N-oxide, glucuronide conjugated N-demethylanisodamine, sulfate conjugated and glucuronide conjugated anisodamine, sulfate conjugated hydroxyanisodamine) and the parent drug were found in rat urine after the administration of a single oral dose 25mg/kg of anisodamine. Hydroxyanisodamine, anisodamine N-oxide and the parent drug were detected in rat urine for up 95 h after ingestion of anisodamine.  相似文献   

8.
The differences among individual bile acids (BAs) in eliciting different physiological and pathological responses are largely unknown because of the lack of valid and simple analytical methods for the quantification of individual BAs and their taurine and glycine conjugates. Therefore, a simple and sensitive LC-MS/MS method for the simultaneous quantification of 6 major BAs, their glycine, and taurine conjugates in mouse liver, bile, plasma, and urine was developed and validated. One-step sample preparation using solid-phase extraction (for bile and urine) or protein precipitation (for plasma and liver) was used to extract BAs. This method is valid and sensitive with a limit of quantification ranging from 10 to 40 ng/ml for the various analytes, has a large dynamic range (2500), and a short run time (20 min). Detailed BA profiles were obtained from mouse liver, plasma, bile, and urine using this method. Muricholic acid (MCA) and cholic acid (CA) taurine conjugates constituted more than 90% of BAs in liver and bile. BA concentrations in liver were about 300-fold higher than in plasma, and about 180-fold higher in bile than in liver. In summary, a reliable and simple LC-MS/MS method to quantify major BAs and their metabolites was developed and applied to quantify BAs in mouse tissues and fluids.  相似文献   

9.
A selective, sensitive, and accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of aripiprazole and its active metabolite dehydroaripiprazole in human plasma has been developed using papaverine as internal standard (IS). LC-MS/MS analysis was carried out on a Finnigan LC-TSQ Quantum mass spectrometer using positive ion electrospray ionization (ESI+) and selected reaction monitoring (SRM). The assays for aripiprazole and dehydroaripiprazole were linear over the ranges of 0.1 to 600 ng/ml and 0.01 to 60 ng/ml, respectively. The average recoveries in plasma samples both were better than 85%. The intra- and interrun precision and accuracy values were found to be within the assay variability criteria limits according to the US Food and Drug Administration guidelines. The developed method was proved to be suitable for use in a clinical pharmacokinetic study after a single oral administration of a 5-mg aripiprazole tablet in healthy Chinese volunteers.  相似文献   

10.
In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3   总被引:3,自引:0,他引:3  
Metabolism of an anti-tumor active component of Panax ginseng, ginsenoside (20R)-Rg(3), was studied for better understanding its pharmacokinetics in rat. LC-MS was used to determine Rg(3) and its metabolites in rat plasma, urine and feces samples. An average half-life of 18.5 min was obtained after the ginsenoside was intravenously dosed at 5 mg/kg. However, Rg(3) was not detected in rat plasma collected after oral administration at 100 mg/kg. Only 0.97-1.15% Rg(3) of the dosed amount was determined in feces. Hydrolysis and oxygenated metabolites were detected and identified in feces collected after oral administration by using LC-MS and MS-MS.  相似文献   

11.
A sensitive and specific method for determination of viaminate in human plasma by using high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS) was developed in this study. The plasma samples were simply deproteinated, extracted, evaporated, and then reconstituted in 200 microl of methanol prior to analysis. Chromatographic separation was carried out on a Shimadzu VP-ODS column (250 mm x 2.0 mm, 5 microm) with a mobile phase of methanol-water (95:5, v/v) at a flow rate of 0.2 ml/min. Quantification was performed in the negative-ion electrospray ionization mode by selected ion monitoring of the product ions at m/z 164 for viaminate and m/z 109 for testosterone propionate which was used as the internal standard. The corresponding parent ions were m/z 446 and m/z 345. A linear calibration curve was observed within the concentration range of 0.10-200 ng/ml. The lowest limit of quantitation (LLOQ) was 0.1 ng/ml. The extraction-efficiency at three concentrations was 100.7, 93.6, and 99.7%. Practical utility of this new LC-MS/MS method was confirmed in pilot pharmacokinetic studies in humans following oral administration.  相似文献   

12.
Compound Danshen tablets are composed of Panax notoginseng, Salvia miltiorrhiza and Borneol. The tablets are prescribed for treatment of cardiovascular diseases in China. The present study aimed at developing a specific and sensitive LC-MS/MS method to simultaneously determine three bioactive P. notoginseng saponins, i.e., notoginsenoside R1, ginsenoside Rg1 and Rb1, in dogs after a single oral administration of the compound tablets in order to obtain the clinically relevant saponin-related pharmacodynamics of the tablets in patients. The R1, Rg1 and Rb1 were extracted from dog plasma with acetone-methanol (80:20, v/v), separated by reversed phase liquid chromatography and determined by tandem mass spectrometry (LC-MS/MS) with positive electrospray ionization (ESI). The developed method reached lower limit of quantitation (LLOQ) at 0.10 ng/ml for the three saponins. The method was validated in terms of selectivity, matrix effects, linearity, precision and accuracy, and then was applied to a pharmacokinetic study of the three bioactive saponins simultaneously in dogs after a single oral administration of compound Danshen tablets at a clinical equivalent dose. The C(max) and AUC((0-∞)) for R1, Rg1 and Rb1 were 1.91, 3.34 and 28.6 ng/ml, and 7.5, 11.0, and 1712 (h ng/ml), respectively.  相似文献   

13.
Two liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods are described, one for the quantitative determination of risperidone and the enantiomers of its active metabolite 9-hydroxyrisperidone (paliperidone) in human plasma and the other for the determination of the enantiomers of 9-hydroxyrisperidone in human urine. The plasma method is based on solid-phase extraction of 200 microl of sample on a mixed-mode sorbent, followed by separation on a cellulose-based LC column with a 13.5-min mobile phase gradient of hexane, isopropanol and ethanol. After post-column addition of 10 mM ammonium acetate in ethanol/water, detection takes place by ion-spray tandem mass spectrometry in the positive ion mode. Method validation results show that the method is sufficiently selective towards the enantiomers of 7-hydroxyrisperidone and capable of quantifying the analytes with good precision and accuracy in the concentration range of 0.2-100 ng/ml. An accelerated (run time of 4.3 min) and equally valid method for the enantiomers of 9-hydroxyrisperidone alone in plasma is obtained by increasing the mobile phase flow-rate from 1.0 to 2.0 ml/min and slightly adapting the gradient conditions. The urine method is based on the same solid-phase extraction and chromatographic approach as the accelerated plasma method. Using 100 microl of sample, (+)- and (-)-9-hydroxyrisperidone can be quantified in the concentration range 1-2000 ng/ml. The accelerated method for plasma and the method for urine can be used only when paliperidone is administered instead of risperidone, as there is insufficient separation of the 9-hydroxy enantiomers from the 7-hydroxy enantiomers, the latter ones being present only after risperidone administration.  相似文献   

14.
We developed a LC-MS/MS method for the quantitative determination of the mercapturic acid (MA) metabolites of acrylamide (AA) AAMA and of its oxidative metabolite glycidamide (GA) GAMA in urine samples from the general population. The method requires 4 mL of urine which is solid phase extracted prior to LC-MS/MS analysis. The metabolites are detected by ESI-tandem mass spectrometry in negative ionisation mode and quantified by isotope dilution. Detection limits ranged down to 1.5 microg/L urine for both AAMA and GAMA. The imprecision expressed as R.S.D. lay between 2% and 6% for both analytes (intra- and inter-assay). First results on a small group of 29 persons out of the general population ranged from 5 to 338 microg/L AAMA and 相似文献   

15.
We have developed and validated an assay, using liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS), for the quantification of the novel protease inhibitors (PIs) atazanavir and tipranavir. The sample pre-treatment consisted of protein precipitation with a mixture of methanol and acetronitrile using 100 microl plasma for atazanavir and 50 microl for tipranavir. Chromatographic separation was achieved on an Inertsil ODS3 column (50 mm x 2.0 mm i.d., particle size 5 microm), with a quick stepwise gradient using an acetate buffer (pH 5) and methanol, at a flow rate of 0.5 ml/min. The analytical run time was 5.5 min. The triple quadrupole mass spectrometer operated in the positive ion-mode and multiple reaction monitoring (MRM) was used for drug quantification. The assay was linear over a concentration range of 0.05-10 microg/ml for atazanavir and 0.1-75 microg/ml for tipranavir. Saquinavir-d5 was used as internal standard. The intra- and inter-day coefficients of variation were less than 3.8% for atazanavir and less than 10.4% for tipranavir. Accuracies were within +/-7.3 and +/-7.2% for atazanavir and tipranavir, respectively. Both drugs were stable under various relevant storage conditions. The validated concentration ranges proved to be adequate to measure concentrations of human immunodeficiency virus type-1 (HIV-1)-infected individuals. The developed method could easily be combined with a previously developed LC-MS/MS assay for the quantification of protease inhibitors.  相似文献   

16.
Sodium tanshinone IIA sulfonate (STS), a hydrophilic ionic substance, is used as a cardiovascular drug. An ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC) method for the determination of STS in mouse plasma was initially developed. The assay involved a rapid and simple extraction process and subsequent detection at 271 nm. The retention time for STS was 7.5 min. Based on extracted STS standard mouse plasma at 1.5,10 and 50 microg/ml, the assay precision were 2.7, 2.1 and 1.7% with a mean accuracy of 96.7, 98.5 and 99.4%, respectively. At plasma concentration of 1.5, 50 and 75 microg/ml, the mean recovery of STS were 93.1, 96.3 and 97.5%. The limit of detection (LOD) and limit of quantification (LOQ) for STS was 0.1 microg/ml and 0.5 microg/ml, respectively. Linear responses were observed over a wide concentration range (0.5-100 microg/ml) for STS in mouse plasma. STS can be detected after intravenous administration. This method was performed for the first time in pharmacokinetic studies of STS in the mouse.  相似文献   

17.
A reversed-phased liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was developed and validated for quantitation of the total and unbound RO4929097, a γ-secretase inhibitor targeting Notch signaling, in human plasma. Sample preparation involved a liquid-liquid extraction with ethyl acetate. Chromatographic separation was achieved on a Waters X-Terra? MS C(18) column with an isocratic mobile phase consisting of methanol/0.45% formic acid in water (60:40, v/v) running at a flow rate of 0.2 ml/min for 6 min. The lower limits of quantitation (LLOQs) were 5 ng/ml for the total RO4929097 in plasma and 0.5 ng/ml for the unbound drug in phosphate buffer solution (PBS). Calibration curves were linear over RO4929097 concentration range of 5-2000 ng/ml in plasma for the total drug and 0.5-200 ng/ml in PBS for the unbound drug. The intra-day and inter-day accuracy and precision were within the generally accepted criteria for bioanalytical method (<15%). The method has been successfully employed to characterize the total and unbound plasma pharmacokinetics of RO4929097 after its oral administration in cancer patients.  相似文献   

18.
A sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the determination of hydroxysafflor yellow A (HSYA) in human plasma. HSYA was extracted from human plasma by using solid-phase extraction technique. Puerarin was used as the internal standard. A Shim-pack VP-ODS C(18) (150mm x 4.6mm, 5 microm) column and isocratic elution system composing of methanol and 5mM ammonium acetate (80:20, v/v) provided chromatographic separation of analytes followed by detection with mass spectrometry. The mass transition ion-pair was followed as m/z 611.19-->491.19 for HSYA and m/z 415.19-->295.10 for puerarin. The proposed method has been validated with a linear range of 1-1000 ng/ml for HSYA with a correlation coefficient >/=0.999. The lower limit of quantitation was 1 ng/ml. The intra-batch and inter-batch precision and accuracy were within 10%. The average extraction recovery was 81.7%. The total run time was 5.5 min. The validated method was successfully applied to the study on pharmacokinetics of HSYA in 12 healthy volunteers after a single oral administration of safflower oral solution containing 140 mg of HSYA.  相似文献   

19.
Letosteine has been found to be effective in treating patients with chronic bronchopneumopathies in clinical practice. To provide robust support for its pharmacokinetic and clinical studies, a rapid and sensitive method based on liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed and validated for the analysis of letosteine in plasma samples. After protein precipitation, the plasma samples were separated on a reversed-phase C(18) column in less than 1.5 min. The LC-MS/MS system was performed in the positive ion multiple-reaction-monitoring (MRM) mode to produce intensive product ions of m/z 280.1→160.0 for letosteine and m/z 248.1→121.1 for the internal standard, tinidazole. The method was found to have excellent linearity (r ≥ 0.9974), precision (RSD ≤ 5.83%), extraction recovery (71.8-73.0%) and stability (RE, -8.45% to 9.03%) over a concentration range of 0.1140-152.0 μgL(-1). Compared to the previous published radioactive method, LC-MS/MS method showed many advantages including shorter analysis time, simpler preparation procedure, increased sensitivity as well as lower safety risks. In addition, this method was successfully applied to study the pharmacokinetics of letosteine following a single and multiple dose oral administration in Chinese healthy volunteers.  相似文献   

20.
A 96-well protein precipitation, liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and fully validated for the determination of fudosteine in human plasma. After protein precipitation of the plasma samples (50 microL) by the methanol (150 microL) containing the internal standard (IS), erdosteine, the 96-well plate was vortexed for 5 min and centrifuged for 15 min. The 100 microL supernatant and 100 microL mobile phase were added to another plate and mixed and then the mixture was directly injected into the LC-MS/MS system in the negative ionization mode. The separation was performed on a XB-CN column for 3.0 min per sample using an eluent of methanol-water (60:40, v/v) containing 0.005% formic acid. Multiple reaction monitoring (MRM) using the precursor-product ion transitions m/z 178-->91 and m/z 284-->91 was performed to quantify fudosteine and erdosteine, respectively. The method was sensitive with a lower limit of quantification (LLOQ) of 0.02 microg mL(-1), with good linearity (r>0.999) over the linear range of 0.02-10 microg mL(-1). The within- and between-run precision was less than 5.5% and accuracy ranged from 94.2 to 106.7% for quality control (QC) samples at three concentrations of 0.05, 1 and 8 microg mL(-1). The method was employed in the clinical pharmacokinetic study of fudosteine formulation product after oral administration to healthy volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号