首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Food competition in group-living animals is commonly accepted as a critical determinant of foraging strategies and social organization. Here we examine food patch depletion behavior in a leaf-eating (folivorous) primate, the guereza (Colobus guereza). Snaith and Chapman (2005) studied the sympatric folivorous red colobus (Procolobus rufomitratus), which shares many food resources with the guereza. They determined that red colobus deplete the patches (feeding trees) they use, while we found contrary evidence for guerezas using the same methods. We found that the time guerezas spent feeding in a patch was affected by neither tree size, an indicator of food abundance, nor the size of the feeding group, an indicator of feeding competition. For their principal food item (young leaves), intake rate remained constant and coincided with a decrease in the distance moved to find food within a patch, implying that guerezas do not deplete patches. This points to a fundamental difference in the use of food by guerezas and red colobus, which may be linked to the large difference in their group sizes and/or to a disparity in their digestive physiologies. However, further analyses revealed that the number of feeders within a patch did not affect patch depletion patterns in either species, leaving the potential for a physiological basis as the most plausible explanation. Our research highlights the need for a more critical examination of folivorous primate feeding ecology and social behavior, as all folivorous primates are typically lumped into a single category in socioecological models, which may account for conflicting evidence in the literature.  相似文献   

2.
Testing predictions of socioecological models, specifically that the types of feeding competition and social relationships female primates exhibit are strongly influenced by the distribution, density, and quality of food resources, requires studies of closely related populations of subjects living under different ecological conditions. I examined feeding competition and the resulting female social relationships in mountain gorillas (Gorilla beringei beringei) of Bwindi Impenetrable National Park, Uganda, which has ecological conditions distinctive from those where other gorilla populations live. I observed 1 group of gorillas for 29 mo to examine the proportion of time spent foraging on fruit, the relationship between patch size and occupancy patterns of fruit trees, and agonistic interactions. Patch occupancy time while foraging in fruit trees decreased with increasing number of gorillas in a tree and decreasing tree size, suggesting that fruit trees represent limiting patches and can lead to intragroup scramble competition. Gorillas exhibited higher levels of aggression while feeding on fruit versus other food resources, which indicates intragroup contest competition. I observed a linear dominance hierarchy with no bidirectionality via displacements, and a similar hierarchy via aggression, though a notable proportion of the dyads contained 2-way interactions. However, most aggression was of low intensity (vocalizations) and the recipient typically ignored it. Despite differences in ecological conditions and diet between the Virunga Volcanoes and Bwindi, agonistic relationships among females are largely similar in the 2 populations and are best characterized as dispersal individualistic.  相似文献   

3.
White-faced capuchins (Cebus capucinus)on Barro Colorado Island, Panama, have a flexible foraging strategy. Typically, foraging party size is small and individuals feed dispersed from one another. When seasonal fruiting of large volume trees occurs, the majority of the group forages simultaneously. As C. capucinusdo not display a rigorous dominance structure and there are few indications that individuals or coalitions monopolize food patches,individuals are expected to display scramble strategies instead of high frequencies of contest competition. I recorded foraging party size (simultaneous foragers), the total number of animals to feed successively, and the diameter at breast height (DBH) of fruit trees used in two habituated troops. Individuals in each group spent a substantial amount of time — 65 and 48% of foraging time for each group — foraging in party sizes of one. Monkeys predominantly foraged alone in small trees (0- to 20- cm DBH), successively in medium trees (21- to 60- cm DBH), and simultaneously in large trees (>61- cm DBH). They used small trees more frequently than all other tree classes. In medium-sized trees, although fruit was plentiful, space was limited. In these trees Cebusforaged successively. In large-volume trees, space and fruit were abundant and several individuals fed together. As the DBH of fruiting trees increased, the average foraging party size increased exponentially. Cebus capucinusat Barro Colorado Island modify their foraging party size to adapt to the seasonal patterns of fruit production.  相似文献   

4.
Food availability is one of the basic factors affecting primate density and socioecology, but food availability is difficult to assess. Two different ways to obtain accurate estimates of food availability have been proposed: using phenology data or using the behaviour of animals. Phenology data can be refined by only including trees that are large enough to be used; including (potential) tree species in which by the concerned primate species forage; or including (fruiting) trees of these species that actually produce fruit. Alternatively, the sizes of the actually visited trees (foraging trees) give an estimate of fruit availability. These measures are compared for three sympatric primate species at the Ketambe Research Station, Sumatra, Indonesia: the Thomas langur, the long-tailed macaque and the orangutan. The sizes of fruiting trees and the foraging trees are larger than the potential trees. The sizes of the potential trees and of the fruiting trees are similar for the three primate species. This, however, is not reflected in the use of trees: the langurs forage on average in trees of similar size to those producing fruit, whereas the macaques and orangutans forage in trees larger than those producing fruit. The use of trees does not necessitate a different cut off point of included dbhs for the three compared primate species. The use of trees of different sizes, however, may be regulated by food competition. This indicates that sympatric primates make different foraging decisions and that behavioural measures of food availability will be less reliable.  相似文献   

5.
We investigated the occurrence of scramble competition among Colobus vellerosus at Boabeng-Fiema, Ghana. If scramble competition had an impact on feeding efficiency among females, we expected a positive relationship between group size and the proportion of time spent feeding, day journey length, or home range size assuming resource availability is similar among the groups compared. We collected focal data on the feeding behavior of adult females and males over 11 mo (September 2000–August 2001) on 2 study groups: WW (n = 31–33 individuals) and B (n = 8–16 individuals). We also collected ranging data on group movements at half-hour intervals. The large group (WW1) had a significantly longer day journey length than the small group (B1), and females in the large group spent a significantly greater proportion of time feeding in the wet season, a period of low food availability, which suggests it may be a bottleneck period when food resources are scarce and Colobus vellerosus is close to being energy limited. The proximity data suggested females may be able to reduce or adjust for competition by having fewer neighbors when they feed and by spreading out when in a larger group. However, we found no relationship between home range size and group size or that females spent a greater proportion of time feeding than adult males did. Our results highlight the need to factor in differences in food availability when investigating scramble competition. Though equivocal, our results suggest scramble competition occurs among Colobus vellerosus, leading us to suggest there was a match with the potential competitive regime, i.e., food distribution.  相似文献   

6.
Foraging success is likely to affect hunger level and motivationto locate and exploit novel food sources in animals. We exploredthe relationship between scramble competition for limited foodand foraging innovation in the guppy (Poecilia reticulata),predicting that poor competitors would be more likely to innovatewhen presented with novel foraging tasks. Among males, we foundthat latency to complete novel foraging tasks was correlated bothwith weight gain and number of food items consumed, suggestingthat poor competitors are more likely to innovate. However,among females there was no relationship between innovative tendencyand either weight gain or foraging success. We suggest thatthis sex difference may reflect parental investment asymmetriesin males and females, and we predict similar sex differencesin other species.  相似文献   

7.
Food patch visitation was compared to the availability of fruit patches of different species during 2 years in a Bornean lowland forest to examine orangutan (Pongo pygmaeus) diet selectivity. Feeding on both the pulp and the seeds of nonfig fruit varied directly with fruit patch availability, demonstrating preference for these foods over fig fruit or other plant parts (bark or leaves). Factors determining fruit selectivity rank were examined through multiple regression analysis. Modeling selectivity for 52 chemically unprotected primate-fruit pulp species revealed strong preferences for species of (i) large crop size (numbers of fruits ripening in an individual patch), (ii) high pulp weight/fruit, and (iii) high pulp mass per swallowed unit of pulp + seed, demonstrating orangutan sensitivity especially to patch size (g of pulp or total energy/patch) and perhaps to fruit handling time. Modeling selectivity for 18 fig species showed that 4 factors significantly influenced fig species rank: crop size, pulp weight/fruit, and 2 chemical variables, percentage digestible carbohydrate and percentage phenolic compounds in the fig fruit pulp. The selectivity rank based on the overall nutrient gain from feeding in the fruit patch (the product of the first 3 variables) is proportionally depressed by the percentage tannin content, demonstrating that orangutans integrate values for these variables in selecting fig patches. The conclusions from these results and from analysis of selectivity for seeds and for other fruit types are that orangutan foraging decisions are strongly influenced by the meal size expected from a feeding visit (i.e., by patch size), that tannins and other toxins deter feeding, and that the energy content, rather than the protein content, of foods is important in diet selection. The foraging strategy of orangutans is interpreted relative to these results and to Bornean fruiting phenology. By integrating spatial, morphometric, and chemical variables in analysis, this study is the first to demonstrate the application of foraging theory to separate out the key variables that determine diet selection in a primate. Multivariate analysis should routinely be applied to such data to distinguish among the many covarying attributes of food items and patches; inferences drawn in previous studies of primate diet selection, which ignore key spatial and morphological variables and rely on univariate correlations, are therefore suspect.  相似文献   

8.
Adults of a stink bug,Megacopta punctissimum, formed mating aggregations on their host plants: a few pairs in copula and a few bachelor males (males not in copula) stayed in the aggregation and the bachelor males waited for arriving females to mate with. The processes of formation and maintenance of the aggregations were observed using the individual marking technique. Aggregations initiated by 2 males or by 1 male and 1 female were usually joined by 1 or more individuals and lasted for several days, but aggregations initiated by 2 females broke up within 1 h. Aggregations were not maintained by the same members. The residence time (time from joining an aggregation to leaving the aggregation without copulating) of males was longer than that of females. There was a negative correlation between the residence time of males and the number of bachelor males in an aggregation when bugs joined it, while the residence time of females was positively correlated with the number of bachelor males in the aggregation. When bugs copulated after joining an aggregation, the postcopulatory residence time (time from completing copulation to leaving the aggregation) was longer in males than in females. Thus, males had a stronger tendency to initiate and maintain aggregations than females.  相似文献   

9.
Most of what is currently known about western gorilla (Gorilla gorilla) diet is based on indirect studies using fecal samples and trail signs rather than measures based on direct observations. Here we report results on adult male and female western gorilla foraging behavior, based on systematic focal observations and nutritional analyses of foods. We found that western gorillas, like other apes, are highly selective ripe fruit specialists, seeking fruit high in energy, low in antifeedants, and rare in the environment. During seasonal fruiting peaks, fruit accounted for up to 70% of feeding time. When ripe fruit was scarce, gorillas increased time spent feeding on leaves and nonpreferred fruits and herbs. Leaves were the major fallback food, accounting for up to 70% of feeding time in males and 50% in females during periods of fruit scarcity. In spite of large differences in body size, the sexes were remarkably similar in their overall diet, not differing in time spent feeding on fruit or preferred herbs. However, the male consistently fed more often and on a greater variety of leaves than did females, whereas females fed more often on fallback herbs and termites. Our findings, when considered in light of previous findings on sympatric mangabeys, indicate that the foraging strategy of western gorillas is broadly similar to that of chimpanzees and orangutans, and distinct from that of old world monkeys. Am J Phys Anthropol 140:727–738, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

10.
Summary We present an empirical test of the Ghiselin—Reiss small-male hypothesis for the evolution of sexual size dimorphism (SSD). In mating systems dominated by scramble competition, where male reproductive success is a function of encounter rate with females, small males may be favoured when food is limiting because they require lower absolute amounts of food. Given a trade-off between time and energy devoted to foraging and to mate acquisition, small males should be able to devote more time to the latter. If at the same time larger females are favoured, this mechanism will contribute to the evolution of SSD and may be the major determinant of the female-biased SSDs that characterize most animal taxa. We tested this hypothesis using the water strider,Aquarius remigis (Heteroptera: Gerridae), a scramble competitor which mates many times over a prolonged mating season and which shows female-biased SSD. Laboratory experiments demonstrated that foraging success and giving up times (GUTs) are lower for males than for females during the reproductive season and that male water striders flexibly alter their time budgets under conditions of energy limitation. Controlled feeding experiments showed that male and female longevity, female fecundity and male mating success are positively related to food availability. As predicted, male body size is negatively correlated with several indices of male fitness (longevity, number of mating attempts and mating success), while female body size is positively correlated with longevity. These results are consistent with the hypothesis that scramble competition for mates favours small males in this species and provides empirical support for the Ghiselin—Reiss small-male hypothesis.  相似文献   

11.
Optimal foraging models predict how an organism allocates its time and energy while foraging for aggregated resources. These models have been successfully applied to organisms such as predators looking for prey, female parasitoids looking for hosts, or herbivorous searching for food. In this study, information use and patch time allocation were investigated using male parasitoids looking for mates. The influence of the former presence of females in absence of mates and the occurrence of mating and other reproductive behaviours on the patch leaving tendency was investigated for the larval parasitoid Asobara tabida. Although males do not modify their patch residence time based on the number of females that visited the patch, they do show an increase in the patch residence time after mating a virgin female and performing courtship behaviour such as opening their wings. These results are in concordance with an incremental mechanism, as it has been described for females of the same species while foraging for hosts. The similarities between males and females of the same species, and the conditions under which such a patch-leaving decision rule is fitted are discussed. This is the first study describing an incremental effect of mating on patch residence time in males, thus suggesting that similar information use are probably driving different organisms foraging for resource, regardless of its nature.  相似文献   

12.
We analysed the foraging behaviour of free-ranging Blue Tits Parus caeruleus in open holm oak Quercus ilex woodlands of western Spain during winter. Such woodlands are patchy for foraging tits because of the scattered distribution of trees and the patterns of abundance of canopy arthropods within and among trees. Results were compared with those obtained in spring of the same year, when we found that the foraging behaviour and spatial distribution of Blue Tits were largely unaffected by food availability (Pulido and Díaz 1997). Patch (tree) residence time was highly variable both within and among individual birds, and it was uncorrelated with either previous travel time or patch quality. Contrary to a priori expectations, the behaviour of tits did not conform to short-term energy maximizing rules in winter, in spite of a 2.5-fold decrease in food supply from spring to winter and a likely 2-fold increase in bird requirements. Instead, birds tended to fly towards patches that were further away than locally available. Overall, we conclude that energy intake rate was not the fitness-related currency that birds were trying to maximize while foraging.  相似文献   

13.
Effect of Group Size on Activity Budgets of Colobus vellerosus in Ghana   总被引:1,自引:0,他引:1  
Group size influences foraging efficiency in several primates. We examined the activity budgets of 3 groups of Geoffroy's pied colobus (Colobus vellerosus) at the Boabeng-Fiema Monkey Sanctuary in Ghana to determine whether larger group size induces scramble competition. We studied 2 groups (B1; N = 7-8 and WW; N = 31-33) occupying slightly overlapping home ranges from August to November 2000. We observed the third group, B2 (N = 15-16), comprising B1 and 7 male invaders in the same home range as B1 from August to November 2001. By comparing groups belonging to the same population and occupying sligthly overlapping or similar home ranges, we were able to control, to a certain extent, for differences in food distribution. We recorded a total of 3353 scans, yielding 14,886 activity records, over 73 days. As with other black-and-white colobus, resting was their most common activity (59%). Intergroup comparisons suggest that time spent feeding, resting and moving did not vary in relation to group size. However, intragroup comparisons between the sexes show that females in the large group spent more time feeding than males did, whereas this was not the case in the small group, which suggests that scramble competition may be occurring among female Colobus vellerosus at BFMS. It is also possible that this may be due to greater nutritional requirements because of a higher proportion of infants in the large group. In fact, the proportion is quite similar between the two groups, lending support to the idea that females in the two groups had comparable nutritional demands due to lactation. This suggests that increased feeding in females in the large group was partly an effect of scramble competition. Group size and group composition also influenced the frequency of social behavior. There was more grooming in the large group, and it was performed mostly by females. The distribution of activities throughout the day was similar to the pattern reported for other black-and-white colobus.  相似文献   

14.
We recorded 310 fresh chimpanzee night nests at 72 nest sites to determine their choice of tree and site for nesting vis-à-vis the effects of sympatric gorillas. Chimpanzees did not use trees for nesting according to their abundance, but instead tended to nest in fruit trees that they used as food sources. Nesting patterns of chimpanzees may vary with nesting group size, the type of vegetation, and fruit species eaten or not eaten by gorillas. When chimpanzees lodged as a small group in the secondary forest, they nested more frequently in trees bearing ripe fruits eaten only by themselves than in those with fruit eaten also by gorillas. When they lodged as a large group in the primary forest, they nested more frequently in trees bearing ripe fruits eaten by both apes. Nest group size is positively correlated with the availability of preferred ripe fruits in secondary forest. These findings not only reflect the larger foraging groups at the larger fruiting trees but also suggest that chimpanzees may have tended to occupy fruiting trees effectively by nesting in them and by forming large nest groups when the fruits attracted gorillas. Competition over fruits between gorillas and chimpanzees, due to their low productivity in the montane forest of Kahuzi, may have promoted the chimpanzee tactics.  相似文献   

15.
Sex differences in giraffe foraging behavior at two spatial scales   总被引:3,自引:0,他引:3  
We test predictions about differences in the foraging behaviors of male and female giraffes (Giraffa camelopardalis tippelskirchi Matchie) that derive from a hypothesis linking sexual size dimorphism to foraging behavior. This body-size hypothesis predicts that males will exhibit specific behaviors that increase their dry-matter intake rate relative to females. Foraging behavior was examined at two hierarchical levels corresponding to two spatial and temporal scales, within patches and within habitats. Patches are defined as individual trees or shrubs and habitats are defined as collections of patches within plant communities. Males were predicted to increase dry-matter intake rate within patches by taking larger bites, cropping bites more quickly, chewing less, and chewing faster. Within habitats, males were expected to increase intake rate by increasing the proportion of foraging time devoted to food ingestion as opposed to inter-patch travel time and vigilance. The predictions were tested in a free-ranging population of giraffes in Mikumi National Park, Tanzania. Males spent less total time foraging than females but allocated a greater proportion of their foraging time to forage ingestion as opposed to travel between patches. There was no sex difference in rumination time but males spent more time in activities other than foraging and rumination, such as walking. Within patches, males took larger bites than females, but females cropped bites more quickly and chewed faster. Males had longer per-bite handling times than females but had shorter handling times per gram of intake. Within habitats, males had longer average patch residence times but there was no significant sex difference in inter-patch travel times. There was no overall difference between sexes in vigilance while foraging, although there were significant sex by habitat and sex by season interactions. Although not all the predictions were confirmed, overall the results agree qualitatively with the body-size hypothesis. Sex-related differences in foraging behavior led to greater estimated intake rates for males at the within-patch and within-habitat scales. Received: 20 November 1995 / Accepted: 5 November 1996  相似文献   

16.
We studied the effects of adult oviposition and larval interactions on the defensive potential of gregarious behavior in conifer sawflies. Aggregation size and distribution initially reflected adult host plant selection and oviposition behavior. The contagious distribution of egg clusters resulted in part from the utilization of individual trees by multiple females, and of single host shoots by several females. Trees with the greates degree of prior defoliation received the most eggs, even though the potential for larval crowding made resource depletion possible. Foliar monoterpene and nitrogen contents explained only a small proportion of variability in female host utilization. Conifer needle architecture restricted the size of larval subgroups within aggregations, and limited the degree of defensive cohesiveness between subgroups. Subgroup turnover was frequent and independent of local food depletion. Risk of predation from wood ants varied with larval aggregation size and predator foraging level. When ant activity was high, large aggregations suffered greater numerical losses, but showed lower per capita predatory risk, than small groups. Results suggest that female oviposition patterns are influenced in part by the defensive benefits gained by offspring in large aggregations. Against ants, dilution effects and defensive synchrony due to gregariousness contribute to the overall antipredator strategy of sawfly larvae.  相似文献   

17.
We examined the spatial and temporal distribution of the foods of ursine colobus (Colobus vellerosus) at Boabeng-Fiema, Ghana as a means to predict the monopolizablity and usurpability of their food resources. Recent evidence suggests that food may not be limiting for folivorous primates, and that male sexual coercion may be a more important influence on folivore social organization. To address the question, we collected focal data on the feeding behavior of adult females and males over 11 mo (September 2000-August 2001) on 2 groups: WW (n = 31–33 individuals) and B (n = 8–16 individuals). We also conducted phenological monitoring and a tree survey of the two-group home ranges to establish food availability and distribution. We used 2 behavioral or organism-defined indicators of feeding behavior to assess potential resource contestability: food site residence time and distance moved between food sites. The colobus fed on a high diversity of species, most of their food trees were not clumped in distribution, within-tree interfood distances were short, and food trees were large. The only condition associated with the potential for monopolization was low food tree density. However, low food tree density may be offset by the colobus’ use of large trees. Taken together, the ecological and behavioral indicators suggest the food resources of Colobus vellerosus had a low potential for monopolization. Our results also indicate mature leaves had the longest food site residence time, which may suggest they should be the most usurpable plant part, though their presumed low quality and high abundance probably counteracted the effect. The pattern implied the potential for direct feeding competition among Colobus vellerosus at Boabeng-Fiema was low and agonistic interactions over food are not expected. Instead, a group size effect on feeding efficiency should be a more predominant influence on feeding efficiency, if food is limiting for the species.  相似文献   

18.
Previously, wild orangutan feeding and ranging behaviors have been described only from populations in hilly or mountainous regions. The Tanjung Puting study focuses on an orangutan population in a swampy lowland area near sea level. Tanjung Puting also differs from other areas in the virtual absence of large figs, which are significant orangutan food sources elsewhere. During a 4-year period and 6804 hr of observation, focal orangutans were recorded in 11,338 foraging bouts accounting for 3805 hr. Composition and phenology of the forest habitat were documented. The orangutans were predominantly frugivorous, with fruit-eating accounting for 61% of the foraging time. However, the overall variety in their diet was remarkable; 317 different food types have been identified, including fungus, insects, and honey. Orang-utans were strongly opportunistic foragers, with the composition of their diet varying markedly from month to month. During most months orangutans fed on a complex mix of fruit, leaves, bark, insects, and small vines. During some months fruit was not the major component of the diet. All orangutans foraged in both the dry-ground mixed dipterocarp forest and the peatswamp forest habitats found in their ranges. Adult males and females utilized different proportions of certain resources in their diets. Prime adult males also ranged further per day and spent more time on the ground than prime adult females. At Tanjung Puting contact with other orangutans usually increased a focal orangutan’s day length, day range, and amount of time spent moving. This suggests that foraging alone maximized each orangutan’s foraging returns by minimizing the day range traveled. Orangutan solitariness is the result of a large body size and of a predominantly frugivorous and opportunistic diet.  相似文献   

19.
Female-Female Competition in Bornean Orangutans   总被引:1,自引:1,他引:0  
The mostly solitary ranging of orangutans and the large areas over which they traverse have hampered quantification of Bornean orangutan ranging patterns and feeding competition. Because of their semisolitary existence, female orangutans have few competitive interactions among themselves. However, contest and scramble types of competition occur, and researchers consider both to be important for the species. Using 9 yr of data and >22,300 h of observation of adult female orangutans in Gunung Palung National Park in Indonesian Borneo, we examined both forms of competition. Based on our analyses, we have 4 conclusions: 1) Adult female orangutans have highly overlapping home ranges, and thus there is potential for scramble competition to impose a cost. 2) Adult female orangutans actively avoid each other, suggesting that scramble competition indeed imposes a cost. 3) Adult females have distinct core areas that overlap to a lesser degree than home ranges do. 4) Analyses of contest competition reveal a slight spatial component to female competition for the first time. Preliminary evidence for core area defense and passive range exclusion may be among the mechanisms responsible for maintaining distinct adult female core areas.  相似文献   

20.
Nicholson's distinction between 'scramble' and 'contest' modes of competition has received widespread attention in ecology and in behaviour, though the emphasis has been different between the two disciplines. In ecology the focus has been on the effects on population; in behavioural ecology the focus has been on the consequences at the individual level. This paper reviews and develops a theory of scramble competition at the individual level, deriving a general evolutionarily stable strategy (ESS) for individual scramble expenditure in a patchy habitat in which individuals compete in local groups for available resources, and examines two population consequences. The critical parameter determining the relationship between individual scramble expenditure and the number of competitors in a patch is the expected resource per capita. If resource input, R, to a patch is constant and independent of the number of competitors, n, then as the number of competitors increases, the per-capita resources declines as R/n, and the ESS scramble level declines (in proportion to (n-1)/n2). However, if the resource input to a patch is positively related to the number of competitors in the patch, scramble expenditure may increase with the number of competitors. In the case where the per-capita resource input stays constant (i.e. R(n) = Rn), the scramble level increases with competitor number (in proportion to (n-1) /n). There are plausible ecological reasons why either of these extreme limits may be approached in nature, making it important to ascertain the relationship between R and n before predicting individual scramble expenditure. For example, resource input may be constant when groups of competitors are constrained to remain together in given patches, and constant per-capita resources may be approached when ideal-free foraging rules apply. However, in the latter case, scramble expenditure must be accounted for in determining the ideal-free distribution. An analysis shows that this leads to 'undermatching', i.e. the ratio of numbers of competitors for good/bad patches becomes progressively less than the ratio of input rates for good/bad patches as the difference between the good and bad patches increases. A second population consequence of the scramble ESS relates to the fact that scrambles may dramatically affect fitness. The per-capita gain in energy can be reduced by a factor of up to 1/n as a result of scramble expenditure, potentially reducing realized population size to as little as the square root of the maximum potential carrying capacity, though reasons are given why such large reductions are unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号