首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel nucleic acid model, i.e. peptide ribonucleic acid (PRNA), tethering 5'-amino-5'-deoxypyrimidine ribonucleoside as a recognition site for nucleic acids, has been designed and synthesized. We have demonstrated that the recognition behavior of PRNA with complementary oligopurinenucleotides can be controlled externally through the orientational switching of the pyrimidine nucleobase of PRNA induced by added borates. We extend this methodology of controlling the nucleobase orientation and recognition behavior of novel mono and oligomeric PRNAs containing 5'-amino-5'-deoxypyrimidine and/or purinenucleosides. In case of the PRNA oligomer containing pyrimidine-purine mixed sequence, efficient orientational switching of nucleobases induced by added borates was also observed.  相似文献   

2.
MANY studies have been made of the specificity of interaction between nucleic acids and polypeptides, proteins and enzymes1,2. Electrostatic forces between basic amino-acids and phosphate groups contribute to the stability of the complexes, but selective recognition requires more specific interactions which are not yet understood. The recognition of a specific region of a nucleic acid could be explained if this region has some particular conformation or if there are specific interactions between a few amino-acid residues and the bases of this region. We wish to report results which show that the aromatic amino-acids tryptophan and tyrosine can interact with nucleic acid bases in double stranded nucleic acids. They suggest that aromatic amino-acid residues of enzymes and proteins could participate in the binding to nucleic acids by intercalating between the bases and thus constraining the nucleic acid molecule to adopt a definite position with respect to the protein molecule.  相似文献   

3.
A novel nucleic acid model that possessed 5'-amino-5'-deoxyuridine at alpha- and gamma-position of L-glutamic acid through amide linkage using 5'-amino group was synthesized and the conformation and the hybridization properties were studied. The complex of alpha-PRNA with complementary DNA/RNA was more stable than the corresponding natural duplex in the absence of borate. Its recognition ability was however lost when borax was added to the solution.  相似文献   

4.
Hicks JM  Hsu VL 《Proteins》2004,55(2):330-338
The poly-proline type II extended left-handed helical structure is well represented in proteins. In an effort to determine the helix's role in nucleic acid recognition and binding, a survey of 258 nucleic acid-binding protein structures from the Protein Data Bank was conducted. Results indicate that left-handed helices are commonly found at the nucleic acid interfacial regions. Three examples are used to illustrate the utility of this structural element as a recognition motif. The third K homology domain of NOVA-2, the Epstein-Barr nuclear antigen-1, and the Drosophila paired protein homeodomain all contain left-handed helices involved in nucleic acid interactions. In each structure, these helices were previously unidentified as left-handed helices by secondary structure algorithms but, rather, were identified as either having small amounts of hydrogen bond patterns to the rest of the protein or as being "unstructured." Proposed mechanisms for nucleic acid interactions by the extended left-handed helix include both nonspecific and specific recognition. The observed interactions indicate that this secondary structure utilizes an increase in protein backbone exposure for nucleic acid recognition. Both main-chain and side-chain atoms are involved in specific and nonspecific hydrogen bonding to nucleobases or sugar-phosphates, respectively. Our results emphasize the need to classify the left-handed helix as a viable nucleic acid recognition and binding motif, similar to previously identified motifs such as the helix-turn-helix, zinc fingers, leucine zippers, and others.  相似文献   

5.
6.
DNA生物传感器在环境污染监测中的应用   总被引:10,自引:0,他引:10  
基于生物催化和免疫原理的生物传感器在环境领域中获得了广泛应用.近年来,随着分子生物学和生物技术的发展,人们开发了以核酸探针为识别元件,基于核酸相互作用原理的DNA生物传感器.该传感器可用于受感染微生物的核酸序列分析、优先控制污染物的检测以及污染物与DNA之间相互作用的研究,在环境污染监测中具有潜在的巨大应用前景.简要介绍了核酸杂交生物传感器的基本原理及其在环境微生物和优先控制污染物(priority pollutant)检测中的应用研究进展.  相似文献   

7.
Endosomal and cytosolic receptors engage recognition of mycobacterial-derived nucleic acids (MyNAs). In contrast, virulent mycobacteria may utilize nucleic acid recognition pathways to escape the host immune system. This short review will summarize the mechanisms by which MyNAs are sensed and how they influence host protective responses.  相似文献   

8.
Xi H  Davis E  Ranjan N  Xue L  Hyde-Volpe D  Arya DP 《Biochemistry》2011,50(42):9088-9113
Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized as playing an equally important role in DNA recognition. Competition dialysis, UV, flourescent intercalator displacement (FID), computational docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, the results suggest the following. (1) Neomycin binds three RNA structures [16S A site rRNA, poly(rA)·poly(rA), and poly(rA)·poly(rU)] with high affinities (K(a) ~ 10(7) M(-1)). (2) The binding of neomycin to A-form GC-rich oligomer d(A(2)G(15)C(15)T(2))(2) has an affinity comparable to those of RNA structures. (3) The binding of neomycin to DNA·RNA hybrids shows a 3-fold variance that can be attributed to their structural differences [for poly(dA)·poly(rU), K(a) = 9.4 × 10(6) M(-1), and for poly(rA)·poly(dT), K(a) = 3.1 × 10(6) M(-1)]. (4) The interaction of neomycin with DNA triplex poly(dA)·2poly(dT) yields a binding affinity (K(a)) of 2.4 × 10(5) M(-1). (5) Poly(dA-dT)(2) shows the lowest association constant for all nucleic acids studied (K(a) < 10(5)). (6) Neomycin binds to G-quadruplexes with K(a) values of ~10(4)-10(5) M(-1). (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin's affinity for various nucleic acid structures can be ranked as follows: RNAs and GC-rich d(A(2)G(15)C(15)T(2))(2) structures > poly(dA)·poly(rU) > poly(rA)·poly(dT) > T·A-T triplex, G-quadruplex, B-form AT-rich, or GC-rich DNA sequences. The results illustrate the first example of a small molecule-based "shape readout" of different nucleic acid conformations.  相似文献   

9.
Basic dyes cause an increase in hydrogen-ion concentration when added to a solution containing nucleic acid, the both solutions were originally at the same pH. Acid dyes have no effect on nucleic acid solutions. Basic dyes show the same behavior when treated with solutions of typical proteins. Acid dyes when treated with proteins show an analogous effect but in the opposite direction. The only adequate explanation found is that there is a definite reaction between the dye ions and the oppositely charged ions of protein or nucleic acid. The bearing of these results on the theory of staining is discussed. The growing recognition of the dominance of chemical forces in colloidal adsorption behavior is indicated, and certain of the experimental bases for this recognition are pointed out and discussed.  相似文献   

10.
Basic dyes cause an increase in hydrogen-ion concentration when added to a solution containing nucleic acid, the both solutions were originally at the same pH. Acid dyes have no effect on nucleic acid solutions. Basic dyes show the same behavior when treated with solutions of typical proteins. Acid dyes when treated with proteins show an analogous effect but in the opposite direction. The only adequate explanation found is that there is a definite reaction between the dye ions and the oppositely charged ions of protein or nucleic acid. The bearing of these results on the theory of staining is discussed. The growing recognition of the dominance of chemical forces in colloidal adsorption behavior is indicated, and certain of the experimental bases for this recognition are pointed out and discussed.  相似文献   

11.
《FEBS letters》1986,205(2):299-302
We have searched the GenBank nucleic acid sequence database for potential short restriction fragments. All possible oligonucleotides up to length five are found at least once flanked by known restriction recognition patterns. Thus, searches in the database for a specific sequence corresponding to a desired oligonucleotide would often point to one or more sources of short, retrievable fragments containing that sequence. These results underscore the potential of nucleic acid sequence databases in planning experiments.  相似文献   

12.
Complex formation between the side chain of arginine and nucleic acid bases has been investigated by proton magnetic resonance in dimethylsulfoxide. Simultaneous formation of two hydrogen bonds leads to a selectivity of arginine interaction towards cytosine and guanine. A comparison is made of the interaction of arginine side chain with nucleic acid bases, phosphate and carboxylate anions. It is shown that interaction between carboxylate and arginine is stronger than between phosphate and arginine. These results are discussed with respect to the selective recognition of nucleic acid bases by arginine side chains and by the arginyl-glutamyl ion pair which could form in proteins interacting with nucleic acids.  相似文献   

13.
Direct and straightforward methods to follow nucleic acid cleavage are needed. A spectrophotometric quadruplex formation assay (QFA) was developed, which allows real-time monitoring of site-specific cleavage of nucleic acids. QFA was applied to study both protein and nucleic acid restriction enzymes, and was demonstrated to accurately determine Michaelis–Menten parameters for the cleavage reaction catalyzed by EcoRI. QFA can be used to study the mechanisms of protein–nucleic acid recognition. QFA is also a useful tool for dissecting individual nicking rates of a double-stranded cleavage.  相似文献   

14.
Elayadi AN  Braasch DA  Corey DR 《Biochemistry》2002,41(31):9973-9981
Oligonucleotides that contain locked nucleic acid (LNA) bases have remarkably high affinity for complementary RNA and DNA sequences. This increased affinity may facilitate the recognition of nucleic acid targets inside cells and thus improve our ability to use synthetic oligonucleotides for controlling cellular processes. Here we test the hypothesis that LNAs offer advantages for inhibiting human telomerase, a ribonucleoprotein that is critical for tumor cell proliferation. We observe that LNAs complementary to the telomerase RNA template are potent and selective inhibitors of human telomerase. LNAs can be introduced into cultured tumor cells using cationic lipid, with diffuse uptake throughout the cell. Transfected LNAs effectively inhibited intracellular telomerase activity up to 40 h post-transfection. Shorter LNAs of eight bases in length are also effective inhibitors of human telomerase. The melting temperatures of these LNAs for complementary sequences are superior to those of analogous peptide nucleic acid oligomers, emphasizing the value of LNA bases for high-affinity recognition. These results demonstrate that high-affinity binding by LNAs can be exploited for superior recognition of an intracellular target.  相似文献   

15.
In order to investigate the mode of interaction between the N-quarternized cytosine base and the aromatic amino acid, the crystal structure of the 3-methyl-cytidine-5'-monophosphate:tryptamine complex was analyzed by X-ray diffraction. The complex crystals were stabilized by extensive hydrogen bond formations in which eight independent water molecules per complex pair participated. A prominent stacking interaction, characterized by a parallel alignment of both rings with a separation distance of ca. 3.4 A, was observed between the cytosine base and the indole ring. Combining the present results with X-ray crystallographic data on the adenine--and guanine--aromatic amino acid interactions, we summarize the structural characteristics observed in the stacking interaction of the N-quarternized nucleic acid base with the aromatic amino acid and discuss their biological implications, especially in connection with the significance of N-protonation of nucleic acid base for selective recognition by protein.  相似文献   

16.
Volumetric studies can yield useful new information on a myriad of intra- and intermolecular interactions that stabilize nucleic acid structures. In particular, appropriately designed volumetric measurements can characterize the conformation-dependent hydration properties of nucleic acids as a function of solution conditions, including temperature, pressure, ionic strength, pH, and cosolvent concentration. We have started to accumulate a substantial database on volumetric properties of DNA and RNA, as well as on related low molecular weight model compounds. This database already has provided unique insights into the molecular origins of various nucleic acid recognition processes, including helix-to-coil and helix-to-helix conformational transitions, as well as drug-DNA interactions. In this article, we review recent progress in volumetric investigations of nucleic acids, emphasizing how these data can be used to gain insight into intra-and intermolecular interactions, including hydration properties. Throughout this review, we underscore the importance of volume and compressibility data for characterizing the hydration properties of nucleic acids and their constituents. We also describe how such volumetric data can be interpreted at the molecular level to yield a better understanding of the role that hydration can play in modulating the stability and recognition of nucleic acids.  相似文献   

17.
Viral RNA is a common activator of antiviral responses. In this review, we dissect the mechanism of viral RNA recognition by the small interfering RNA pathway in Drosophila melanogaster. This antiviral response in fruit flies can help understand general principles of nucleic acid recognition.  相似文献   

18.
把最大信息原理应用到核酸序列的保守位点分析中。利用最大信息原理,推导出了核酸和蛋白质特异性结合时的结合能表达式,并且估计了和蛋白质发生相互作用的核酸序列上的位点范围。为了检验此理论是否较为成功地反映了核酸和蛋白质结合时的实际情况,把它应用到基因内含子剪切位点的识别中,识别结果达到了较高的敏感性和特异性,这说明利用最大信息原理推导结合能表达式及估计核酸序列上参与反应的位点范围的理论是较为成功的。此研究结果一方面有助于核酸和蛋白质相互作用的理解,另一方面,也有助于和蛋白质发生相互作用的各种核酸序列的计算机识别研究。  相似文献   

19.
20.
周桓  邵艳娜  王涓  吴清平  丁郁 《微生物学报》2021,61(12):3856-3869
由成簇、规则间隔的短回文重复序列(Clustered regularly interspaced short palindromic repeats,CRISPR)和CRISPR相关蛋白(CRISPR-associated protein,Cas)组成的CRISPR/Cas系统是广泛存在于多数细菌和古细菌中的一种适应性免疫系统。CRISPR/Cas系统可识别并结合外源入侵的核酸分子,之后Cas蛋白的切割活性被激活,能够对入侵的核酸分子进行切割使其降解。利用CRISPR/Cas系统特异的序列识别及切割活性,将其应用于核酸检测中,为提高检测灵敏度及特异性等性能指标提供了一种新思路。本文介绍了CRISPR/Cas系统的发展、作用机制等,对多样化的Cas蛋白在核酸检测中的代表性应用研究进行总结,进一步讨论了CRISPR/Cas技术应用于核酸检测中存在的优缺点,并对未来研究进行了展望,为基于CRISPR/Cas技术的核酸检测方法在病原微生物的检测中提供参考和依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号