首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Crop plants are regularly exposed to an array of abiotic and biotic stresses, among them drought stress is a major environmental factor that shows adverse effects on plant growth and productivity. Because of this these factors are considered as hazardous for crop production. Drought stress elicits a plethora of responses in plants resulting in strict amendments in physiological, biochemical, and molecular processes. Photosynthesis is the most fundamental physiological process affected by drought due to a reduction in the CO2 assimilation rate and disruption of primary photosynthetic reactions and pigments. Drought also expedites the generation of reactive oxygen species (ROS), triggering a cascade of antioxidative defense mechanisms, and affects many other metabolic processes as well as affecting gene expression. Details of the drought stress-induced changes, particularly in crop plants, are discussed in this review, with the major points: 1) leaf water potentials and water use efficiency in plants under drought stress; 2) increased production of ROS under drought leading to oxidative stress in plants and the role of ROS as signaling molecules; 3) molecular responses that lead to the enhanced expression of stress-inducible genes; 4) the decrease in photosynthesis leading to the decreased amount of assimilates, growth, and yield; 5) the antioxidant defense mechanisms comprising of enzymatic and non-enzymatic antioxidants and the other protective mechanisms; 6) progress made in identifying the drought stress tolerance mechanisms; 7) the production of transgenic crop plants with enhanced tolerance to drought stress.  相似文献   

4.
5.
Xie C  Zhang R  Qu Y  Miao Z  Zhang Y  Shen X  Wang T  Dong J 《The New phytologist》2012,195(1):124-135
? Dehydrins are a type of late embryogenesis abundant protein. Some dehydrins are involved in the response to various abiotic stresses. Accumulation of dehydrins enhances the drought, cold and salt tolerances of transgenic plants, although the underlying mechanism is unclear. MtCAS31 (Medicago Truncatula cold-acclimation specific protein 31) is a Y(2)K(4)-type dehydrin that was isolated from Medicago truncatula. ? We analyzed the subcellular and histochemical localization of MtCAS31, and the expression patterns of MtCAS31 under different stresses. Transgenic Arabidopsis that overexpressed MtCAS31 was used to determine the function of MtCAS31. A yeast two-hybrid assay was used to screen potential proteins that could interact with MtCAS31. The interaction was confirmed by bimolecular fluorescence complementation (BiFC) assay. ? After a 3-h drought treatment, the expression of MtCAS31 significantly increased 600-fold. MtCAS31 overexpression dramatically reduced stomatal density and markedly enhanced the drought tolerance of transgenic Arabidopsis. MtCAS31 could interact with AtICE1 (inducer of CBF expression 1) and the AtICE1 homologous protein Mt7g083900.1, which was identified from Medicago truncatula both in vitro and in vivo. ? Our findings demonstrate that a dehydrin induces decreased stomatal density. Most importantly, the interaction of MtCAS31 with AtICE1 plays a role in stomatal development. We hypothesize that the interaction of MtCAS31 and AtICE1 caused the decrease in stomatal density to enhance the drought resistance of transgenic Arabidopsis.  相似文献   

6.
7.
8.
9.
10.
World food security is increasingly dependent on continuous crop improvement and, in particular, the development of crops with increased drought and salinity tolerance. The completed genomic sequence of the model plant Arabidopsis thaliana and the development of whole-genome microarrays, together with increasing repositories of publicly available data and data analysis tools, have opened new avenues to genome-wide systemic analysis of plant stress responses. Here we outline examples of how this full-genome expression profiling can contribute to our understanding of complex stress responses and the identification and evaluation of novel transgenes that could hold the key to the development of commercially viable and sustainable crop plants.  相似文献   

11.

Background and aims

Cadmium (Cd) could activate activity of mitogen-activated protein kinase MPK6 in plants. In this study, we investigated the role of MPK6 in mediating Cd toxicity in plants.

Methods

The wild type Arabidopsis plants (WT) and the mpk6-2 mutants were subjected either 0 (Control) or 10 μM Cd treatment. Kinase activity of MPK6, nitric oxide (NO) level, Cd concentration, and oxidative stress were measured.

Results

In WT plants, Cd exposure rapidly stimulated kinase activity of MPK6. However, upon Cd exposure, mpk6-2 showed better growth than the WT. Although Cd-induced production of NO in roots was greater in WT than in mpk6-2, there was no difference in Cd concentration between the two plants. Nevertheless, the Cd-induced hydroperoxide burst, lipid peroxidation and loss of membrane integrity, were all more severe in the WT than in mpk6-2. Foliar applications of antioxidant ascorbic acid, vigorously improved the growth of both the WT and mpk6-2 under Cd exposure. Thereby the growth difference between these two plants was minimized.

Conclusions

Mutation of mpk6 enhances Cd tolerance in plants by alleviating oxidative stress, but did not affect cadmium accumulation in plants.  相似文献   

12.
Engineering cold stress tolerance in crop plants   总被引:2,自引:0,他引:2  
  相似文献   

13.
14.
Liu X  Hua X  Guo J  Qi D  Wang L  Liu Z  Jin Z  Chen S  Liu G 《Biotechnology letters》2008,30(7):1275-1280
Tocopherol cyclase (VTE1, encoded by VTE1 gene) catalyzes the penultimate step of tocopherol synthesis. Transgenic tobacco plants overexpressing VTE1 from Arabidopsis were exposed to drought conditions during which transgenic lines had decreased lipid peroxidation, electrolyte leakage and H(2)O(2) content, but had increased chlorophyll compared with the wild type. Thus VTE1 can be used to increase vitamin E content of plants and also to enhance tolerance to environmental stresses.  相似文献   

15.
采用PCR及RT-PCR法分别克隆了拟南芥SDIR1基因的DNA和cDNA序列。根据序列比对分析结果,发现了3种不同的转录本,提示SDIR1基因的转录中存在选择性剪接。3种转录本的长度分别为822bp、691bp和666bp,依次命名为:SDIR1-822、SDIR1-691、SDIR1-666。与SDIR1基因的DNA序列及已报道的SDIR1cDNA序列比较,除转录本SDIR1-822包含了完整的编码序列外,其余2种转录本的编码序列都存在不同长度的缺失。其中,SDIR1-691缺失了131bp的片段:第2外显子3′端缺失33bp,第3外显子53bp全部缺失,第4外显子5′端缺失45bp;转录本SDIR1-666缺失了156bp的片段:第3外显子3′端缺失18bp,第4外显子5′端缺失138bp。进而随机挑取101个克隆子对三种转录本的表达比例进行初步分析,结果表明3种分子的比值为SDIR1-822:SDIR1-691:SDIR1-666=26.00:1.33:1.00,反映出SDIR1基因不同转录本在拟南芥中的相对表达量。  相似文献   

16.
Zhang L  Xiao S  Li W  Feng W  Li J  Wu Z  Gao X  Liu F  Shao M 《Journal of experimental botany》2011,62(12):4229-4238
Harpin proteins are well known as eliciters that induce multiple responses in plants, such as systemic acquired resistance, hypersensitive response, enhancement of growth, resistance to the green peach aphid, and tolerance to drought. Overexpression of Harpin-encoding genes enhances plant resistance to diseases in tobacco, rice, rape, and cotton; however, it is not yet known whether the expression of Harpin-encoding genes in vivo improves plant tolerance to abiotic stresses. The results of this study showed that overexpression of a Harpin-encoding gene hrf1 in rice increased drought tolerance through abscisic acid (ABA) signalling. hrf1- overexpression induces an increase in ABA content and promotes stomatal closure in rice. The hrf1 transgenic rice lines exhibited a significant increase in water retention ability, levels of free proline and soluble sugars, tolerance to oxidative stress, reactive oxygen species-scavenging ability, and expression levels of four stress-related genes, OsLEA3-1, OsP5CS, Mn-SOD, and NM_001074345, under drought stress. The study confirmed that hrf1 conferred enhanced tolerance to drought stress on transgenic crops. These results suggest that Harpins may offer new opportunities for generating drought resistance in other crops.  相似文献   

17.

Background

Plants are challenged by a large number of environmental stresses that reduce productivity and even cause death. Both chloroplasts and mitochondria produce reactive oxygen species under normal conditions; however, stress causes an imbalance in these species that leads to deviations from normal cellular conditions and a variety of toxic effects. Mitochondria have uncoupling proteins (UCPs) that uncouple electron transport from ATP synthesis. There is evidence that UCPs play a role in alleviating stress caused by reactive oxygen species overproduction. However, direct evidence that UCPs protect plants from abiotic stress is lacking.

Methodology/Principal Findings

Tolerances to salt and water deficit were analyzed in transgenic tobacco plants that overexpress a UCP (AtUCP1) from Arabidopsis thaliana. Seeds of AtUCP1 transgenic lines germinated faster, and adult plants showed better responses to drought and salt stress than wild-type (WT) plants. These phenotypes correlated with increased water retention and higher gas exchange parameters in transgenic plants that overexpress AtUCP1. WT plants exhibited increased respiration under stress, while transgenic plants were only slightly affected. Furthermore, the transgenic plants showed reduced accumulation of hydrogen peroxide in stressed leaves compared with WT plants.

Conclusions/Significance

Higher levels of AtUCP1 improved tolerance to multiple abiotic stresses, and this protection was correlated with lower oxidative stress. Our data support previous assumptions that UCPs reduce the imbalance of reactive oxygen species. Our data also suggest that UCPs may play a role in stomatal closure, which agrees with other evidence of a direct relationship between these proteins and photosynthesis. Manipulation of the UCP protein expression in mitochondria is a new avenue for crop improvement and may lead to crops with greater tolerance for challenging environmental conditions.  相似文献   

18.
Two allelic Arabidopsis mutants, leaf wilting 2-1 and leaf wilting 2-2 (lew2-1 and lew2-2 ), were isolated in a screen for plants with altered drought stress responses. The mutants were more tolerant to drought stress as well as to NaCl, mannitol and other osmotic stresses. lew2 mutant plants accumulated more abscisic acid (ABA), proline and soluble sugars than the wild type. The expression of a stress-inducible marker gene RD29A, a proline synthesis-related gene P5CS (pyrroline-5-carboxylate synthase) and an ABA synthesis-related gene SDR1 (alcohol dehydrogenase/reductase) was higher in lew2 than in the wild type. Map-based cloning revealed that the lew2 mutants are new alleles of the AtCesA8/IRX1 gene which encodes a subunit of a cellulose synthesis complex. Our results suggest that cellulose synthesis is important for drought and osmotic stress responses including drought induction of gene expression.  相似文献   

19.
Carotenoids are essential for photosynthesis and photoprotection in plant life. In order to study the protective role of zeaxanthin under drought stress, we increased the capacity for its accumulation in tobacco by over-expression of Arabidopsis β-carotene hydroxylase chyB gene. This manipulation leads to a 2–4 fold increase of xanthophylls cycle pigments. Under high-light condition, the transformants converted more β-carotene into zeaxanthin compared to the controls. The enhancement of zeaxanthin increased the total antioxidant capacity in lipid phase and made plants more tolerant to drought stress, as shown by less leaf necrosis, reduced lipid peroxidation and enhanced photosynthesis rate. The function of the gene in drought tolerance was explored and discussed. We conclude that genetic manipulation of chyB gene may present a powerful method in the production of drought-tolerant crops.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号