首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein turnover by the proteasome in aging and disease   总被引:9,自引:0,他引:9  
A significant body of evidence supports a key role for free radicals in causing cumulative damage to cellular macromolecules, thereby contributing to senescence/aging, and a number of age-related disorders. Proteins are recognized as major targets for oxidative damage (in addition to DNA and lipids) and the accumulation of oxidized proteins has been reported for many experimental aging models, as measured by several markers for protein oxidation. In young and healthy individuals, moderately oxidized soluble cell proteins are selectively and rapidly degraded by the proteasome. However, severely oxidized, cross-linked proteins are poor substrates for degradation and actually inhibit the proteasome. Considerable evidence now indicates that proteasome activity declines during aging, as the protease is progressively inhibited by binding to ever increasing levels of oxidized and cross-linked protein aggregates. Cellular aging probably involves both an increase in the generation of reactive oxygen species and a progressive decline in proteasome activity, resulting in the progressive accumulation of oxidatively damaged protein aggregates that eventually contribute to cellular dysfunction and senescence.  相似文献   

2.
The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in noncanonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. Whereas many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin-conjugating enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin-conjugating enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells seem to be an indicator of mild oxidative stress.  相似文献   

3.
Oxidized and cross-linked proteins tend to accumulate in aging cells. Declining activity of proteolytic enzymes, particularly the proteasome, has been proposed as a possible explanation for this phenomenon, and direct inhibition of the proteasome by oxidized and cross-linked proteins has been demonstrated in vitro. We have further examined this hypothesis during both proliferative senescence (this paper) and postmitotic senescence (see the accompanying paper, ref 1 ) of human BJ fibroblasts. During proliferative senescence, we found a marked decline in all proteasome activities (trypsin-like activity, chymotrypsin-like activity, and peptidyl-glutamyl-hydrolyzing activity) and in lysosomal cathepsin activity. Despite the loss of proteasome activity, there was no concomitant change in cellular levels of actual proteasome protein (immunoassays) or in the steady-state levels of mRNAs for essential proteasome subunits. The decline in proteasome activities and lysosomal cathepsin activities was accompanied by dramatic increases in the accumulation of oxidized and cross-linked proteins. Furthermore, as proliferation stage increased, cells exhibited a decreasing ability to degrade the oxidatively damaged proteins generated by an acute, experimentally applied oxidative stress. Thus, oxidized and cross-linked proteins accumulated rapidly in cells of higher proliferation stages. Our data are consistent with the hypothesis that proteasome is progressively inhibited by small accumulations of oxidized and cross-linked proteins during proliferative senescence until late proliferation stages, when so much proteasome activity has been lost that oxidized proteins accumulate at ever-increasing rates. Lysosomes attempt to deal with the accumulating oxidized and cross-linked proteins, but declining lysosomal cathepsin activity apparently limits their effectiveness. This hypothesis, which may explain the progressive intracellular accumulation of oxidized and cross-linked proteins in aging, is further explored during postmitotic senescence in the accompanying paper (1).  相似文献   

4.
Protein degradation is a physiological process required to maintain cellular functions. There are distinct proteolytic systems for different physiological tasks under changing environmental and pathophysiological conditions. The proteasome is responsible for the removal of oxidatively damaged proteins in the cytosol and nucleus. It has been demonstrated that proteasomal degradation increases due to mild oxidation, whereas at higher oxidant levels proteasomal degradation decreases. Moreover, the proteasome itself is affected by oxidative stress to varying degrees. The ATP-stimulated 26S proteasome is sensitive to oxidative stress, whereas the 20S form seems to be resistant. Non-degradable protein aggregates and cross-linked proteins are able to bind to the proteasome, which makes the degradation of other misfolded and damaged proteins less efficient. Consequently, inhibition of the proteasome has dramatic effects on cellular aging processes and cell viability. It seems likely that during oxidative stress cells are able to keep the nuclear protein pool free of damage, while cytosolic proteins may accumulate. This is because of the high proteasome content in the nucleus, which protects the nucleus from the formation and accumulation of non-degradable proteins. In this review we highlight the regulation of the proteasome during oxidative stress and aging.  相似文献   

5.
Oxidized/cross-linked intracellular protein materials, known as ceroid pigment, age pigment, or lipofuscin, accumulate in postmitotic tissues. It is unclear, however, whether diminishing proteolytic capacities play a role in the accumulation of such oxidized intracellular proteins. Previous studies revealed that the proteasome is responsible for the degradation of most oxidized soluble cytoplasmic and nuclear proteins and, we propose, for the prevention of such damage accumulations. The present investigation was undertaken to test the changes in protein turnover, proteasome activity, lysosome activity, and protein oxidation status during the aging of nondividing cells. Since the companion paper shows that both proteasome activity and the overall protein turnover decline during proliferative senescence whereas the accumulation of oxidized proteins increases significantly, we decided to use the same human BJ fibroblasts, this time at confluency, at different PD levels (including those that are essentially postmitotic) to investigate the same parameters under conditions where cells do not divide. We find that the activity of the cytosolic proteasome declines dramatically during senescence of nondividing BJ fibroblasts. The peptidyl-glutamyl-hydrolyzing activity was particularly affected. This decline in proteasome activity was accompanied by a decrease in the overall turnover of short-lived (radiolabeled) proteins in the nondividing BJ fibroblasts. On the other hand, no decrease in the actual cellular proteasome content, as judged by immunoblots, was found. The decline in the activity of the proteasome was also accompanied by an increased accumulation of oxidized proteins, especially of oxidized and cross-linked material. Unlike the loss of lysosomal function seen in our accompanying studies of proliferative senescence (1), however, the present study of hyperoxic senescence in nondividing cells actually revealed marked increases in lysosomal cathepsin activity in all but the very 'oldest' postmitotic cells. Our comparative studies of proliferating (1) and nonproliferating (this paper) human BJ fibroblasts reveal a good correlation between the accumulation of oxidized/cross-linked proteins and the decline in proteasome activity and overall cellular protein turnover during in vitro senescence, which may predict a causal relationship during actual cellular aging.  相似文献   

6.
The production of free radicals and the resulting oxidative damage of cellular structures are always connected with the formation of oxidized proteins. The 20S proteasome is responsible for recognition and degradation of oxidatively damaged proteins. No detailed studies on the intracellular distribution of oxidized proteins during oxidative stress and on the distribution of the proteasome have been performed until now. Therefore, we used immunocytochemical methods to measure protein carbonyls, a form of protein oxidation products, and proteasome distribution within cells. Both immunocytochemical methods of measurement are semiquantitative and the load of oxidized proteins is increased after various oxidative stresses explored, with the highest increase in the perinuclear region of the cell. Distribution of the proteasome and the total protein content revealed the highest concentration of both in the nucleus. No redistribution of the proteasome during oxidative stress occurs. The normalized ratio of protein carbonyls to protein content was formed, indicating the highest concentration of oxidized proteins in the cytosolic region near the cell membrane. By forming the protein oxidation-to-proteasome ratio it was concluded that the highest load of oxidized proteins to the proteasome takes place in the cytosol, independent of the oxidant explored.  相似文献   

7.
Hyperphosphorylated tau proteins accumulate in the paired helical filaments of neurofibrillary tangles seen in such tauopathies as Alzheimer's disease. In the present paper we show that tau turnover is dependent on degradation by the proteasome (inhibited by MG132) in HT22 neuronal cells. Recombinant human tau was rapidly degraded by the 20 S proteasome in vitro, but tau phosphorylation by GSK3beta (glycogen synthase kinase 3beta) significantly inhibited proteolysis. Tau phosphorylation was increased in HT22 cells by OA [okadaic acid; which inhibits PP (protein phosphatase) 1 and PP2A] or CsA [cyclosporin A; which inhibits PP2B (calcineurin)], and in PC12 cells by induction of a tet-off dependent RCAN1 transgene (which also inhibits PP2B). Inhibition of PP1/PP2A by OA was the most effective of these treatments, and tau hyperphosphorylation induced by OA almost completely blocked tau degradation in HT22 cells (and in cell lysates to which purified proteasome was added) even though proteasome activity actually increased. Many tauopathies involve both tau hyperphosphorylation and the oxidative stress of chronic inflammation. We tested the effects of both cellular oxidative stress, and direct tau oxidative modification in vitro, on tau proteolysis. In HT22 cells, oxidative stress alone caused no increase in tau phosphorylation, but did subtly change the pattern of tau phosphorylation. Tau was actually less susceptible to direct oxidative modification than most cell proteins, and oxidized tau was degraded no better than untreated tau. The combination of oxidative stress plus OA treatment caused extensive tau phosphorylation and significant inhibition of tau degradation. HT22 cells transfected with tau-CFP (cyan fluorescent protein)/tau-GFP (green fluorescent protein) constructs exhibited significant toxicity following tau hyperphosphorylation and oxidative stress, with loss of fibrillar tau structure throughout the cytoplasm. We suggest that the combination of tau phosphorylation and tau oxidation, which also occurs in tauopathies, may be directly responsible for the accumulation of tau aggregates.  相似文献   

8.
Numerous studies suggest that proteasome inhibition may play a causal role in mediating the increased levels of protein oxidation and neuron death observed in conditions associated with oxidative stress. In the present study we demonstrate that administration of non-toxic levels of oxidative stress does not result in impairment of 20S/26S proteasome activity, and actually increases the expression of specific proteasome subunits. Non-toxic levels of oxidative stress were observed to elevate the amount of protein oxidation in the presence of preserved proteasomal function, suggesting that proteasome inhibition may not mediate increases in protein oxidation following low-level oxidative stress. Preserving basal proteasome function appears to be critical to preventing the neurotoxicity of low-level oxidative stress, based on the ability of proteasome inhibitor treatment to exacerbate oxidative stress toxicity. Taken together, these data indicate that maintaining neural proteasome function may be critical to preventing neurotoxicity, but not the increase in protein oxidation, following low-level oxidative stress.  相似文献   

9.
Upon encountering oxidative stress, proteins are oxidized extensively by highly reactive and toxic reactive oxidative species, and these damaged, oxidized proteins need to be degraded rapidly and effectively. There are two major proteolytic systems for bulk degradation in eukaryotes, the proteasome and vacuolar autophagy. In mammalian cells, the 20S proteasome and a specific type of vacuolar autophagy, chaperone-mediated autophagy, are involved in the degradation of oxidized proteins in mild oxidative stress. However, little is known about how cells remove oxidized proteins when under severe oxidative stress. Using two macroautophagy markers, monodansylcadaverine and green fluorescent protein-AtATG8e, we here show that application of hydrogen peroxide or the reactive oxidative species inducer methyl viologen can induce macroautophagy in Arabidopsis (Arabidopsis thaliana) plants. Macroautophagy-defective RNAi-AtATG18a transgenic plants are more sensitive to methyl viologen treatment than wild-type plants and accumulate a higher level of oxidized proteins due to a lower degradation rate. In the presence of a vacuolar H(+)-ATPase inhibitor, concanamycin A, oxidized proteins were detected in the vacuole of wild-type root cells but not RNAi-AtATG18a root cells. Together, our results indicate that autophagy is involved in degrading oxidized proteins under oxidative stress conditions in Arabidopsis.  相似文献   

10.
After oxidative stress, proteins that are oxidatively modified are degraded by the 20S proteasome. However, several studies have documented an enhanced ubiquitination of yet unknown proteins. Because ubiquitination is a prerequisite for degradation by the 26S proteasome in an ATP-dependent manner this raises the question whether these proteins are also oxidized and, if not, what proteins need to be ubiquitinated and degraded after oxidative conditions. By determination of oxidized and ubiquitinated proteins we demonstrate here that most oxidized proteins are not preferentially ubiquitinated. However, we were able to confirm an increase in ubiquitinated proteins 16 h after oxidative stress. Therefore, we isolated ubiquitinated proteins from hydrogen peroxide-treated cells, as well as from control cells and cells treated with lactacystin, an irreversible proteasome inhibitor, and identified some of these proteins by MALDI tandem mass spectrometry. As a result we obtained 24 different proteins that can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified, ubiquitinated proteins confirms the thesis that ubiquitination upon oxidative stress is not a random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins.  相似文献   

11.
Proteasome inactivation upon aging and on oxidation-effect of HSP 90   总被引:2,自引:0,他引:2  
Increases of oxidatively modified protein in the cell have been associated with the aging process. Such an accumulation of damaged protein may be the result of increase in the rate of protein oxidation and/or decrease in the rate of degradation of oxidized protein. The multicatalytic proteinase or proteasome is known to be the major proteolytic system involved in the removal of oxidized protein. We have reported that, after isolation of the 20S proteasome from the liver of young and old male Fischer 344 rat, out of the three peptidase activities (chymotrypsin-like, trypsin-like and peptidyl-glutamyl peptide hydrolase) we assayed with fluorogenic peptides, the peptidyl-glutamyl peptide hydrolase activity was declining with age to a value approximately 50% of that observed for protease purified from young rats. The proteasome was subjected to metal catalyzed oxidation to determine the susceptibility of the different peptidase activities to oxidative inactivation. Both trypsin-like and peptidyl-glutamyl peptide hydrolase activities were found sensitive to oxidation. Treatment of the proteasome with 4-hydroxy-2-nonenal, a major lipid peroxidation product, was also found to inactivate the trypsin-like activity. However, the trypsin-like activity was protected from inactivation by metal catalyzed oxidation in proteasome preparations contaminated with HSP 90, a protein that often copurifies with the proteasome. Upon addition of HSP 90 to pure 20S active proteasome, the trypsin-like activity was protected from inactivation by metal catalyzed oxidation and from inactivation by treatment with 4-hydroxy-2-nonenal. These results suggest a possible intervention of HSP 90 in response to oxidative stress in preventing the inactivation of the proteasome by oxidative damage. Abbreviations: AAF-amc – Ala-Ala-Phe-7-amido-4-methylcoumarin; LSTR-amc – N-t-Boc-Leu-Ser-Thr-Arg-7-amido-4-methylcoumarin; LLE-na – Leu-Leu-Glu-b-naphthylamide; HSP 90: heat shock protein 90, MCP – multicatalytic proteinase or 20S proteasome.  相似文献   

12.
It is suggested that the aging process is dependent on the action of free radicals. One of the highlights of age-related changes of cellular metabolism is the accumulation of oxidized proteins. The present investigation was undertaken to reveal the proliferation-related changes in the protein oxidation and proteasome activity during and after an acute oxidative stress. It could be demonstrated that the activity of the cytosolic proteasomal system declines during proliferative senescence of human MRC-5 fibroblasts and is not able to remove oxidized proteins in old cells efficiently. Whereas in young cells removal of oxidized proteins was accompanied by an increase in the overall protein turnover, this increase in protein turnover could not be seen in old MRC-5 fibroblasts. Therefore, our studies demonstrate that old fibroblasts are much more vulnerable to the accumulation of oxidized proteins after oxidative stress and are not able to remove these oxidized proteins as efficiently as young fibroblasts.  相似文献   

13.
Protein oxidation and degradation during postmitotic senescence   总被引:5,自引:0,他引:5  
Oxidized and cross-linked proteinacious materials (lipofuscin, age pigments, ceroid, etc.) have long been known to accumulate in aging and in age-related diseases, and some studies have suggested that age-dependent inhibition of the proteasome and/or lysosomal proteases may contribute to this phenomenon. Cell culture studies trying to model these aging effects have almost all been performed with proliferating (divisionally competent) cell lines. There is little information on nondividing (postmitotic) cells; yet age-related accumulation of oxidized and cross-linked protein aggregates is most marked in postmitotic tissues such as brain, heart, and skeletal muscles. The present investigation was undertaken to test whether oxidized and cross-linked proteins generally accumulate in nondividing, IMR-90 and MRC-5, human cell lines, and whether such accumulation is associated with diminished proteolytic capacities. Since both protein oxidation and declining proteolytic activities might play major roles in the age-associated accumulation of intracellular oxidized materials, we tested for protein carbonyl formation, proteasomal activities, and lysosomal cathepsin activities. For these studies, confluent, postmitotic IMR-90 and MRC-5 fibroblasts (at various population doubling levels) were cultured under hyperoxic conditions to facilitate age-related oxidative senescence. Our results reveal marked decreases in the activity of both the proteasomal system and the lysosomal proteases during senescence of nondividing fibroblasts, but the peptidyl-glutamyl-hydrolyzing activity of the proteasome was particularly inhibited. This decline in proteolytic capacity was accompanied by an increased accumulation of oxidized proteins.  相似文献   

14.
Bader N  Grune T 《Biological chemistry》2006,387(10-11):1351-1355
One of the hallmarks of chronic or severe oxidative stress is the accumulation of oxidized proteins, which tend to form high-molecular-weight aggregates. The major proteolytic system responsible for the removal of oxidized cytosolic and nuclear proteins is the proteasome. This complicated proteolytic system contains a core proteasomal form (20S proteasome) and several regulators. All of these components are affected by oxidative stress to various degrees. The ATP-stimulated 26S proteasome is sensitive to oxidative stress, whereas the 20S form seems to be more resistant. The nuclear proteasome selectively degrades oxidatively damaged histones in the nuclei of mammalian cells, where it is activated and regulated by automodified PARP-1 after oxidative challenge. In this brief review we highlight the proteolysis and its regulatory effects during oxidative stress.  相似文献   

15.
Generalized increases in protein oxidation and protein degradation in response to mild oxidative stress have been widely reported, but only a few individual proteins have actually been shown to undergo selective, oxidation-induced proteolysis. Our goal was to find such proteins in Clone 9 liver cells exposed to hydrogen peroxide. Using metabolic radiolabeling of intracellular proteins with [35S]cysteine/methionine, and analysis by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), we found at least three labeled proteins ("A," "B," and "C") whose levels were decreased significantly more than the generalized protein loss after mild oxidative stress. "Protein C" was excised from 2-D PAGE and subjected to N-terminal amino acid microsequencing. "Protein C" was identified as Protein Disulfide Isomerase or PDI (E.C. 5.3.4.1), and this identity was reconfirmed by Western blotting with a C-terminal anti-PDI monoclonal antibody. A combination of quantitative radiometry and Western blotting in 2-D PAGE revealed that PDI was selectively degraded and then new PDI was synthesized, following H2O2 exposure. PDI degradation was blocked by inhibitors of the proteasome, and by cell treatment with proteasome C2 subunit antisense oligonucleotides, indicating that the proteasome was largely responsible for oxidation-induced PDI degradation.  相似文献   

16.
Numerous studies have indicated that oxidative stress contributes to the development and progression of diabetes and other related complications. Since the ubiquitin-proteasome pathway is involved in degradation of oxidized proteins, it is to be expected that alterations in proteasome-dependent proteolysis accompany diabetes. This paper focuses on the role of the proteasome in alloxan-induced experimental diabetes. The changes in proteasomal activity and oxidative stress indices (protein oxidation and lipid peroxidation) were evaluated. The obtained results revealed increased protein oxidation and lipid peroxidation, as well as alterations in proteasomal activities in diabetic rats. Our data indicates a significant decrease in chymotryptic-like activity; increased tryptic-like activity; and unchanged post-glutamyl peptide hydrolytic-like activity. These findings suggest the presence of oxidative stress in diabetes that appears to result in changes to the ubiquitin-proteasome pathway.  相似文献   

17.
18.
The oxidized protein repair methionine sulfoxide reductase (Msr) system has been implicated in aging, in longevity, and in the protection against oxidative stress. This system is made of two different enzymes (MsrA and MsrB) that catalyze the reduction of the two diastereoisomers S- and R-methionine sulfoxide back to methionine within proteins, respectively. Due to its role in cellular protection against oxidative stress that is believed to originate from its reactive oxygen species scavenging ability in combination with exposed methionine at the surface of proteins, the susceptibility of MsrA to hydrogen-peroxide-mediated oxidative inactivation has been analyzed. This study is particularly relevant to the oxidized protein repair function of MsrA in both fighting against oxidized protein formation and being exposed to oxidative stress situations. The enzymatic properties of MsrA indeed rely on the activation of the catalytic cysteine to the thiolate anion form that is potentially susceptible to oxidation by hydrogen peroxide. The residual activity and the redox status of the catalytic cysteine were monitored before and after treatment. These experiments showed that the enzyme is only inactivated by high doses of hydrogen peroxide. Although no significant structural modification was detected by near- and far-UV circular dichroism, the conformational stability of oxidized MsrA was decreased as compared to that of native MsrA, making it more prone to degradation by the 20S proteasome. Decreased conformational stability of oxidized MsrA may therefore be considered as a key factor for determining its increased susceptibility to degradation by the proteasome, hence avoiding its intracellular accumulation upon oxidative stress.  相似文献   

19.
Copper toxicity is associated with formation of reactive oxygen species, which are capable to oxidize proteins. The selective removal of the latter by the 20S proteasome is considered an essential part of the cell antioxidant defense system. The aim of the present study was to investigate whether peptidase activities of rat liver proteasomes were affected by chronic (40 mg CuSO(4)/rat/daily with the drinking water for 2 weeks) and acute (20 mg/kg CuSO(4), s.c.) copper treatment. To evaluate the role of proteasome, its inhibitor MG132 was also used. The degree of copper-induced oxidative stress (OS), established by measuring lipid peroxidation, protein oxidation, and cellular glutathione level, as well as activities of antioxidant enzymes--catalase, superoxide dismutase, and gultathionine peroxidase, depended on the mode of copper administration. Chronic copper administration (mild oxidative stress) did not affect proteasome activities, whereas acute copper treatment (severe oxidative stress) caused a decline in chymotryptic- and tryptic-like activities. The treatment of copper-loaded animals with MG132 did not change copper-induced alterations in the tested indices, except an additional increase in protein oxidation and inhibition of glutathionine peroxidase activity. The results suggested that the in vivo copper-induced oxidative stress was associated with changes in the catalytic activity of proteasome.  相似文献   

20.
Oxidatively modified proteins that accumulate in aging and many diseases can form large aggregates because of covalent cross-linking or increased surface hydrophobicity. Unless repaired or removed from cells, these oxidized proteins are often toxic, and threaten cell viability. Most oxidatively damaged proteins appear to undergo selective proteolysis, primarily by the proteasome. Previous work from our laboratory has shown that purified 20 S proteasome degrades oxidized proteins without ATP or ubiquitin in vitro, but there have been no studies to test this mechanism in vivo. The aim of this study was to determine whether ubiquitin conjugation is necessary for the degradation of oxidized proteins in intact cells. We now show that cells with compromised ubiquitin-conjugating activity still preferentially degrade oxidized intracellular proteins, at near normal rates, and this degradation is still inhibited by proteasome inhibitors. We also show that progressive oxidation of proteins such as lysozyme and ferritin does not increase their ubiquitinylation, yet the oxidized forms of both proteins are preferentially degraded by proteasome. Furthermore, rates of oxidized protein degradation by cell lysates are not significantly altered by addition of ATP, excluding the possibility of an energy requirement for this pathway. Contrary to earlier popular belief that most proteasomal degradation is conducted by the 26 S proteasome with ubiquitinylated substrates, our work suggests that oxidized proteins are degraded without ubiquitin conjugation (or ATP hydrolysis) possibly by the 20 S proteasome, or the immunoproteasome, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号