首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical method for the determination of torsion angles from solid state 15N nuclear magnetic resonance (n.m.r.) spectroscopic data is demonstrated. Advantage is taken of the 15N-1H and 15N-13C dipolar interactions as well as the 15N chemical shift interaction in oriented samples. The membrane-bound channel conformation of gramicidin A has eluded an atomic resolution structure determination by more traditional approaches. Here, the torsion angles for the Ala3 site are determined by obtaining the n.m.r. data for both the Gly2-Ala3 and Ala3-Leu4 peptide linkages. Complete utilization of the orientational constraints derived from these orientation-dependent nuclear spin interactions in restricting the conformational space is most effectively achieved by utilizing spherical trigonometry. Two possible sets of torsion angles for the Ala3 site are obtained (phi, psi = -129 degrees, 153 degrees and -129 degrees, 122 degrees), both of which are consistent with a right-handed beta-helix. Other functional and computational evidence strongly supports the set for which the carbonyl oxygen atom of the Ala3-Leu4 linkage is rotated into the channel lumen.  相似文献   

2.
Crystals of the tripeptide, glycyl-glycyl-sarcosine (C7H13N3O4) from aqueous methanol are orthorhombic, space group Pbcn with cell parameters at 294 K of a = 8.279(1), b = 9.229(4), c = 24.447(5)A, V = 1868.0 A3, M.W. = 203.2, and Z = 8. The crystal structure was solved and refined using CAD-4 data (1171 reflections greater than or equal to 3 sigma) to a final R-value of 0.053. The first peptide linkage is trans and planar whereas the second peptide link between Gly and sarcosine is cis and appreciably non-planar (w = 7.4 degrees). The peptide backbone has an extended conformation at the N-terminal part but adopts a polyglycine-II type of conformation at the C-terminal part. The backbone torsion angles are: psi 1 = -173.9, w1 = -177.8, (phi 2, psi 2) = (-178.8, -170.8), w2 = 7.4, (phi 3, psi 3) = (-81.6, 165.6 degrees).  相似文献   

3.
The crystal structures of two analogs of Pro-Leu-Gly-NH2 (1), containing a gamma-lactam conformational constraint in place of the -Leu-Gly- sequences, are described. The highly biologically active (S,R)-diastereomer 2a is semi-extended at the C-terminus, with the N-terminal Pro residue in the unusual "C5" conformation [psi 1 = -0.8(15) degrees] stabilized by a (peptide)N-H...N(amino) intramolecular H-bond [the N(3)...N(4) separation is 2.687(11)A]. Conversely, the N,N'-isopropylidene aminal trihydrate of the (S,S)-diastereomer 2b, compound 3, adopts a beta-bend conformation at the C-terminus, as already reported for 1. However, the backbone torsion angles [phi 2 = 57.4(4), psi 2 = -129.9(3) degrees; psi 3 = -92.3(4), phi 3 = 6.4(5) degrees] lie close to the values expected for the corner residues of an ideal type-II' beta-bend. A weak intramolecular 4----1 H-bond is seen between the Gly carboxyamide anti-NH and Pro C = O groups. In the newly formed 2,2,3,4-tetraalkyl-5-oxo-imidazolidin-1-yl moiety the psi 1 torsion angle is 12.9(4) degrees and the intramolecular N(3)...N(4) separation is 2.321(4)A.  相似文献   

4.
The conformational behaviour of delta Ala has been investigated by quantum mechanical method PCILO in the model dipeptide Ac-delta Ala-NHMe and in the model tripeptides Ac-X-delta Ala-NHMe with X = Gly, Ala, Val, Leu, Abu and Phe and is found to be quite different. The computational results suggest that in the model tripeptides the most stable conformation corresponds to phi 1 = -30 degrees, psi 1 = 120 degrees and phi 2 = psi 2 = 30 degrees in which the > C = 0 of the acetyl group is involved in hydrogen bond formation with N-H of the amide group. Similar results were obtained for the conformational behaviour of D-Ala in Ac-D-Ala-NHMe and Ac-Ala-D-Ala-NHMe. The conformational behaviour of the amino acids delta Ala, D-Ala, Val and Aib in model tripeptides have been utilized in the designing of left handed helical peptides. It is shown that the peptide HCO-(Ala-D-Ala)3-NHMe can adopt both left and right handed helix whereas in the peptide Ac-(Ala-delta Ala)3-NHMe the lowest energy conformer is beta-bend ribbon structure. Left handed helical structure with phi = 30 degrees, psi = 60 degrees for D-Ala residues and phi = psi = 30 degrees for delta Ala is found to be more stable by 4 kcal mole-1 than the corresponding right handed helical structure for the peptide Ac-(D-Ala-delta Ala)3-NHMe. In both the peptides Ac-(Val-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe the most stable conformer is the left handed helix. Comparisons of results for Ac-(Ala-delta Ala)3-NHMe and Ac(Val-delta Ala)3-NHMe and Ac-(D-Ala-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe also reveal that the Val residues facilitate the population of 3(10) left handed helix over the other conformers. It is also shown that the conformational behaviour of Aib residue depends on the chirality of neighbouring amino acids, i.e. Ac-(Aib-Ala)3-NHMe adopts right handed helical structure whereas Ac-(Aib-D-Ala)3-NHMe is found to be in left handed helical structure.  相似文献   

5.
The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I'beta-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt alpha-helical conformations stabilized by 11 successive 5 --> 1 hydrogen bonds. In addition, a single 4 --> 1 hydrogen bond is also observed at the N-terminus. All five Dpg residues adopt backbone torsion angles (phi, psi) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle N-C(alpha)-C' (tau) and the observed backbone phi,psi values. For tau > 106 degrees, helices are observed, while fully extended structures are characterized by tau < 106 degrees. The mean tau values for extended and folded conformations for the Dpg residue are 103.6 degrees +/- 1.7 degrees and 109.9 degrees +/- 2.6 degrees, respectively.  相似文献   

6.
Stress and strain in staphylococcal nuclease.   总被引:5,自引:5,他引:0       下载免费PDF全文
Protein molecules generally adopt a tertiary structure in which all backbone and side chain conformations are arranged in local energy minima; however, in several well-refined protein structures examples of locally strained geometries, such as cis peptide bonds, have been observed. Staphylococcal nuclease A contains a single cis peptide bond between residues Lys 116 and Pro 117 within a type VIa beta-turn. Alternative native folded forms of nuclease A have been detected by NMR spectroscopy and attributed to a mixture of cis and trans isomers at the Lys 116-Pro 117 peptide bond. Analyses of nuclease variants K116G and K116A by NMR spectroscopy and X-ray crystallography are reported herein. The structure of K116A is indistinguishable from that of nuclease A, including a cis 116-117 peptide bond (92% populated in solution). The overall fold of K116G is also indistinguishable from nuclease A except in the region of the substitution (residues 112-117), which contains a predominantly trans Gly 116-Pro 117 peptide bond (80% populated in solution). Both Lys and Ala would be prohibited from adopting the backbone conformation of Gly 116 due to steric clashes between the beta-carbon and the surrounding residues. One explanation for these results is that the position of the ends of the residue 112-117 loop only allow trans conformations where the local backbone interactions associated with the phi and psi torsion angles are strained. When the 116-117 peptide bond is cis, less strained backbone conformations are available. Thus the relaxation of the backbone strain intrinsic to the trans conformation compensates for the energetically unfavorable cis X-Pro peptide bond. With the removal of the side chain from residue 116 (K116G), the backbone strain of the trans conformation is reduced to the point that the conformation associated with the cis peptide bond is no longer favorable.  相似文献   

7.
The synthetic peptide Gly-L-Ala-L-Phe (C14H19N3O4.2H2O; GAF) crystallizes in the monoclinic space group P2I1), with a = 5.879(1), b = 7.966(1), c = 17.754(2) A, beta = 95.14(2) degrees, Dx = 1.321 g cm-3, and Z = 2. The crystal structure was solved by direct methods using the program SHELXS-86 and refined to an R value of 0.031 for 1425 reflections (greater than 3 sigma). The tripeptide exists as a zwitterion in the crystal and assumes a near alpha-helical backbone conformation with the following torsion angles: psi 1 = -147.8 degrees; phi 2, psi 2 = -71.2 degrees, 33.4 degrees; phi 3, psi 3 = -78.3 degrees, -43.3 degrees. In this structure, one water molecule bridges the COO- and NH3+ terminii to complete a turn of an alpha-helix and another water molecule participates in head-to-tail intermolecular hydrogen bonding, so that the end result is a column of molecules that looks like an alpha-helix. Thus, the two water molecules of crystallization play a major role in stabilizing the near alpha-helical conformation of each tripeptide molecule and in elongating the helix throughout the crystal. An analysis of all protein sequences around regions containing a GAF fragment by Chou-Fasman's secondary structure prediction method showed that those regions are likely to assume an alpha-helical conformation with twice the probability they are likely to adopt a beta-sheet conformation. It is conceivable that a GAF fragment may be a good part of the nucleation site for forming alpha-helical fragments in a polypeptide, with the aqueous medium playing a crucial role in maintaining such transient species.  相似文献   

8.
The conformational preferences of azaphenylalanine-containing peptide were investigated using a model compound, Ac-azaPhe-NHMe with ab initio method at the HF/3-21G and HF/6-31G(*) levels, and the seven minimum energy conformations with trans orientation of acetyl group and the 4 minimum energy conformations with cis orientation of acetyl group were found at the HF/6-31G(*) level if their mirror images were not considered. An average backbone dihedral angle of the 11 minimum energy conformations is phi=+/-91 degrees +/-24 degrees , psi =+/-18 degrees +/-10 degrees (or +/-169 degrees +/-8 degrees ), corresponding to the i+2 position of beta-turn (delta(R)) or polyproline II (beta(P)) structure, respectively. The chi(1) angle in the aromatic side chain of azaPhe residue adopts preferentially between +/-60 degrees and +/-130 degrees, which reflect a steric hindrance between the N-terminal carbonyl group or the C-terminal amide group and the aromatic side chain with respect to the configuration of the acetyl group. These conformational preferences of Ac-azaPhe-NHMe predicted theoretically were compared with those of For-Phe-NHMe to characterize the structural role of azaPhe residue. Four tripeptides containing azaPhe residue, Boc-Xaa-azaPhe-Ala-OMe [Xaa=Gly(1), Ala(2), Phe(3), Asn(4)] were designed and synthesized to verify whether the backbone torsion angles of azaPhe reside are still the same as compared with theoretical conformations and how the preceding amino acids of azaPhe residue perturb the beta-turn skeleton in solution. The solution conformations of these tripeptide models containing azaPhe residue were determined in CDCl(3) and DMSO solvents using NMR and molecular modeling techniques. The characteristic NOE patterns, the temperature coefficients of amide protons and small solvent accessibility for the azapeptides 1-4 reveal to adopt the beta-turn structure. The structures of azapeptides containing azaPhe residue from a restrained molecular dynamics simulation indicated that average dihedral angles [(phi(1), psi(1)), (phi(2), psi(2))] of Xaa-azaPhe fragment in azapeptide, Boc-Xaa-azaPhe-Ala-OMe were [(-68 degrees, 135 degrees ), (116 degrees, -1 degrees )], and this implies that the intercalation of an azaPhe residue in tripeptide induces the betaII-turn conformation, and the volume change of a preceding amino acid of azaPhe residue in tripeptides would not perturb seriously the backbone dihedral angle of beta-turn conformation. We believe such information could be critical in designing useful molecules containing azaPhe residue for drug discovery and peptide engineering.  相似文献   

9.
The conformational behaviour of deltaZPhe has been investigated in the model dipeptide Ac-deltaZPhe-NHMe and in the model tripeptides Ac-X-deltaZPhe-NHMe with X=Gly,Ala,Val,Leu,Abu,Aib and Phe and is found to be quite different. In the model tripeptides with X=Ala,Val,Leu,Abu,Phe the most stable structure corresponds to phi1=-30 degrees, psi1=120 degrees and phi2=psi2=30 degrees. This structure is stabilized by the hydrogen bond formation between C=O of acetyl group and the NH of the amide group, resulting in the formation of a 10-membered ring but not a 3(10) helical structure. In the peptides Ac-Aib-deltaZPhe-NHMe and Ac-(Aib-deltaZPhe)3-NHMe, the helical conformers with phi = +/-30 degrees, psi = +/-60 degrees for Aib residue and phi=psi= +/-30 degrees for deltaZPhe are predicted to be most stable. The computational studies for the positional preferences of deltaZPhe residue in the peptide containing one deltaZPhe and nine Ala residues reveal the formation of a 3(10) helical structure in all the cases with terminal preferences for deltaZPhe. The conformational behaviour of Ac-(deltaZPhe)n-NHMe with n< or =4 is predicted to be very labile. With n > 4, degenerate conformational states with phi,psi values of 0 degrees +/- 90 degrees adopt helical structures which are stabilized by carbonyl-carbonyl interactions and the N-H-pi interactions between the amino group of every deltaZPhe residue with one C-C edge of its own phenyl ring. The results are in agreement with the experimental finding that screw sense of helix for peptides containing deltaZPhe residues is ambiguous in solution. The helical structures stabilized by hydrogen bond formation are found to be at least 3kCalmol(-1) less stable. Conformational studies have also been carried out for the peptide Ac-(deltaEPhe)6-NHMe and the peptide Ac-deltaAla-(deltaZPhe)6-NHMe containing deltaAla residue at the N-terminal. The N-H-pi interactions are absent in peptide Ac-(deltaEPhe)6-NHMe.  相似文献   

10.
Transmembrane (TM) segments of integral membrane proteins are putatively alpha-helical in conformation, yet their primary sequences are rich in residues known in globular proteins as helix-breakers (Gly) and beta-sheet promoters (Ile, Val, Thr). To examine the specific 2 degrees structure propensities of such residues in membrane environments, we have now designed and synthesized a series of model 20-residue peptides with "guest" hydrophobia segments embedded in "host" N- and C-terminal hydrophilic matrices. Molecular design was based on the prototypical sequence NH2-(Ser-Lys)2-Ala5-Leu6-x7-Ala8-Leu9-y10-Trp 11-Ala12-Leu13-z14-(Lys-Ser)3-OH. The 10-residue hydrophobic mid-segment 5-14 is expected to act as ca. three turns of an alpha-helix. In the present work, we compare the 20-residue peptide having three "helix-forming" Ala residues [x = y = z = Ala (peptide 3A)] to the corresponding peptide 3G (x = y = z = Gly) which contains three "helix-breaking" Gly residues. Trp was inserted to provide a measure of aromatic character typical of TM segments; Ser and Lys enhanced solubility in aqueous media. Circular dichroism studies in water, in a membrane-mimetic [sodium dodecylsulfate (SDS)], medium, and in methanol solutions, demonstrated the exquisite sensitivity of the conformations of these peptides to environment, and proved that despite its backbone flexibility, Gly can be accommodated as readily as Ala into a hydrophobic alpha-helix in a membrane. Nevertheless, the relative stability of Ala- vs. Gly-containing helices emerged in methanol solvent titration and temperature dependence experiments in SDS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Thakur AK  Kishore R 《Biopolymers》2006,81(6):440-449
The chemical synthesis and single-crystal X-ray diffraction analysis of a model peptide, Boc-Thr-Thr-NH2 (1) comprised of proteinogenic residues bearing an amphiphilic Cbeta -stereogenic center, has been described. Interestingly, the analysis of its molecular structure revealed the existence of a distinct conformation that mimics a typical beta-turn and Asx-turns, i.e., the two Thr residues occupy the left- and right-corner positions. The main-chain torsion angles of the N- and C-terminal residues i.e., semiextended: phi = -68.9 degrees , psi = 128.6 degrees ; semifolded: phi = -138.1 degrees , psi = 2.5 degrees conformations, respectively, in conjunction with a gauche- disposition of the obligatory C-terminus Thr CgammaH3 group, characterize the occurrence of the newly described beta-turn- and Asx-turns-like topology. The preferred molecular structure is suggested to be stabilized by an effective nonconventional main-chain to side-chain Ci=O . . . H--Cgamma(i+2)-type intraturn hydrogen bond. Noteworthy, the observed topology of the resulting 10-membered hydrogen-bonded ring is essentially similar to the one perceived for a classical beta-turn and the Asx-turns, stabilized by a conventional intraturn hydrogen bond. Considering the signs as well as magnitudes of the backbone torsion angles and the orientation of the central peptide bond, the overall mimicked topology resembles the type II beta-turn or type II Asx-turns. An analysis of Xaa-Thr sequences in high-resolution X-ray elucidated protein structures revealed the novel topology prevalence in functional proteins (unpublished). In view of indubitable structural as well as functional importance of nonconventional interactions in bioorganic and biomacromolecules, we intend to highlight the participation of Thr CgammaH in the creation of a short-range C=O . . . H--Cgamma -type interaction in peptides and proteins.  相似文献   

12.
The conformations of chlamydocin and cyclo (Ala-Aib-Phe-D-Pro) (Ala4-chlamydocin) in chloroform have been investigated by nuclear magnetic resonance, infrared and circular dichroism spectroscopy. The data obtained from these experiments establish an all transoid, bis gamma-turn conformation for both compounds in chloroform with the following torsional angles (+/- 20 degrees): Ala4-chlamydocin: Aib, phi + 60 degrees, psi - 50 degrees; omega + 160 degrees; Phe phi - 120 degrees, psi + 120 degrees, omega - 160 degrees; D-Pro phi + 60 degrees, psi - 55 degrees, omega + 160 degrees; Ala phi - 110 degrees, psi + 110 degrees, omega - 160 degrees. Chlamydocin adopts a closely related conformation in neat chloroform. Nuclear Overhauser Effect (NOE) data are utilized to assign amide bond geometries in the cyclic tetrapeptide ring system.  相似文献   

13.
The Ramachandran steric map and energy diagrams of the glycyl residue are symmetric. A plot of (phi,psi) angles of glycyl residues in 250 nonhomologous and high-resolution protein structures is also largely symmetric. However, there is a clear aberration in the symmetry. Although there is a cluster of points corresponding to the right-handed alpha-helical region, the "equivalent" cluster is clearly shifted to in and around the (phi,psi) values of (90 degrees, 0 degrees ) instead of being centered at the left-handed alpha-helical region of (60 degrees, 40 degrees ). This lack of symmetry exists even in the (phi,psi) distribution of residues from non-alpha-helical regions in proteins. Here we provide an explanation for this observation. An analysis of glycyl conformations in small peptide structures and in "coil" proteins, which are largely devoid of helical and sheet regions, shows that glycyl residues prefer to adopt conformations around (+/-90 degrees, 0 degrees ) instead of right- and left-handed alpha-helical regions. By using theoretical calculations, such conformations are shown to have highest solvent accessibility in a system of two-linked peptide units with glycyl residue at the central C(alpha) atom. This finding is consistent with the observations from 250 nonhomologous protein structures where glycyl residues with conformations close to (+/-90 degrees, 0 degrees ) are seen to have high solvent accessibility. Analysis of a subset of nonhomologous structures with very high resolution (1.5 A or better) shows that water molecules are indeed present at distances suitable for hydrogen bond interaction with glycyl residues possessing conformations close to (+/-90 degrees, 0 degrees ). It is suggested that water molecules play a key role in determining and stabilizing these conformations of glycyl residues and explain the aberration in the symmetry of glycyl conformations in proteins.  相似文献   

14.
Highly specific structures can be designed by inserting dehydro-residues into peptide sequences. The conformational preferences of branched beta-carbon residues are known to be different from other residues. As an implication it was expected that the branched beta-carbon dehydro-residues would also induce different conformations when substituted in peptides. So far, the design of peptides with branched beta-carbon dehydro-residues at (i + 1) position has not been reported. It may be recalled that the nonbranched beta-carbon residues induced beta-turn II conformation when placed at (i + 2) position while branched beta-carbon residues induced beta-turn III conformation. However, the conformation of a peptide with a nonbranched beta-carbon residue when placed at (i + 1) position was not found to be unique as it depended on the stereochemical nature of its neighbouring residues. Therefore, in order to induce predictably unique structures with dehydro-residues at (i + 1) position, we have introduced branched beta-carbon dehydro-residues instead of nonbranched beta-carbon residues and synthesized two peptides: (I) N-Carbobenzoxy-DeltaVal-Ala-Leu-OCH3 and (II) N-Carbobenzoxy-DeltaIle-Ala-Leu-OCH3 with DeltaVal and DeltaIle, respectively. The crystal structures of peptides (I) and (II) have been determined and refined to R-factors of 0.065 and 0.063, respectively. The structures of both peptides were essentially similar. Both peptides adopted type II beta-turn conformations with torsion angles; (I): phi1 = -38.7 (4) degrees, psi1 = 126.0 (3) degrees; phi2 = 91.6 (3) degrees, psi2 = -9.5 (4) degrees and (II): phi1 = -37.0 (6) degrees, psi1 = 123.6 (4) degrees, phi2 = 93.4 (4), psi2 = -11.0(4) degrees respectively. Both peptide structures were stabilized by intramolecular 4-->1 hydrogen bonds. The molecular packing in both crystal structures were stabilized in each by two identical hydrogen bonds N1...O1' (-x, y + 1/2, -z) and N2...O2' (-x + 1, y + 1/2, -z) and van der Waals interactions.  相似文献   

15.
Doherty T  Waring AJ  Hong M 《Biochemistry》2006,45(44):13323-13330
The conformation and membrane topology of the disulfide-stabilized antimicrobial peptide tachyplesin I (TP) in lipid bilayers are determined by solid-state NMR spectroscopy. The backbone (phi and psi) torsion angles of Val(6) are found to be -133 degrees and 142 degrees , respectively, and the Val(6) CO-Phe(8) H(N) distance is 4.6 A. These constrain the middle of the N-terminal strand to a relatively ideal antiparallel beta-sheet conformation. In contrast, the phi angle of Gly(10) is +/-85 degrees , consistent with a beta-turn conformation. Thus, TP adopts a beta-hairpin conformation with straight strands, similar to its structure in aqueous solution but different from a recently reported structure in DPC micelles where bending of the two beta-strands was observed. The Val(6) and Gly(10) CO groups are both 6.8 A from the lipid (31)P, while the Val(6) side chain is in (1)H spin diffusion contact with the lipid acyl chains. These results suggest that TP is immersed in the glycerol backbone region of the membrane and is oriented roughly parallel to the plane of the membrane. This depth of insertion and orientation differs from those of the analogous beta-sheet antimicrobial peptide protegrin-1 and suggest the importance of structural amphiphilicity in determining the location and orientation of membrane peptides in lipid bilayers.  相似文献   

16.
The structural perturbation induced by C(alpha)-->N(alpha) exchange in azaamino acid-containing peptides was predicted by ab initio calculation of the 6-31G* and 3-21G* levels. The global energy-minimum conformations for model compounds, For-azaXaa-NH2 (Xaa=Gly, Ala, Leu) appeared to be the beta-turn motif with a dihedral angle of phi= +/- 90 degrees, psi=0 degrees. This suggests that incorporation of the azaXaa residue into the i+2 position of designed peptides could stabilize the beta-turn structure. The model azaLeu-containing peptide, Boc-Phe-azaLeu-Ala-OMe, which is predicted to adopt a beta-turn conformation was designed and synthesized in order to experimentally elucidate the role of the azaamino acid residue. Its structural preference in organic solvents was investigated using 1H NMR, molecular modelling and IR spectroscopy. The temperature coefficients of amide protons, the characteristic NOE patterns, the restrained molecular dynamics simulation and IR spectroscopy defined the dihedral angles [ (phi i+1, psi i+1) (phi i+2, psi i+2)] of the Phe-azaLeu fragment in the model peptide, Boc-Phe-azaLeu-Ala-OMe, as [(-59 degrees, 127 degrees) (107 degrees, -4 degrees)]. This solution conformation supports a betaII-turn structural preference in azaLeu-containing peptides as predicted by the quantum chemical calculation. Therefore, intercalation of the azaamino acid residue into the i+2 position in synthetic peptides is expected to provide a stable beta-turn formation, and this could be utilized in the design of new peptidomimetics adopting a beta-turn scaffold.  相似文献   

17.
The conformation of a cyclic decapeptide analog of a repeat sequence of elastin has been determined in the crystalline state using X-ray crystallographic techniques. Tetragonal crystals were grown from a solution of the decapeptide in water; space group P4(2)2(1)2, a = 19.439(2) & c = 13.602(1) A, with four formula units (C40H66N10O10.4H2O) per unit cell. The cyclic decapeptide in the crystal exhibits exact twofold symmetry. The asymmetric unit contains one pentapeptide and two water molecules for a total of 32 nonhydrogen atoms. The structure has been determined by the application of direct methods and refined by full-matrix least squares to an R index of 0.053 for 2272 reflections with intensities greater than 2 sigma(I). The backbone conformation of the asymmetric pentapeptide can be described as consisting of a double beta bend of Type III-I. The Type III turn has Pro (phi = -59.3 degrees, psi = -26.8 degrees) and Ala (phi = -65.9 degrees, psi = -23.1 degrees) at the corners while Type I turn has Ala (phi = -65.9 degrees, psi = -23.1 degrees) and Val (phi = -98.9 degrees, psi = 8.3 degrees) as the corner residues. The cyclic decapeptide has two such double bends linked together by Gly-Val bridges.  相似文献   

18.
Solid-state (13)C NMR spectroscopy was used to investigate the three-dimensional structure of melittin as lyophilized powder and in ditetradecylphosphatidylcholine (DTPC) membranes. The distance between specifically labeled carbons in analogs [1-(13)C]Gly3-[2-(13)C]Ala4, [1-(13)C]Gly3-[2-(13)C]Leu6, [1-(13)C]Leu13-[2-(13)C]Ala15, [2-(13)C]Leu13-[1-(13)C]Ala15, and [1-(13)C]Leu13-[2-(13)C]Leu16 was measured by rotational resonance. As expected, the internuclear distances measured in [1-(13)C]Gly3-[2-(13)C]Ala4 and [1-(13)C]Gly3-[2-(13)C]Leu6 were consistent with alpha-helical structure in the N-terminus irrespective of environment. The internuclear distances measured in [1-(13)C]Leu13-[2-(13)C]Ala15, [2-(13)C]Leu13-[1-(13)C]Ala15, and [1-(13)C]Leu13-[2-(13)C]Leu16 revealed, via molecular modeling, some dependence upon environment for conformation in the region of the bend in helical structure induced by Pro14. A slightly larger interhelical angle between the N- and C-terminal helices was indicated for peptide in dry or hydrated gel state DTPC (139 degrees -145 degrees ) than in lyophilized powder (121 degrees -139 degrees ) or crystals (129 degrees ). The angle, however, is not as great as deduced for melittin in aligned bilayers of DTPC in the liquid-crystalline state (approximately 160 degrees ). The study illustrates the utility of rotational resonance in determining local structure within peptide-lipid complexes.  相似文献   

19.
Nandel FS  Khare B 《Biopolymers》2005,77(1):63-73
Conformational studies of the peptides constructed from achiral amino acid residues Aib and Delta(Z)Phe (I) Ac-Aib-Delta(Z)Phe-NHMe (II), and Ac-(Aib-Delta(Z)Phe)(3)-NHMe; peptides III-VI having L-Leu or D-Leu at either the N- or the C-terminal position and of peptides VII-X having Leu residues in different enantiomeric combinations at both the N- and the C-terminal positions in peptide II have been studied to design the peptide with the required helical sense. Peptide II, as expected, adopts degenerate left- and right-handed helical structures. It has been shown that the peptides IV and VI having D-Leu at either the N or the C terminus can be realized in the right-handed helical structure with the phi,psi values of -20 degrees and -60 degrees for the Aib/Delta(Z)Phe residues. L-Leu and D- Leu at both the terminals in peptides VII and VIII, respectively, have hardly any effect as both the left- and the right-handed structures are found to be degenerate. Peptides III and IX can be realized in right- and left-handed helical structures, respectively, in solvents of low polarity whereas peptides V and X are predicted to be in the right-handed helical structures stabilized by carbonyl-carbonyl interactions without the formation of hydrogen bonds. The conformational states with the phi,psi values of 0 degrees and -85 degrees in peptide V are characterized by rise per residue of 2.03 A, rotation per residue of 117.5 degrees , and 3.06 residues per turn. In all peptides having Leu residue at the N terminus, the methyl moiety of the acetyl group is involved in the CH/pi interactions with the Cepsilon--Cdelta edge of the aromatic ring of Delta(Z)Phe (3) and the amino group NH of Delta(Z)Phe is involved in the NH/pi interactions with its own aromatic ring. The CH(3) groups of the Aib residues are also involved in CH/pi interactions with the i + 1th and i + 3th Delta(Z)Phe's aromatic side chains.  相似文献   

20.
Non-glycine residues in proteins are rarely observed to have "left-handed helical" conformations. For glycine, however, this conformation is common. To determine the contributions of left-handed helical residues to the stability of a protein, two such residues in phage T4 lysozyme, Asn55 and Lys124, were replaced with glycine. The mutant proteins fold normally and are fully active, showing that left-handed non-glycine residues, although rare, do not have an indispensable role in the folding of the protein or in its activity. The thermodynamic stability of the Lys124 to Gly variant is essentially identical with that of wild-type lysozyme. The Asn55 to Gly mutant protein is marginally less stable (0.5 kcal/mol). These results indicate that the conformational energy of a glycine and a non-glycine residue in the left-handed helical conformation are very similar. This is consistent with some theoretical energy distributions, but is inconsistent with others, which suggest that replacements of the sort described here might increase the stability of the protein by up to 5 kcal/mol. Crystallographic analysis of the mutant proteins shows that the backbone conformation of the Lys124 to Gly variant is essentially identical with that of the wild-type structure. In the case of the Asn55 to Gly replacement, however, the (phi, psi) values of residue 55 change by about 20 degrees. This suggests that the energy minimum for left-handed glycine residues is not the same as that for non-glycine residues. This is strongly indicated also by a survey of accurately determined protein crystal structures, which suggests that the energy minimum for left-handed glycine residues is near (phi = 90 degrees, psi = 0 degrees), whereas that for non-glycine residues is close to (phi = 60 degrees, psi = 30 degrees). This apparent energy minimum for glycine is not clearly predicted by any of the theoretical (phi, psi) energy contour maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号