首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MicroRNAs (miRNAs) are crucial for regulatory T cell (Treg) stability and function. We report that microRNA-10a (miR-10a) is expressed in Tregs but not in other T cells including individual thymocyte subsets. Expression profiling in inbred mouse strains demonstrated that non-obese diabetic (NOD) mice with a genetic susceptibility for autoimmune diabetes have lower Treg-specific miR-10a expression than C57BL/6J autoimmune resistant mice. Inhibition of miR-10a expression in vitro leads to reduced FoxP3 expression levels and miR-10a expression is lower in unstable "exFoxP3" T cells. Unstable in vitro TGF-?-induced, iTregs do not express miR-10a unless cultured in the presence of retinoic acid (RA) which has been associated with increased stability of iTreg, suggesting that miR-10a might play a role in stabilizing Treg. However, genetic ablation of miR-10a neither affected the number and phenotype of natural Treg nor the capacity of conventional T cells to induce FoxP3 in response to TGFβ, RA, or a combination of the two. Thus, miR-10a is selectively expressed in Treg but inhibition by antagomiRs or genetic ablation resulted in discordant effects on FoxP3.  相似文献   

3.
Compelling evidence has now demonstrated that IL-17-producing CD4 cells (Th17) are a major contributor to autoimmune pathogenesis, whereas CD4+CD25+ T regulatory cells (Treg) play a major role in suppression of autoimmunity. Differentiation of proinflammatory Th17 and immunosuppressive Treg from naive CD4 cells is reciprocally related and contingent upon the cytokine environment. We and others have reported that in vivo administration of pertussis toxin (PTx) reduces the number and function of mouse Treg. In this study, we have shown that supernatants from PTx-treated mouse splenic cells, which contained IL-6 and other proinflammatory cytokines, but not PTx itself, overcame the inhibition of proliferation seen in cocultures of Treg and CD4+CD25- T effector cells. This stimulatory effect could be mimicked by individual inflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha. The combination of these cytokines synergistically stimulated the proliferation of CD4+CD25- T effector cells despite the presence of Treg with a concomitant reduction in the percentage of FoxP3+ cells and generation of IL-17-expressing cells. PTx generated Th17 cells, while inhibiting the differentiation of FoxP+ cells, from naive CD4 cells when cocultured with bone marrow-derived dendritic cells from wild-type mice, but not from IL-6-/- mice. In vivo treatment with PTx induced IL-17-secreting cells in wild-type mice, but not in IL-6-/- mice. Thus, in addition to inhibiting the development of Treg, the immunoadjuvant activity of PTx can be attributable to the generation of IL-6-dependent IL-17-producing CD4 cells.  相似文献   

4.
5.
6.
Inflammatory neuropathies represent disabling human autoimmune disorders with considerable disease variability. Animal models provide insights into defined aspects of their disease pathogenesis. Forkhead box P3 (FoxP3)+ regulatory T lymphocytes (Treg) are anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. Dysfunction or a reduced frequency of Tregs have been associated with different human autoimmune disorders. We here analyzed the functional relevance of Tregs in determining disease manifestation and severity in murine models of autoimmune neuropathies. We took advantage of the DEREG mouse system allowing depletion of Treg with high specificity as well as anti-CD25 directed antibodies to deplete Tregs in mice in actively induced experimental autoimmune neuritis (EAN). Furthermore antibody-depletion was performed in an adoptive transfer model of chronic neuritis. Early Treg depletion increased clinical EAN severity both in active and adoptive transfer chronic neuritis. This was accompanied by increased proliferation of myelin specific T cells and histological signs of peripheral nerve inflammation. Late stage Treg depletion after initial disease manifestation however did not exacerbate inflammatory neuropathy symptoms further. We conclude that Tregs determine disease severity in experimental autoimmune neuropathies during the initial priming phase, but have no major disease modifying function after disease manifestation. Potential future therapeutic approaches targeting Tregs should thus be performed early in inflammatory neuropathies.  相似文献   

7.
The identification of regulatory T (Treg) cells was originally based on CD25 expression; however, CD25 is also expressed by activated effector T cells. FoxP3 is a more definitive marker of Treg cells, and CD4(+) FoxP3(+) CD25(+) T cells are considered the dominant natural Treg (nTreg) population. It has been suggested that certain CD4(+) FoxP3(+) Treg cells do not express CD25. In this study, we used a murine model of respiratory infection with Bordetella pertussis to examine the role of Treg cells in protective immunity in the lung. We first demonstrated that CD4(+) FoxP3(+) CD25(-) cells are the dominant Treg population in the lung, gut and liver. Pre-activated lung CD4(+) FoxP3(+) CD25(-) cells suppressed CD4(+) effector T cells in vitro, which was partly mediated by IL-10 and not dependent on cell contact. Furthermore, CD4(+) FoxP3(+) CD25(-) IL-10(+) T cells were found in the lungs of mice at the peak of infection with B. pertussis. The rate of bacterial clearance was not affected by depletion of CD25(+) cells or in IL-10-deficient (IL-10(-/-) ) mice, but was compromised in CD25-depleted IL-10(-/-) mice. Our findings suggest that IL-10-producing CD4(+) FoxP3(+) CD25(-) T cells represent an important regulatory cell in the lung.  相似文献   

8.

Background

Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff) and regulatory T cells (Treg) to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice.

Principal Findings

Both effector (CD25, FoxP3) and suppressor (CD25+, FoxP3+) CD4+ T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP tranegenes. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL) in both strains. The effector and suppressor CD4+ subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4+CD25 T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice.

Conclusion

These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis.  相似文献   

9.
Dogma that the regulatory T cell (Treg) prevents catastrophic autoimmunity throughout the lifespan relies on the assumption that the FoxP3 locus is transcribed exclusively in Treg. To test the assumption, we used the Rag2(-/-) and the Rag2(-/-) mice with the Scurfy (sf) mutation (FoxP3(sf/Y) or FoxP3(sf/sf)) to evaluate FoxP3 expression outside of the lymphoid system. Immunohistochemistry and real-time PCR revealed FoxP3 expression in breast epithelial cells, lung respiratory epithelial cells, and prostate epithelial cells, although not in liver, heart, and intestine. The specificity of the assays was confirmed, as the signals were ablated by the Scurfy mutation of the FoxP3 gene. Using mice with a green fluorescence protein open reading frame knocked into the 3' untranslated region of the FoxP3 locus, we showed that the locus is transcribed broadly in epithelial cells of multiple organs. These results refute an essential underlying assumption of the dogma and question the specificity of FoxP3-based Treg depletion.  相似文献   

10.
Bacterial and viral infections have long been implicated in pathogenesis and progression of multiple sclerosis (MS). Incidence and severity of its animal model experimental autoimmune encephalomyelitis (EAE) can be enhanced by concomitant administration of pertussis toxin (PTx), the major virulence factor of Bordetella pertussis. Its adjuvant effect at the time of immunization with myelin antigen is attributed to an unspecific activation and facilitated migration of immune cells across the blood brain barrier into the central nervous system (CNS). In order to evaluate whether recurring exposure to bacterial antigen may have a differential effect on development of CNS autoimmunity, we repetitively administered PTx prior to immunization. Mice weekly injected with PTx were largely protected from subsequent EAE induction which was reflected by a decreased proliferation and pro-inflammatory differentiation of myelin-reactive T cells. Splenocytes isolated from EAE-resistant mice predominantly produced IL-10 upon re-stimulation with PTx, while non-specific immune responses were unchanged. Longitudinal analyses revealed that repetitive exposure of mice to PTx gradually elevated serum levels for TGF-β and IL-10 which was associated with an expansion of peripheral CD4(+)CD25(+)FoxP3(+) regulatory T cells (Treg). Increased frequency of Treg persisted upon immunization and thereafter. Collectively, these data suggest a scenario in which repetitive PTx treatment protects mice from development of CNS autoimmune disease through upregulation of regulatory cytokines and expansion of CD4(+)CD25(+)FoxP3(+) Treg. Besides its therapeutic implication, this finding suggests that encounter of the immune system with microbial products may not only be part of CNS autoimmune disease pathogenesis but also of its regulation.  相似文献   

11.

Background

The role of regulatory CD4 T cells (Treg) in immune-mediated liver disease is still under debate. It remains disputed whether Treg suppress T cell-mediated hepatitis in vivo and whether hepatic regulatory T cells are functional in patients with autoimmune hepatitis.

Methods

We used TF-OVA mice, which express ovalbumin in hepatocytes, to investigate the impact of Treg in a model of autoimmune hepatitis. Treg isolated from inflamed livers of TF-OVA mice were tested for their functionality in vitro. By employing double transgenic TF-OVAxDEREG (DEpletion of REGulatory T cells) mice we analyzed whether Treg-depletion aggravates autoimmune inflammation in the liver in vivo.

Results

CD25+Foxp3+ CD4 T cells accumulated in the liver in the course of CD8 T cell-mediated hepatitis. Treg isolated from inflamed livers were functional to suppress CD8 T-cell proliferation in vitro. Depletion of Treg in TF-OVAxDEREG mice dramatically amplified T cell-mediated hepatitis. Repeated administration of antigen-specific CD8 T cells led to a second wave of inflammation only after depletion of Treg.

Conclusion

Our data add to the evidence for an important role of Treg in autoimmune hepatitis and show that Treg reduce the severity of T-cell mediated hepatitis in vivo. They constitute a key immune cell population that actively maintains a tolerogenic milieu in the liver and protects the liver against repeated inflammatory challenges.  相似文献   

12.
Female B6AF1 mice thymectomized on day 3 (d3tx) develop autoimmune ovarian disease (AOD) and dacryoadenitis. It has been hypothesized that d3tx breaks tolerance by depleting late ontogeny regulatory T cells (Treg). We now report that Treg greatly expand over effector T cells in d3tx mice and adoptively suppress autoimmune disease in d3tx recipients. In the d3tx donors, Treg from ovarian lymph nodes (LN) preferentially suppress AOD and Treg from lacrimal gland LN preferentially suppress dacryoadenitis, suggesting they are strategically positioned for disease control. Indeed, the autologous disease in d3tx mice is dramatically enhanced by in vivo depletion of endogenous Treg. Moreover, normal 3-day-old mice possess Treg that suppress AOD and autoimmune gastritis as efficiently as adult cells. Thus, d3tx mice possess disease-relevant Treg of presumed neonatal origin. They accumulate in the regional LN and actively inhibit concurrent autoimmune disease; however, they cannot fully prevent autoimmune disease development.  相似文献   

13.
W Xu  Q Lan  M Chen  H Chen  N Zhu  X Zhou  J Wang  H Fan  CS Yan  JL Kuang  D Warburton  D Togbe  B Ryffel  SG Zheng  W Shi 《PloS one》2012,7(7):e40314
Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.  相似文献   

14.
We have shown that mice deficient in pituitary adenylate cyclase-activating polypeptide (PACAP, gene name ADCYAP1) manifest enhanced sensitivity to experimental autoimmune encephalomyelitis (EAE), supporting the anti-inflammatory actions described for this neuropeptide. In addition to an increased proinflammatory cytokine response in these mice, a reduction in regulatory T cell (Treg) abundance in the lymph nodes (LN) was observed, suggesting altered Treg kinetics. In the present study, we compared in PACAP deficient (KO) vs. wild type mice the abundances and rates of proliferation FoxP3+ Tregs in three sites, the LN, central nervous system (CNS) and thymus and the relative proportions of Th1, Th2, and Th17 effector subsets in the LN and CNS. Flow cytometry analyses revealed a decrease in Treg proliferation and an increased T effector/Tregs ratio in the LN and CNS of PACAP KO mice. In the thymus, the primary site of do novo natural Treg production, the total numbers and proliferative rates of FoxP3+ Tregs were significantly reduced. Moreover, the expression of IL-7, a cytokine implicated in thymic Treg expansion during EAE, failed to increase at the peak of the disease in the thymus and LN of PACAP KO mice. In addition to these Treg alterations, a specific reduction of Th2 cells (about 4-fold) was observed in the lymph nodes in PACAP KO mice, with no effects on Th1 and Th17 subsets, whereas in the CNS, Th1 and Th17 cells were increased and Th2 decreased. Our results suggest that endogenous production of the neuropeptide PACAP protects against EAE by modulating Treg expansion and Th subsets at multiple sites.  相似文献   

15.
A massive systemic expansion of CD8(+) memory T (T(M)) cells and a remarkable increase in circulating IL-2 were observed only in IL-2Ralpha (CD25) knockout (KO) mice but not in IL-2 KO and scurfy mice, although all three mutants lack regulatory T (Treg) cells. However, both phenotypes were suppressed by the transfer of Treg cells. The data presented indicate that Treg cell deficiency drives naive T cells to T(M) cells. The lack of high-affinity IL-2R in IL-2Ralpha KO mice increases circulating IL-2 that is then preferentially used by CD8(+) T(M) cells through its abundant low-affinity IL-2R, resulting in systemic CD8(+) T(M) cell dominance. Our study demonstrates the critical control of CD8(+) T(M) cell homeostasis by a Treg cell-dependent novel function of CD25 and resolves its mechanism of action.  相似文献   

16.
The presence of FoxP3(+) regulatory T cells (Tregs) is necessary for control of deleterious immune responses in the steady state; however, mechanisms for maintaining the frequency and quality of endogenous Tregs are not well defined. In this study, we used in vivo modulators of the CD28 and CTLA4 pathways administered to intact mice to reveal mechanisms controlling the homeostasis and phenotype of endogenous Tregs. We demonstrate that expression of the negative costimulatory regulator CTLA4 on FoxP3(+) Tregs in vivo is a direct consequence of their rapid, perpetual homeostasis. Up-regulation of CTLA4 expression occurs only on FoxP3(+) Tregs undergoing extensive proliferation and can be abrogated by inhibiting the CD28 pathway, coinciding with a reduction in FoxP3(+) Treg proliferation and frequency. We further demonstrate that CTLA4 negatively regulates steady-state Treg homeostasis, given that inhibiting CTLA4 signaling with an anti-CTLA4 blocking Ab greatly enhances Treg proliferation and overall Treg frequency. Our findings provide new insight into the origin and role of CTLA4 expression on natural FoxP3(+) Tregs and reveal opposing effects of costimulation modulators on the steady-state level and quality of Tregs, with implications regarding their effects on endogenous Tregs in patients receiving immunotherapy.  相似文献   

17.
18.
Although Foxp3(+) regulatory T cells (Tregs) are thought to express autoreactive TCRs, it is not clear how individual TCRs influence Treg development, phenotype, and function in vivo. We have generated TCR transgenic mice (termed SFZ70 mice) using Tcra and Tcrb genes cloned from an autoreactive CD4(+) T cell isolated from a Treg-deficient scurfy mouse. The SFZ70 TCR recognizes a cutaneous autoantigen and drives development of both conventional CD4(+) Foxp3(-) T cells (T(conv)) and Foxp3(+) Tregs. SFZ70 Tregs display an activated phenotype evidenced by robust proliferation and expression of skin-homing molecules such as CD103 and P-selectin ligand. Analysis of Foxp3-deficient SFZ70 mice demonstrates that Tregs inhibit T(conv) cell expression of tissue-homing receptors and their production of proinflammatory cytokines. In addition, Treg suppression of SFZ70 T(conv) cells can be overcome by nonspecific activation of APCs. These results provide new insights into the differentiation and function of tissue-specific Tregs in vivo and provide a tractable system for analyzing the molecular requirements of Treg-mediated tolerance toward a cutaneous autoantigen.  相似文献   

19.
ICOS controls the pool size of effector-memory and regulatory T cells   总被引:2,自引:0,他引:2  
ICOS is an important regulator of T cell effector function. ICOS-deficient patients as well as knockout mice show severe defects in T cell-dependent B cell responses. Several in vitro and in vivo studies attributed this phenomenon to impaired up-regulation of cell surface communication molecules and cytokine synthesis by ICOS-deficient T cells. However, we now could show with Ag-specific T cells in a murine adoptive transfer system that signaling via ICOS does not significantly affect early T cell activation. Instead, ICOS substantially contributes to the survival and expansion of effector T cells upon local challenge with Ag and adjuvant. Importantly, the observed biological function of ICOS also extends to FoxP3+ regulatory T cells, as can be observed after systemic Ag delivery without adjuvant. In line with these findings, absence of ICOS under homeostatic conditions of nonimmunized mice leads to a reduced number of both effector-memory and FoxP3+ regulatory T cells. Based on these results, we propose a biological role for ICOS as a costimulatory, agonistic molecule for a variety of effector T cells with differing and partly opposing functional roles. This concept may reconcile a number of past in vivo studies with seemingly contradictory results on ICOS function.  相似文献   

20.
Although typically associated with onset in young adults, multiple sclerosis (MS) also attacks the elderly, which is termed late‐onset MS. The disease can be recapitulated and studied in a mouse model, experimental autoimmune encephalomyelitis (EAE). The onset of induced EAE is delayed in aged mice, but disease severity is increased relative to young EAE mice. Given that CD4+FoxP3+ regulatory T (Treg) cells play an ameliorative role in MS/EAE severity, and the aged immune system accumulates peripheral Treg (pTreg) cells, failure of these cells to prevent or ameliorate EAE disease is enigmatic. When analyzing the distribution of Treg cells in EAE mice, the aged mice exhibited a higher proportion of polyclonal (pan‐) pTreg cells and a lower proportion of antigen‐specific pTreg cells in the periphery but lower proportions of both pan‐ and antigen‐specific Treg cells in the central nervous system (CNS). Furthermore, in the aged inflamed CNS, CNS‐Treg cells exhibited a higher plasticity, and T effector (CNS‐Teff) cells exhibited greater clonal expansion, disrupting the Treg/Teff balance. Transiently inhibiting FoxP3 or depleting pTreg cells partially corrected Treg distribution and restored the Treg/Teff balance in the aged inflamed CNS, thereby ameliorating the disease in the aged EAE mice. These results provide evidence and mechanism that accumulated aged pTreg cells play a detrimental role in neuronal inflammation of aged MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号