首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat liver plasma membranes, enriched in blood-sinusoidal or bile-canalicular regions by differential and sucrose-gradient centrifugation, were further purified by partitioning in an aqueous polymer two-phase system. This method separates membranes according to differences in surface properties rather than size and density. A several-fold increase in the ratio of leucine aminopeptidase (a bile-canalicular marker) and 5'-nucleotidase to asialo-orosomucoid binding (a blood-sinusoidal marker) was obtained in one fraction, whereas another fraction gave a 2-3-fold increase in ratio of blood-sinusoidal to bile-canalicular markers. Furthermore, the markers for both regions of the plasma membrane, as well as markers for Golgi membranes and lysosomes, showed a heterogeneous behaviour on counter-current distribution.  相似文献   

2.
The plasma membrane of adult rat hepatocyte consists of three domains, which have been identified by the monoclonal antibodies A39 and A59 as markers of the sinusoidal domain, B1 of the lateral, and B10 of the canalicular domains (Eur J Cell Biol 39:122, 1985). These monoclonal antibodies were used to study, by indirect immunocytochemistry, formation of the hepatocyte plasma membrane domains during development, from day 15 of gestation to day 35 post partum. The antigens defined by A39, B1, and B10 were detected, from day 15, over the major part of the hepatocyte plasma membrane except for the membranes of newly formed bile canaliculi, which were not labeled by B1 and only poorly labeled, if at all, by A39 and B10. As soon as fetuses were 16 days old, B1 labeled predominantly the lateral domain, as in the adult. Labeling with B10 progressively intensified on the membranes of bile canaliculi, but localization was not exclusively canalicular until day 21 post partum. A39 intensely labeled the canalicular membranes at 19-21 days of gestation, while at 35 days post partum it exhibited the predominantly sinusoidal labeling observed in adult hepatocytes. The antigen defined by A59 was not detected before birth and was found exclusively on the sinusoidal domain, as in the adult. These results show that the patterns of antigen distribution on different plasma membrane domains establish themselves at different rates. The marked differences observed between fetal or neonatal and adult hepatocytes might be responsible for immaturity of liver functions in the neonate.  相似文献   

3.
Sulfatides (galactosylceramidesulfates) are negatively charged glycosphingolipids that are important constituents of brain myelin membranes. These membranes are also highly enriched in galactosylceramide and cholesterol. It has been implicated that sulfatides, together with other sphingolipids, take part in lateral domain formation in biological membranes. This study was conducted to characterize the lateral phase behavior of N-palmitoyl-sulfatide in mixed bilayer membranes. Going from simple lipid mixtures with sulfatide as the only sphingolipid in a fluid matrix of POPC, to more complex membranes including other sphingolipids, we have examined 1) ordered domain formation with sulfatide, 2) sterol enrichment in such domains and 3) stabilization of the domains against temperature by the addition of calcium. Using two distinct phase selective fluorescent probes, trans-parinaric acid and cholestatrienol, together with a quencher in the fluid phase, we were able to distinguish between ordered domains in general and ordered domains enriched in sterol. We found that N-palmitoyl-sulfatide formed ordered domains when present as the only sphingolipid in a fluid phospholipid bilayer, but these domains did not contain sterol and their stability was unaffected by calcium. However, at low, physiologically relevant concentrations, sulfatide partitioned favorably into domains enriched in other sphingolipids and cholesterol. These domains were stabilized against temperature in the presence of divalent cations. We conclude that sulfatides are likely to affect the lateral organization of biomembranes.  相似文献   

4.
A number of processes in living cells are accompanied by significant changes of the geometric curvature of lipid membranes. In turn, heterogeneity of the lateral curvature can lead to spatial redistribution of membrane components, most important of which are transmembrane proteins and liquid-ordered lipid-protein domains. These components have a so-called hydrophobic mismatch: the length of the transmembrane domain of the protein, or the thickness of the bilayer of the domain differ from the thickness of the surrounding membrane. In this work we consider redistribution of membrane components with hydrophobic mismatch in membranes with non-uniform geometric curvature. Dependence of the components’ energy on the curvature is calculated in terms of theory of elasticity of liquid crystals adapted to lipid membranes. According to the calculations, transmembrane proteins prefer regions of the membrane with zero curvature. Liquid-ordered domains having a size of a few nm distribute mainly into regions of the membrane with small negative curvature appearing in the cell plasma membrane in the process of endocytosis. The distribution of domains of a large radius is determined by a decrease of their perimeter upon bending; these domains distribute into membrane regions with relatively large curvature.  相似文献   

5.
Lateral heterogeneity in terms of co-existing domains with a distinct molecular organization is an area of increasing interest in membrane biology. The structural and dynamic aspects of the in-plane domain organization of lipids are becoming well documented, especially for model membrane systems. Potato ( Solanum tuberosum L. cv. Desirée) callus cells and roots of plantlets from stem node culture were doped with a spin-labeled analog of the methyl ester of palmitic acid bearing the paramagnetic nitroxide group at position C—5 of the acyl chain, which serves as a monitor of membrane fluidity of the region close to the polar phospholipid head groups of the bilayer. Model reconstruction of the line-shapes of the experimental spectra revealed the co-existence of two types of membrane domains with different ordering and dynamics of lipids in the membranes of both callus and root cells. With changes in temperature, relatively small differences were detected in either type of domain in the lipid ordering of the bilayer as characterized by order parameter S . However, the relative population of domains in the bilayer exhibited stronger temperature dependence. Typically, the relative proportion of disordered domains with less molecular order (smaller S ) was larger in the membranes of callus cells compared to those of root cells, indicating higher fluidity throughout the measured temperature range (5–35°C). The Arrhenius activation energies for rearrangement of lipid molecules within the bilayer were found to be higher for root tissue membranes, indicating the ability of root cells to oppose actively any drastic changes of membrane structuring under temperature stress. The distinctions in organization of lateral domains between the callus and root cell membranes may be correlated with differences in growth rate and metabolic activity between these two types of tissue.  相似文献   

6.
Sulfatides (galactosylceramidesulfates) are negatively charged glycosphingolipids that are important constituents of brain myelin membranes. These membranes are also highly enriched in galactosylceramide and cholesterol. It has been implicated that sulfatides, together with other sphingolipids, take part in lateral domain formation in biological membranes. This study was conducted to characterize the lateral phase behavior of N-palmitoyl-sulfatide in mixed bilayer membranes. Going from simple lipid mixtures with sulfatide as the only sphingolipid in a fluid matrix of POPC, to more complex membranes including other sphingolipids, we have examined 1) ordered domain formation with sulfatide, 2) sterol enrichment in such domains and 3) stabilization of the domains against temperature by the addition of calcium. Using two distinct phase selective fluorescent probes, trans-parinaric acid and cholestatrienol, together with a quencher in the fluid phase, we were able to distinguish between ordered domains in general and ordered domains enriched in sterol. We found that N-palmitoyl-sulfatide formed ordered domains when present as the only sphingolipid in a fluid phospholipid bilayer, but these domains did not contain sterol and their stability was unaffected by calcium. However, at low, physiologically relevant concentrations, sulfatide partitioned favorably into domains enriched in other sphingolipids and cholesterol. These domains were stabilized against temperature in the presence of divalent cations. We conclude that sulfatides are likely to affect the lateral organization of biomembranes.  相似文献   

7.
Eukaryotic plasma membranes are highly compartmentalized structures. So far, only a few individual proteins that function in a wide range of cellular processes have been shown to segregate into microdomains. However, the biological roles of most microdomain-associated proteins are unknown. Here, we investigated the heterogeneity of distinct microdomains and the complexity of their coexistence. This diversity was determined in living cells of intact multicellular tissues using 20 different marker proteins from Arabidopsis thaliana, mostly belonging to the Remorin protein family. These proteins associate with microdomains at the cytosolic leaflet of the plasma membrane. We characterized these membrane domains and determined their lateral dynamics by extensive quantitative image analysis. Systematic colocalization experiments with an extended subset of marker proteins tested in 45 different combinations revealed the coexistence of highly distinct membrane domains on individual cell surfaces. These data provide valuable tools to study the lateral segregation of membrane proteins and their biological functions in living plant cells. They also demonstrate that widely used biochemical approaches such as detergent-resistant membranes cannot resolve this biological complexity of membrane compartmentalization in vivo.  相似文献   

8.
Studies of multicomponent membranes suggest lateral inhomogeneity in the form of membrane domains, but the size of small (nanoscale) domains in situ cannot be determined with current techniques. In this article, we present a model that enables extraction of membrane domain size from time-resolved fluorescence resonance energy transfer (FRET) data. We expand upon a classic approach to the infinite phase separation limit and formulate a model that accounts for the presence of disklike domains of finite dimensions within a two-dimensional infinite planar bilayer. The model was tested against off-lattice Monte Carlo calculations of a model membrane in the liquid-disordered (l(d)) and liquid-ordered (l(o)) coexistence regime. Simulated domain size was varied from 5 to 50 nm, and two fluorophores, preferentially partitioning into opposite phases, were randomly mixed to obtain the simulated time-resolved FRET data. The Monte Carlo data show clear differences in the efficiency of energy transfer as a function of domain size. The model fit of the data yielded good agreement for the domain size, especially in cases where the domain diameter is <20 nm. Thus, data analysis using the proposed model enables measurement of nanoscale membrane domains using time-resolved FRET.  相似文献   

9.
Controversy has recently developed over the surface distribution of Na+,K+-ATPase in hepatic parenchymal cells. We have reexamined this issue using several independent techniques. A monoclonal antibody specific for the endodomain of alpha-subunit was used to examine Na+,K+-ATPase distribution at the light and electron microscope levels. When cryostat sections of rat liver were incubated with the monoclonal antibody, followed by either rhodamine or horseradish peroxidase-conjugated goat anti-mouse secondary, fluorescent staining or horseradish peroxidase reaction product was observed at the basolateral surfaces of hepatocytes from the space of Disse to the tight junctions bordering bile canaliculi. No labeling of the canalicular plasma membrane was detected. In contrast, when hepatocytes were dissociated by collagenase digestion, Na+,K+-ATPase alpha-subunit was localized to the entire plasma membrane. Na+,K+-ATPase was quantitated in isolated rat liver plasma membrane fractions by Western blots using a polyclonal antibody against Na+,K+-ATPase alpha-subunit. Plasma membranes from the basolateral domain of hepatocytes possessed essentially all of the cell's estimated Na+,K+-ATPase catalytic activity and contained a 96-kD alpha-subunit band. Canalicular plasma membrane fractions, defined by their enrichment in alkaline phosphatase, 5' nucleotidase, gamma-glutamyl transferase, and leucine aminopeptidase had no detectable Na+,K+-ATPase activity and no alpha-subunit band could be detected in Western blots of these fractions. We conclude that Na+,K+-ATPase is limited to the sinusoidal and lateral domains of hepatocyte plasma membrane in intact liver. This basolateral distribution is consistent with its topology in other ion-transporting epithelia.  相似文献   

10.
High voltage free flow electrophoresis has been applied to the separation of human platelet membranes. After short treatment with neuraminidase at the whole cell level, three membrane vesicle subpopulations have been isolated. Using a surface label (125I-labeled Lens culinaris lectin), the marker enzyme NADH-cytochrome c reductase, and lipid analysis, two of the fractions have been identified as of surface origin and the other consists of intracellular membrane elements. The distribution of adenylate cyclase, leucyl aminopeptidase, 5'-nucleotidase and Ca2+-ATPase has also been investigated, and their usefulness as markers for the different membrane fractions has been evaluated. All three fractions are vesicular but differ in size and character. Their phospholipid and cholesterol contents have been determined, and the cholesterol/phospholipid ratios of the two surface fractions are over twice that of the intracellular membrane, which also has a significantly lower microviscosity as determined by fluorescence polarization using diphenyl hexatriene. The polypeptide profiles from sodium dodecyl sulfate-polyacrylamide gel electrophoresis are particularly distinctive, with actin present in the two surface membrane fractions and absent from the intracellular membranes. Myosin, confirmed by its ATPase characteristics, is almost exclusively localized in one of the surface membrane fractions, and actin-binding protein is a prominent feature of the other.  相似文献   

11.
N Ali  R Aligue    W H Evans 《The Biochemical journal》1990,271(1):185-192
1. A liver canalicular plasma-membrane fraction enriched 115-155-fold in five marker enzymes relative to the tissue homogenate was obtained by sonication of liver plasma membranes followed by fractionation in iso-osmotic Nycodenz gradients. 2. Two lateral-plasma membrane fractions were also collected by this procedure; the lighter-density fraction was still associated with canalicular membranes, as assessed by enzymic and polypeptide analysis. 3. The polypeptide composition of the domain-defined plasma-membrane fractions was evaluated. It was demonstrated by immunoblotting that the 41 kDa alpha-subunit of the inhibitory G-protein, associated in high relative amounts with canalicular plasma-membrane fractions, was partially lost in the last stage of purification; however, this subunit was retained by lateral plasma membranes. 4. Antibodies to the proteins of bile-canalicular vesicles were shown to localize to the hepatocyte surface in thin liver sections examined by immunofluorescent and immuno-gold electron microscopy. Two subsets of antigens were identified, one present on both sinusoidal and canalicular plasma-membrane domains and another, by using antisera pre-absorbed with sinusoidal plasma membranes, that was confined to the bile-canalicular domain.  相似文献   

12.
The presence of different isoenzymes of phosphatidylinositol 4-kinase in isolated rat liver plasma membranes and their further distribution in plasma membrane domains was examined. Both wortmannin-sensitive and -insensitive PtdIns 4-kinase activities were detected in highly purified plasma membranes obtained by aqueous two-phase affinity partitioning. The wortmannin-sensitive enzyme was identified as the 230 kDa isoform by Western blotting, whereas the 92 kDa isoform was not detected in plasma membranes. The apparent molecular weights of these isoforms were 205 and 105 kDa on SDS polyacrylamide gel electrophoresis, but approximately 500 and 230 kDa respectively on gel filtration, suggesting that both enzymes either are dimers or composed of heterologous subunits. Approximately 25% of the total 230 kDa isoenzyme present in liver, and only ca 5% of the wortmannin-insensitive one, was associated with the plasma membrane fraction. Plasma membrane domains were isolated by a combination of sucrose and Nycodenz gradient centrifugations. The 230 kDa isoform was identified in the blood sinusoidal domain, but not in the bile canalicular one, and was also found in lateral plasma membranes. The wortmannin-insensitive isoenzyme was present only in this latter material. The functional implications of this distribution of PtdIns 4-kinase isoenzymes in plasma membrane regions are discussed.  相似文献   

13.
Biological membranes contain many specialized domains, ranging from tens of nanometers to several microns in size and characterized by different concentrations and compositions of protein. Because these domains influence membrane function, considerable attention has focused on understanding their origin. Here it is shown that number fluctuations and nonspecific interprotein interactions can lead to considerable heterogeneity in the distribution of membrane proteins, and to an associated submicron-scale domain structure. Number fluctuations were analyzed by modeling the membrane as a two-dimensional fluid containing interacting protein solutes. The characteristic size and lifetime of a domain in which one would expect to observe a fluctuation of specified magnitude was calculated; snapshots showing fluctuation-induced heterogeneity were generated by Monte Carlo simulation. Domain size was found to depend on the nature of the interprotein force (e.g., attractive or repulsive) and on the average protein concentration. Domain size was largest at low protein concentrations and in the presence of attractive interprotein forces, and was smallest at high protein concentrations and in the presence of repulsive interprotein forces. Domain lifetime was found to depend on domain size and on the diffusion coefficient of the proteins. In a 'typical' membrane containing 5-nm proteins with diffusion coefficient 10(-10) cm(2)/s at a density of 1000 proteins/microm(2), a 30% fluctuation will yield domains characterized by a 2-fold difference in local concentration; these domains persist over a distance of about 100 nm and have a lifetime of about 0.25 s. These results can be used to analyze the domain structure commonly observed in electron micrographs, and have implications for both number fluctuation and Monte Carlo studies of the distribution and dynamics of membrane proteins.  相似文献   

14.
Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo.  相似文献   

15.
Rabbit monospecific antibody against canine kidney leucine aminopeptidase (LAP) (EC.3.4.11.2) specifically immunoprecipitated kidney and also liver LAP activity from corresponding plasma membrane preparations previously solubilized with Triton X-100. Immunological specificity of the antibody was also shown by immunoblotting of LAP from canine and rat liver plasma membranes and by electrophoretic analyses of the precursor forms in MDCK cells. Canine liver was pre-fixed by perfusion with 0.6% glutaraldehyde and the dissociated liver cells were prepared without losing their polarized structure (22). They were incubated with ferritin antibody conjugates against canine kidney LAP at the saturation level, and the distribution of ferritin particles on the three surface domains of the hepatocytes was investigated quantitatively by counting ferritin particles on the cross-sectional profiles of these surfaces. Our analysis clearly indicated that LAP exists only on the bile canalicular surface, and no significant number of ferritin particles was detected either on the sinusoidal front or on the lateral surface. Ferritin particles were distributed homogeneously both on the microvillar and intermicrovillar regions. All the bile canalicular surface domains of all the hepatocytes were heavily labeled with ferritin particles, without exception.  相似文献   

16.
Standard methods of characterization of electron paramagnetic resonance (EPR) spectra of spin-labeled biomembranes limit the resolution of lateral heterogeneity to only two or three domain types. This disables examination of the structure—function relationship in complex membranes, which might be composed of a larger number of different domain types. To enable exploration of this kind, a new approach based on analysis of EPR spectra with multi-run, hybrid evolutionary optimization is proposed here. From the multiple runs a quasi-continuous distribution of membrane spectral parameters (order parameter, proportion of spectral component, polarity correction factor, rotational correlation time and broadening constant) can be constructed and presented by a new presentation technique CODE (colored distribution of EPR spectral parameters). Through this the concept of a soft picture of membrane heterogeneity is introduced, in contrast to the standard discrete domain picture. The soft characterization method, established on synthetic spectra, was used to examine the lateral heterogeneity of liposome membranes as well as of membranes of neutrophils from healthy and asthmatic horses. In liposome membranes the determined number of domain types was the same as already established by standard procedures of EPR spectra line-shape interpretation. In membranes of neutrophils a quasi-continuous distribution of membrane domain properties was detected by the new method.  相似文献   

17.
Membrane cholesterol is distributed asymmetrically both within the cell or within cellular membranes. Elaboration of intracellular cholesterol trafficking, targeting and intramembrane distribution has been spurred by both molecular and structural approaches. The expression of recombinant sterol carrier proteins in L-cell fibroblasts has been especially useful in demonstrating for the first time that such proteins actually elicit intracellular and intra-plasma membrane redistribution of sterol. Additional advances in the use of native fluorescent sterols allowed resolution of transbilayer and lateral cholesterol domains in plasma membranes from cultured fibroblasts, brain synaptosomes and erythrocytes. In all three cell surface membranes, cholesterol is enriched in the inner, cytofacial leaflet. Up to three different cholesterol domains have been identified in the lateral plane of the plasma membrane: a fast exchanging domain comprising less than 10% of cholesterol, a slowly exchanging domain comprising about 30% of cholesterol, and a very slowly or non-exchangeable sterol domain comprising 50–60.

Of plasma membrane cholesterol. Factors modulating plasma membrane cholesterol domains include polyunsaturated fatty acids, expression of intracellular sterol carrier proteins, drugs such as ethanol, and several membrane pathologies (systemic lupus erythematosus, sickle cell anaemia and aging). Disturbances in plasma membrane cholesterol domains after transbilayer fluidity gradients in plasma membranes. Such changes are associated with decreased Ca2+ -ATPase and Na +, K+ -ATPase activity. Thus, the size, dynamics and distribution of cholesterol domains within membranes not only regulate cholesterol efflux/influx but also modulate plasma membrane protein functions and receptor-effector coupled systems.  相似文献   

18.
Imaging domains in model membranes with atomic force microscopy   总被引:5,自引:0,他引:5  
Rinia HA  de Kruijff B 《FEBS letters》2001,504(3):194-199
Lateral segregation in biomembranes can lead to the formation of biologically functional domains. This paper reviews atomic force microscopy studies on domain formation in model membranes, with special emphasis on transbilayer asymmetry, and on lateral domains induced by lipid-lipid interactions or by peptide-lipid interactions.  相似文献   

19.
The surface distribution of the plasma membrane Ca2+ (Mg2+)-ATPase (ecto-ATPase) in rat hepatocytes was determined by several methods. 1) Two polyclonal antibodies specific for the ecto-ATPase were used to examine the distribution of the enzyme in frozen sections of rat liver by immunofluorescence. Fluorescent staining was observed at the bile canalicular region of hepatocytes. 2) Plasma membranes were isolated from the canalicular and sinusoidal regions of rat liver. The specific activity of ecto-ATPase in the canalicular membranes was 22 times higher than that of sinusoidal membranes. The enrichment of the ecto-ATPase activity in the canalicular membrane is closely parallel to that of two other canalicular membrane markers, gamma-glutamyltranspeptidase and leucine aminopeptidase. 3) By immunoblots with polyclonal antibodies against the ecto-ATPase and the Na+,K+-ATPase, it was found that the ecto-ATPase protein was only detected in canalicular membranes and not in sinusoidal membranes, while the Na+,K+-ATPase protein was only detected in sinusoidal membranes and not in canalicular membranes. These results indicate that the ecto-ATPase is enriched in the canalicular membranes of rat hepatocytes.  相似文献   

20.
Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号