首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fast-slow paradigm of life history theory has been a popular approach to individual differences in the evolutionary behavioral sciences. Currently, however, the fast-slow paradigm faces several theoretical and empirical challenges. Motivated by questions regarding the validity of certain assumptions of the paradigm, the current study provides an empirical investigation of human female “fast” versus “slow” strategies. In a sample of 1867 women recruited using MTurk, we use structural equation modeling (SEM) to test whether childhood exposure to different environmental variables had unique effects on proposed life history traits, whether mediated by—or independent of—pubertal timing. Models also test whether the proposed life history traits covary with one another as expected by the paradigm. Data reveal that exposure to violence and poor health in particular, but not environmental harshness or unpredictability in general, had significant effects on pubertal timing. Pubertal timing appeared to mediate effects of childhood environments on age at sexual debut, but not any other adult outcome (e.g., sociosexual orientations, reproductive outcomes). Some associations with mating strategies were incompatible with assumptions of the prevailing fast-slow paradigm; for instance, greater short-term mating orientation was positively associated with childhood socioeconomic status and negatively associated with offspring number. These results highlight the need for a new or revised theoretical approach to understanding developmental, mating, and reproductive strategies.  相似文献   

2.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   

3.
Puberty is a gradual process, during which animal reproductive competence is attained with respect to physiology, morphology and behaviour. Onset of puberty in small ruminants differs between sexes, due to early sexual differentiation in the control of steroid feedback systems and, thus, GnRH secretion. A number of puberty determinants have been identified, which include genetic factors, as well as endogenous signals, such as energy balance and environmental cues, whose dynamic interplay is responsible for the timing of puberty onset. Puberty timing affects reproduction through age at first lambing, which impacts on subsequent reproductive life and productivity of small ruminants. Thus, a greater knowledge of the mechanisms underlying puberty process would lead to optimisation of commonly applied strategies for selection of replacement animals. In addition, understanding reproductive responses of animals to exteroceptive factors, such as photoperiod, nutrition and socio-sexual signals, will enable development and improvement of those management tools that that will fulfil the requirements of a 'clean, green and ethical' production.  相似文献   

4.
Life history theory’s principle of allocation suggests that because immature organisms cannot expend reproductive effort, the major trade-off facing juveniles will be the one between survival, on one hand, and growth and development, on the other. As a consequence, infants and children might be expected to possess psychobiological mechanisms for optimizing this trade-off. The main argument of this paper is that the attachment process serves this function and that individual differences in attachment organization (secure, insecure, and possibly others) may represent facultative adaptations to conditions of risk and uncertainty that were probably recurrent in the environment of human evolutionary adaptedness. An early version of this paper was presented in the symposium “Childhood in Life-history Perspective: Developing Views” organized by Gilda Morelli and Paula Ivey for the Annual Meeting of the Society for Cross-Cultural Research in Santa Fe, New Mexico, February 16–20, 1994. James S. Chisholm recently joined the Department of Anatomy and Human Biology at the University of Western Australia. Previously he taught in the Department of Anthropology at the University of New Mexico and in the Division of Human Development at the University of California, Davis. He is a biosocial anthropologist whose research interests lie in the fields of human behavioral biology, evolutionary ecology, and life history theory, where he focuses on infant social-emotional development and the development of reproductive strategies in adolescence and young adulthood. In addition to numerous articles he is the author ofNavajo Infancy: An Ethological Study of Child Development (Aldine de Gruyter, 1983).  相似文献   

5.
Aspects of life history, such as processes and timing of development, age at maturation, and life span are consistently associated with one another across the animal kingdom. Species that develop rapidly tend to mature and reproduce early, have many offspring, and exhibit shorter life spans (r-selection) than those that develop slowly, have extended periods of premature growth, mature later in life, reproduce later and less frequently, have few offspring and/or single births, and exhibit extended life spans (K-selection). In general, primates are among the most K-selected of species. A suite of highly derived life history traits characterizes humans. Among these are physically immature neonates, slowed somatic development both in utero and post-natally, late attainment of reproductive maturity and first birth, and extended post-mature survival. Exactly when, why, and through what types of evolutionary interactions this suite arose is currently the subject of much conjecture and debate. Humankind's biocultural adaptations have helped to structure human life history evolution in unique ways not seen in other animal species. Among all species, life history traits may respond rapidly to alterations in selective pressures through hormonal processes. Selective pressures on life history likely varied widely among hominids and humans over their evolutionary history. This suggests that current patterns of human growth, development, maturation, reproduction, and post-mature survival may be of recent genesis, rather then long-standing adaptations. Thus, life history patterns observed among contemporary human and chimpanzee populations may provide little insight to those that existed earlier in hominid/human evolution.  相似文献   

6.
The human life history is characterized by several unusual features, including large babies, late puberty and menopause, and the fact that there is a strong cultural influence on reproductive decisions throughout life. In this review I examine human life history from an evolutionary ecological perspective. I first review the evidence for life history trade-offs between fertility and mortality in humans. Patterns of growth, fertility and mortality across the life span are then discussed and illustrated with data from a traditional Gambian population. After outlining the stages of the human life course, I discuss two phenomena of particular interest in evolutionary anthropology, both of which are apparently unique to humans and neither yet fully understood. First, I discuss the evolution of menopause, the curtailing of female reproduction long before death. The evidence that this evolved because investment in existing children's future reproductive success is more important than continuing child bearing into old age is reviewed, along with data relating to the biological constraints that may be operating. Second, I discuss the demographic transition. Declining fertility at a time of increasingly abundant resources represents a serious challenge to an evolutionary view of human life history and behaviour, and is thus examined in detail. Parental investment in children in competition with each other may be key to understanding both of these unusual human phenomena. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

7.
Relative to the life history of other great apes, that of humans is characterized by early weaning and short interbirth intervals (IBIs). We propose that in modern humans, birth until adrenarche, or the rise in adrenal androgens, developmentally corresponds to the period from birth until weaning in great apes and ancestral hominins. According to this hypothesis, humans achieved short IBIs by subdividing ancestral infancy into a nurseling phase, during which offspring fed at the breast, and a weanling phase, during which offspring fed specially prepared foods. Imprinted genes influence the timing of human weaning and adrenarche, with paternally expressed genes promoting delays in childhood maturation and maternally expressed genes promoting accelerated maturation. These observations suggest that the tempo of human development has been shaped by consequences for the fitness of kin, with faster development increasing maternal fitness at a cost to child fitness. The effects of imprinted genes suggest that the duration of the juvenile period (adrenarche until puberty) has also been shaped by evolutionary conflicts within the family.  相似文献   

8.
Life history is an important framework for understanding many aspects of ontogeny and reproduction relative to fitness outcomes. Because growth is a key influence on the timing of reproductive maturity and age at first birth is a critical demographic variable predicting lifetime fertility, it raises questions about the synchrony of growth and reproductive strategies. Among the Pumé, a group of South American foragers, young women give birth to their first child on average at age 15.5. Previous research showed that this early age at first birth maximizes surviving fertility under conditions of high infant mortality. In this study we evaluate Pumé growth data to test the expectation that if early reproduction is advantageous, then girls should have a developmental trajectory that best prepares them for young childbearing. Analyses show that comparatively Pumé girls invest in skeletal growth early, enter puberty having achieved a greater proportion of adult body size and grow at low velocities during adolescence. For early reproducers growing up in a food‐limited environment, a precocious investment in growth is advantageous because juveniles have no chance of pregnancy and it occurs before the onset of the competing metabolic demands of final reproductive maturation and childbearing. Documenting growth patterns under preindustrial energetic and demographic conditions expands the range of developmental variation not otherwise captured by normative growth standards and contributes to research on human phenotypic plasticity in diverse environments. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Propagule size is an important maternal effect on offspring fitness and phenotype in birds and other oviparous animals. The performance of propagules often increases with size, but a fluctuating environment may introduce temporal variation in the optimal phenotype. Understanding these mechanisms will provide novel insights into the eco‐evolutionary dynamics of life history strategies in parental reproductive investment. We investigated the interaction between propagule size (measured as egg volume) and environmental conditions on offspring mortality and phenotype in a Norwegian house sparrow population. Increased propagule size reduced offspring mortality in early life, with more pronounced effects under heavy precipitation. However, the optimal propagule size for low offspring mortality until recruitment shifted from large to small as temperature increased. Propagule size had no significant effect on fledgling body mass and tarsus length. These results reveal a potential for eco‐evolutionary dynamics in propagule size, as populations adapt to fluctuating environmental conditions. The ultimate outcome of this dynamic process will also depend on variation in parental fitness and tradeoffs with other life‐history traits, particularly clutch size.  相似文献   

10.
Human life history incorporates early weaning, a prolonged period of post-weaning dependency and slow somatic growth, late onset of female reproduction, reduced birth spacing and a significant post-reproductive female lifespan, combined with rapid early brain growth. Weaned human offspring lack the cognitive skills and physical capacity required to locate, procure and prepare foods that are appropriate for their immature state and sufficient for their high energy requirements. During the weaning process and throughout childhood human offspring are supported by the provision of energy dense and easily digestible foods. Changes in weaning behaviour during human evolution imply a shift in the balance between maternal costs of lactation and the risk of poor offspring outcome, and may have been driven by an increase in infant nutritional and metabolic requirements, a reduction reproductive lifespan resulting in selection for reduced birth spacing or a change in other factors affecting offspring survival and fitness.  相似文献   

11.
Human reproductive patterns have been well studied, but the mechanisms by which physiology, ecology and existing kin interact to affect the life history need quantification. Here, we create a model to investigate how age‐specific interbirth intervals adapt to environmental and intrinsic mortality, and how birth patterns can be shaped by competition and help between siblings. The model provides a flexible framework for studying the processes underlying human reproductive scheduling. We developed a state‐based optimality model to determine age‐dependent and family‐dependent sets of reproductive strategies, including the state of the mother and her offspring. We parameterized the model with realistic mortality curves derived from five human populations. Overall, optimal birth intervals increase until the age of 30 after which they remain relatively constant until the end of the reproductive lifespan. Offspring helping each other does not have much effect on birth intervals. Increasing infant and senescent mortality in different populations decreases interbirth intervals. We show that sibling competition and infant mortality interact to lengthen interbirth intervals. In lower‐mortality populations, intense sibling competition pushes births further apart. Varying the adult risk of mortality alone has no effect on birth intervals between populations; competition between offspring drives the differences in birth intervals only when infant mortality is low. These results are relevant to understanding the demographic transition, because our model predicts that sibling competition becomes an important determinant of optimal interbirth intervals only when mortality is low, as in post‐transition societies. We do not predict that these effects alone can select for menopause.  相似文献   

12.
The ancestral state of human skin pigmentation evolved in response to high ultraviolet radiation (UVR) stress. Some argue that pigmentation evolved to limit folate photolysis, therein limiting neural tube defects. Pigmentation also protects against sunburn which decreases the efficiency of sweating and potentiates skin infection. Pigmentation increases the efficacy of skin as a barrier to infection. Skin cancer has been rejected or minimized as a selective pressure because it is believed to have little or no effect on mortality during reproductive years. This argument ignores evidence of human longevity as a derived life history trait and the adaptive value of investment in offspring and kin, particularly during the post‐reproductive lifespan. Opponents argue that lifespan in prehistoric hunter‐gatherers was too short to be relevant to the evolution of skin pigmentation. This argument is flawed in that it relies on estimates of longevity at birth rather than adolescence. When appropriate estimates are used, it is clear that human longevity has a deep evolutionary history. We use a life history perspective to demonstrate the value of skin pigmentation as an adaptation to skin cancer with the following points: UVR exposure increases dysregulation of gene expression in skin cells leading to immortal cell lines; cutaneous malignant melanoma (CMM) affects individuals throughout reproductive years; and lifespan was longer than has previously been acknowledged, providing the opportunity for kin selection. This hypothesis is not at odds with the folate or barrier hypotheses. We stress that the evolution of skin pigmentation is complex and is an ongoing process. Am J Phys Anthropol 153:1–8, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Timing of reproduction in a seasonal cycle is a life history trait with important fitness consequences. Capital breeders produce offspring from stored resources and, by decoupling feeding and reproduction, may bend the constraints caused by seasonality in food or predation. Income breeders, on the other hand, produce offspring from concurrent food intake, with the disadvantage of less flexibility, but with high efficiency and no inventory costs of carrying stores. Here, we assess relative profitability of capital and income breeding in herbivorous zooplankton inhabiting seasonal, high-latitude environments. We apply a state-dependent life history model where reproductive values are used to optimise energy allocation and diapause strategies over the year. Three environmental scenarios were modelled: an early, an intermediate, and a late feeding season. We found that capital breeding was most important in the early season. Capital breeding ranged from 7–9% of the eggs produced but, because of the high reproductive value of early eggs, capital breeding ranged from 9–30% when measured in terms of reproductive value. The main benefit of capital breeding was reproduction prior to the feeding season – when the reproductive value of an egg peaked. In addition, capital breeding was also used to increase egg production rates at times of income breeding. For individuals born late in the season the model predicted a two-year cycle instead of the typical annual life cycle. These individuals could then reap the benefits of early reproduction and capital breeding in their second year instead of income breeding late in the first year. We emphasize the importance of evaluating reproductive strategies such as capital and income breeding from a complete life cycle perspective. In particular, knowing the seasonality in offspring fitness is essential to appreciate evolutionary and population-level consequences of capital breeding.  相似文献   

14.
Life History Theory predicts that extrinsic mortality risk is one of the most important factors shaping (human) life histories. Evidence from contemporary populations suggests that individuals confronted with high mortality environments show characteristic traits of fast life-history strategies: they marry and reproduce earlier, have shorter birth intervals and invest less in their offspring. However, little is known of the impact of mortality experiences on the speed of life histories in historical human populations with generally higher mortality risk, and on male life histories in particular. Furthermore, it remains unknown whether individual-level mortality experiences within the family have a greater effect on life-history decisions or family membership explains life-history variation.In a comparative approach using event history analyses, we study the impact of family versus individual-level effects of mortality exposure on two central life-history parameters, ages at first marriage and first birth, in three historical human populations (Germany, Finland, Canada). Mortality experience is measured as the confrontation with sibling deaths within the natal family up to an individual''s age of 15.Results show that the speed of life histories is not adjusted according to individual-level mortality experiences but is due to family-level effects. The general finding of lower ages at marriage/reproduction after exposure to higher mortality in the family holds for both females and males. This study provides evidence for the importance of the family environment for reproductive timing while individual-level mortality experiences seem to play only a minor role in reproductive life history decisions in humans.  相似文献   

15.
There is considerable interest in the organizational effects of pubertal sex hormones on human sex-related characteristics. Recent evidence from rodents suggests that there is a decreasing window of sensitivity to sex hormones throughout adolescence. If adolescence also represents a period of brain organization in human beings, then the timing of exposure to sex-typical hormones at puberty should have long-term effects on sex-typed characteristics: individuals with early timing should be more sex-typed than individuals with late timing. We tested this hypothesis in 320 young adults by relating their pubertal timing (retrospective comparison to peers) to cognitive abilities that show sex differences. Results provide partial support for the hypothesis. For men, pubertal timing was inversely related to scores on a test of three-dimensional mental rotations. Effects do not appear to be due to duration of hormone exposure (time since puberty), but other potential influences need further study.  相似文献   

16.
17.
Allocation of resources to competing processes of growth, maintenance, or reproduction is arguably a key process driving the physiology of life history trade‐offs and has been shown to affect immune defenses, the evolution of aging, and the evolutionary ecology of offspring quality. Here, we develop a framework to investigate the evolutionary consequences of physiological dynamics by developing theory linking reproductive cell dynamics and components of fitness associated with costly resource allocation decisions to broader life history consequences. We scale these reproductive cell allocation decisions to population‐level survival and fecundity using a life history approach and explore the effects of investment in reproduction or tissue‐specific repair (somatic or reproductive) on the force of selection, reproductive effort, and resource allocation decisions. At the cellular level, we show that investment in protecting reproductive cells increases fitness when reproductive cell maturation rate is high or reproductive cell death is high. At the population level, life history fitness measures show that cellular protection increases reproductive value by differential investment in somatic or reproductive cells and the optimal allocation of resources to reproduction is moulded by this level of investment. Our model provides a framework to understand the evolutionary consequences of physiological processes underlying trade‐offs and highlights the insights to be gained from considering fitness at multiple levels, from cell dynamics through to population growth.  相似文献   

18.
The patterned way in which individuals allocate finite resources to various components of reproduction (e.g. mating effort, reproductive timing and parental investment) is described as a reproductive strategy. As energy is limited, trade-offs between and within aspects of reproductive strategies are expected. The first aim of this study was to derive aspects of reproductive strategies using complete reproductive histories from 718 parous Western Australian women. Factor analysis using a subset of these participants resulted in six factors that represented ‘short-term mating strategy’, ‘early onset of sexual activity’, ‘reproductive output’, ‘timing of childbearing’, ‘breastfeeding’, and ‘child spacing’. This factor structure was internally validated by replication using a second independent subset of the data. The second aim of this study examined trade-offs between aspects of reproductive strategies derived from aim one. Factor scores calculated for each woman were incorporated in generalised linear models and interaction terms were employed to examine the effect of mating behaviour on the relationships between reproductive timing, parental investment and overall reproductive success. Early sexual activity correlates with early reproductive onset for women displaying more long-term mating strategies. Women with more short-term mating strategies exhibit a trade-off between child quantity and child quality not observed in women with a long-term mating strategy. However, women with a short-term mating strategy who delay reproductive timing exhibit levels of parental investment (measured as breastfeeding duration per child) similar to that of women with long-term mating strategies. Reproductive delay has fitness costs (fewer births) for women displaying more short-term mating strategies. We provide empirical evidence that reproductive histories of contemporary women reflect aspects of reproductive strategies, and associations between these strategic elements, as predicted from life history theory.  相似文献   

19.
THE BIOLOGY OF PUBERTY   总被引:1,自引:0,他引:1  
The objective of this review was to develop a broader, more biological, overview of puberty, as opposed to the more limited, laboratory-dominated, view that has emanated from experimental physiology. Three conceptual schemes form the basis for our broader perspective. The first deals with the ways in which genes and environmental factors interact to program the timing of reproductive development. The second focuses on the ways environmental factors interact with each other to influence puberty. The third relates the genetic and environmental controls to specific endocrine and neuroendocrine pathways of action.
The more traditional approach of studying domesticated animals under carefully controlled conditions predetermines one's conclusions. One logically will conclude that the final stages of reproductive development are rather rigidly determined genetically and not greatly subject to environmental regulation, except for obviously adaptive pheromonal and photoperiodic regulation. One also will search within the reproductive axis itself for the final developmental step that allows functional fertility. In contrast, a more biological view suggests that for most mammals puberty is a highly labile process subject to several kinds of environmental influences that operate at many times during a mammal's life. Furthermore this perspective suggests that the final developmental step allowing fertility onset normally will occur outside rather than within the reproductive axis proper. This conclusion has a potentially great impact upon the way we look at the organization of the brain and endocrine system and in the way we choose animal models for studying human puberty and the types of controls we study.  相似文献   

20.
The current paper synthesizes theory and data from the field of life history (LH) evolution to advance a new developmental theory of variation in human LH strategies. The theory posits that clusters of correlated LH traits (e.g., timing of puberty, age at sexual debut and first birth, parental investment strategies) lie on a slow-to-fast continuum; that harshness (externally caused levels of morbidity-mortality) and unpredictability (spatial-temporal variation in harshness) are the most fundamental environmental influences on the evolution and development of LH strategies; and that these influences depend on population densities and related levels of intraspecific competition and resource scarcity, on age schedules of mortality, on the sensitivity of morbidity-mortality to the organism’s resource-allocation decisions, and on the extent to which environmental fluctuations affect individuals versus populations over short versus long timescales. These interrelated factors operate at evolutionary and developmental levels and should be distinguished because they exert distinctive effects on LH traits and are hierarchically operative in terms of primacy of influence. Although converging lines of evidence support core assumptions of the theory, many questions remain unanswered. This review demonstrates the value of applying a multilevel evolutionary-developmental approach to the analysis of a central feature of human phenotypic variation: LH strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号