首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to investigate the effects of niacin and dietary concentrate proportion on body temperature, ruminal pH and milk production of dairy cows. In a 2 × 2 factorial design, 20 primiparous Holstein cows (179 ± 12 days in milk) were assigned to four dietary treatments aimed to receive either 0 or 24 g niacin and 30% (low) or 60% (high) concentrate with the rest being a partial mixed ration (PMR) composed of 60% corn and 40% grass silage (on dry matter basis). Ambient temperature and relative humidity were determined and combined by the calculation of temperature humidity index. Respiration rates, rectal, skin and subcutaneous temperatures were measured. Milk production and composition were determined. Ruminal pH and temperature were recorded at a frequency of 5 min using wireless devices for continuous intra-ruminal measurement (boluses). pH values were corrected for pH sensor drift. The climatic conditions varied considerably but temporarily indicated mild heat stress. Niacin did not affect skin, rectal and subcutaneous temperatures but tended to increase respiration rates. High concentrate reduced skin temperatures at rump, thigh and neck by 0.1–0.3°C. Due to the technical disturbances, not all bolus data could be subjected to statistical evaluation. However, both niacin and high concentrate influenced mean ruminal pH. High concentrate increased the time spent with a pH below 5.6 and ruminal temperatures (0.2–0.3°C). Niacin and high concentrate enhanced milk, protein and lactose yield but reduced milk fat and protein content. Milk fat yield was slightly reduced by high concentrate but increased due to niacin supplementation. In conclusion, niacin did not affect body temperature but stimulated milk performance. High concentrate partially influenced body temperatures and had beneficial effects on milk production.  相似文献   

2.
The effects of concentrate energy source on feed intake and rumen fermentation parameters of lactating dairy cattle, offered one of three grass silages differing in fermentation and intake characteristics, were evaluated in a partially balanced changeover design experiment involving four rumen fistulated dairy cows. Three silages were harvested using different management practices prior to and at ensiling. Silages A and C and silage B were harvested from primary or secondary regrowths either untreated or treated with a bacterial inoculant. For silages A, B and C, dry matter (DM) concentrations were 334, 197 and 183 g/kg (S.E. 3.1), pH values 4.00, 4.79 and 4.80 (S.E. 0.042) and ammonia nitrogen (N) concentrations were 123, 319 and 295 g/kg total N (S.E. 20.0), respectively. Two concentrates were formulated to contain similar crude protein, effective rumen degradable protein, digestible undegradable protein and metabolisable energy concentrations but using different carbohydrate sources to achieve a wide range of starch concentrations. For the low and high starch concentrates starch concentrations were 17 and 304 g/kg DM and acid detergent fibre concentrations were 170 and 80 g/kg DM, respectively. The silages were offered ad libitum, supplemented with 10 kg fresh concentrate daily. For silages A, B and C, DM intakes were 10.9, 7.2 and 8.6 kg/day and concentrate energy sources did not alter (P>0.05) intake. Increasing the level of starch in the concentrate decreased the molar concentration of acetate (P<0.05) and tended to increase the molar concentration of propionate (P<0.1). Silage type altered the molar concentration of acetate (P<0.01) and the acetate:propionate ratio (P<0.05). There were no silagetype×concentrate interactions (P>0.05) on silage intake or rumen fermentation parameters. It is concluded that when concentrate and silage form equal proportions of the diet, the composition of the silage has an over-riding influence on rumen fermentation parameters. Furthermore, the changes in milk fat concentration, observed in a concurrent production study, due to changes in silage and concentrate types can be accounted for by changes in the ratio of lipogenic to glucogenic precursors in the rumen fluid.  相似文献   

3.
Cattle are often fed high concentrate (HC) diets to increase productivity, although HC diets cause changes in ruminal environment such as pH reduction. Despite those well-documented changes in cattle fed HC diets, there is currently a paucity of data describing the molecular events regulating the ruminal environment. Our objective was to gain an understanding of which genes are differentially expressed in ruminal tissue from Holstein cows fed a HC comparing to low concentrate (LC) diet using microarray analysis using a bovine 24 k microarray. A total of 5,200 differentially expressed genes (DEG) were detected for cows fed HC relative to LC. The DEG were firstly annotated with gene ontology (GO) and Kyoto encyclopedia of Genes and Genomes (KEGG), indicating that the DEG were associated with catalytic activity and MAPK pathway, respectively. Further characterization using GeneCodis identified patterns of interrelated annotations for the DEG to elucidate the relationships among annotation groups revealed that a cAMP-dependent protein kinase A catalytic subunit beta (PRKACB), may be associated with ruminal tissue maintenance. The results contributed to understanding of the regulatory mechanisms at the mRNA level for Holstein cows fed at different concentrate ratio diets.  相似文献   

4.
Summary An experiment was performed to evaluate the effects of somatotropin on plasma free amino acid, urea and insulin concentrations and rumen fermentation pattern and to assess their relationships. Four Italian Friesian dairy cows fitted with rumen cannulae were used in a switch-back design. Slow releasing recombinant bovine somatotropin (640 mg/cow) was injected every 28 days for two consecutive periods. Rumen fluid and blood samples were collected before and after feeding at 0, 7 and 21 days after rbST injection. Exogenous rbST increased plasma insulin concentration and the insulin response to feeding, and decreased plasma urea and free essential and branched chain amino acid concentrations. rbST did not affect rumen fermentation pattern. No correlation was found between rumen and plasma parameters measured after feeding. Our results are consistent with the notion that the main effect of somatotropin is post-absorptive.  相似文献   

5.
The present study was undertaken to determine the effects of dietary folic acid (FOL) supplementation on ruminal fermentation, duodenal nutrient flow, serum and milk variables, and on B-vitamin concentration in serum. The study was divided into two experiments: in Exp. 1 the forage to concentrate (F:C) ratio of the diet (DM basis) was 34:66 (high concentrate, HC), while in Exp. 2 the F:C ratio was 66:34 (high forage, HF). In addition, the cows received 0 or 1 g FOL/d. In Exp. 1, two German Holstein cows equipped with cannulas in the dorsal sac of the rumen and in the proximal duodenum were dry and five were lactating (186 ± 144 days in milk); in Exp. 2 four cows were dry and four were lactating (165 ± 57 days in milk). In cows fed the HC diet, FOL supplementation decreased the ruminally-fermented organic matter. Thus, less energy was available for ruminal microorganisms, which resulted in a reduced microbial crude protein flow at the duodenum. Feeding the HF diet, FOL supplementation only increased the apparent ruminal digestibility of acid detergent fibre (ADF). With the HF diet, FOL had no influence on the serum levels of glucose, non-esterified fatty acids, beta-hydroxybutyrate, urea, thiamine, riboflavin, pyridoxal-5′-phosphate, pyridoxic acid, pyridoxal, pyridoxine, pyridoxamine, pantothenic acid, nicotinamide or nicotinic acid, whereas supplementing FOL to the HC diet lowered the serum glucose and riboflavin levels. In both experiments, the supplementation of FOL had no effects on milk composition. Folic acid supplementation to both diets increased the concentrations of serum 5-methyl-tetrahydrofolate. However, no beneficial effects to dairy cows were obvious. Therefore, to achieve certain results, studies with a higher number of non-fistulated cows would be necessary.  相似文献   

6.
Twenty-six Alpine and Saanen goats, 12 fitted with a rumen cannula and a T-type cannula in the duodenum, were used in a 6-week experiment on the effect of a monoterpene blend on rumen fermentation, duodenal terpene and nutrient flows, milk yield and composition. The monoterpene blend consisted of 45.2, 36.7, 16.0 and 2.2 mol/100 mol terpene for linalool, p-cymene, α-pinene and β-pinene, respectively. The four compounds were considered as good models of northwest Mediterranean sward terpenes and were supplied in the same proportions as in the spring diet of dairy goats in the Basilicata (Southern Apennine range, Italy). The goats were assigned to three experimental groups fed a total mixed ration with no terpene or with the monoterpene blend at two levels, 0.043 and 0.43 g/kg dry matter intake. Ruminal fermentation characteristics remained unchanged among groups. In average, the total volatile fatty acids (VFA) concentration was 89.0 mM and the proportions of acetate, propionate and butyrate were 66.4, 21.1 and 10.1 mol/100 mol VFA, with an acetate:propionate ratio of 3.19. In average, 0.0, 2.7, 3.5 and 23.5 mol/100 mol of the ingested amounts of linalool, α-pinene, p-cymene and β-pinene were recovered in the duodenum. The mean terpene composition of duodenal digesta was 11.7, 9.2 and 79.1 mol/100 mol terpene for p-cymene, α-pinene and β-pinene, differing markedly from the dietary blend in both supplemented groups. Apparent rumen digestibility of dry matter (0.40), of neutral detergent fibre (0.54), and of acid detergent fibre (0.45) was not affected by either level of terpene supplementation. Dry matter intake and milk production, milk fat content or milk fatty acid profile were not affected by terpenes. It is concluded that, because of extensive ruminal degradation of each terpene, the monoterpene blend had no effect on ruminal digestion of dietary constituents or on milk performance whatever the supplementation level.  相似文献   

7.
This study evaluated wheat grain which was treated with xylose in aqueous Ca–Mg lignosulphonate solution at elevated temperatures (WeiPass®) in order to reduce ruminal degradation of starch and crude protein. The two tested isoenergetic and isonitrogenous diets contained on dry matter (DM) basis either 16% maize grain and 6.4% soybean meal (Diet CON) or 17.8% xylose-treated wheat and 4.6% soybean meal (Diet Wheat). Thirty-six German Holstein dairy cows were assigned to one of the two groups according to parity, body weight after calving, and milk yield during the previous lactation. Data collection started at 21 d before the expected calving date until 120 d in milk. The average of DM intake, energy-corrected milk (ECM) yield, and milk fat and protein yields (all given as kg/d) were 18.9, 28.7, 1.25, and 1.02 for Diet CON and 19.3, 32.5, 1.36, and 1.11 for Diet Wheat, respectively. Only ECM and milk protein yields were greater (p < 0.05) for cows receiving Diet Wheat. In conclusion, the xylose-treated wheat grain can replace maize grain and part of soybean meal in diets for lactating dairy cows and may be an alternative feedstuff depending on overall ration composition and availability and costs of grain sources.  相似文献   

8.
Fourteen animals of second and third lactation of Thai Friesian crossbred cows (87.5% Friesian × 12.5% Bos indicus) located at Sakol Nakhon Research and Breeding Centre, Department of Livestock Development, Ministry of Agriculture and Cooperatives, were divided randomly into two groups of seven each to evaluate the effects of evaporative cooling on reproductive and physiological traits under hot, humid conditions. Results indicated that installation of evaporating cooling in the open shed gave a further improvement in ameliorating heat stress in dairy cows in hot-wet environments by utilising the low humidity conditions that naturally occur during the day. The cows housed in an evaporatively cooled environment had both a rectal temperature and respiration rate (39.09°C, 61.39 breaths/min, respectively) significantly lower than that of the non-cooled cows (41.21°C; 86.87 breaths/min). The former group also had higher milk yield and more efficient reproductive performance (pregnancy rate and reduced days open) than the latter group. It is suggested that the non-evaporatively cooled cows did not gain benefit from the naturally lower heat stress during night time.  相似文献   

9.
Rubber seed oil (RO) that is rich in polyunsaturated fatty acids (FA) can improve milk production and milk FA profiles of dairy cows; however, the responses of digestion and ruminal fermentation to RO supplementation in vivo are still unknown. This experiment was conducted to investigate the effect of RO and flaxseed oil (FO) supplementation on nutrients digestibility, rumen fermentation parameters and rumen FA profile of dairy cows. Forty-eight mid-lactation Holstein dairy cows were randomly assigned to one of four treatments for 8 weeks, including basal diet (CON) or the basal dietary supplemented with 4% RO, 4% FO or 2% RO plus 2% FO on a DM basis. Compared with CON, dietary oil supplementation improved the total tract apparent digestibility of DM, neutral detergent fibre and ether extracts ( P < 0.05). Oil treatment groups had no effects on ruminal digesta pH value, ammonia N and microbial crude protein ( P > 0.05), whereas oil groups significantly changed the volatile fatty acid (VFA) profile by increasing the proportion of propionate whilst decreasing total VFA concentration, the proportion of acetate and the ratio of acetate to propionate ( P < 0.05). However, there were no differences in VFA proportions between the three oil groups (P > 0.05). In addition, dietary oil supplementation increased the total unsaturated FA proportion in the rumen by enhancing the proportion of trans-11 C18:1 vaccenic acid (VA), cis-9, trans-11 conjugated linoleic acid (CLA) and α-linolenic acid (ALA) ( P < 0.05). These results indicate that dietary supplementation with RO and FO could improve nutrients digestibility, ruminal fermentation and ruminal FA profile by enhancing the VA, cis-9, trans-11 CLA and ALA composition of lactating dairy cows. These findings provide a theoretical basis for the application of RO in livestock production.  相似文献   

10.
This study investigated effects of dietary forage particle size (PS) and concentrate level (CL) on fermentation profiles of particle-associated rumen liquid (PARL) and free rumen liquid (FRL), in vitro degradation characteristics and concentration of bacterial mass attached to the solid or fluid rumen digesta phase in dairy cows. The experiment was a 4 × 4 Latin square design with four late-lactation dairy cows in four 23 day periods. Cows were restrictively fed (17 kg dry matter (DM)/d) one of four diets varying in the theoretical PS (6 and 30 mm) of grass hay and in the levels (approximately 200 and 550 g/kg, DM basis) of a cereal-based concentrate. Proportion of large particles (>6 mm) and the content of structural fibre in the diet increased by reducing dietary CL and, particularly, by increasing hay PS. This effect was not reflected by changes in mean total volatile fatty acid concentration or pH in the rumen. However, cows fed high concentrate diets had pH of 5.28 and 5.37 in PARL at 3 h after the last meal, when fine or long chopped hay was offered. The low pH may indicate a depression of the capacity of PARL to degrade fibre in vitro. Gas production in vitro of concentrate increased with the high concentrate diet at 12 h, suggesting that amylolytic capacity was affected only in early phases of fermentation. In addition, elevating dietary CL appeared to shift ruminal fermentation outputs from propionate to butyrate and valerate. Inclusion of coarsely chopped hay to a high concentrate diet does not appear to bring advantages due to increased structure in restrictively fed dairy cows. In addition, results suggest that the response of pH in PARL is more sensitive to dietary changes (i.e., forage PS and CL) than the response in FRL, and so PARL might be better to evaluate the risk of ruminal disfunction in dairy cows.  相似文献   

11.
The aim of this study was to elucidate the effect of dietary supplementation of soybean oil (SO) and hydrogenated palm oil (HPO) on the transport of fatty acids (FA) within plasma lipoproteins in lactating and non-lactating cows. Three lactating and three non-lactating Holstein cows were used in two different 3 × 3 Latin square experiments that included three periods of 21 d. Dietary treatments for lactating cows consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (500 g/d per cow) or HPO (500 g/d per cow). For non-lactating cows, dietary treatments consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (170 g/d per cow) or HPO (170 g/d per cow). Compared with the control and SO diet, HPO addition increased (p < 0.05) the concentration of C16:0, C18:0, C18:2cis-9,12, C18:3cis-9,12,15 and total saturated and polyunsaturated FA in the plasma of lactating cows. In non-lactating cows, the SO addition increased the plasma concentration of C18:1trans-11. In lactating cows, concentrations of C16:0, C18:0 and total saturated FA were increased (p < 0.05) by HPO addition in the high-density lipoprotein (HDL). Total saturated FA were increased (p < 0.05) by HPO in very-low-density lipoprotein (VLDL). In non-lactating cows, the concentration of C18:0 was increased (p < 0.05) by HPO in HDL, whereas C18:1trans-11 was increased (p < 0.05) by SO in the low-density lipoprotein. Overall, it was found that distribution and transport of FA within the bovine plasma lipoproteins may be influenced by chain length and degree of unsaturation of dietary lipids. Also, the distribution of individual FA isomers such as C18:1trans-11 and C18:2cis-9,trans-11 may vary depending on the physiological state of the cow (lactating or non-lactating), and are increased in plasma (lactating cows) and the HDL (non-lactating cows) when cows are fed SO.  相似文献   

12.
Dairy cows are commonly fed energy-dense diets with high proportions of concentrate feedstuffs to meet the increased energy needs of early lactation. However, feeding large amounts of concentrates may cause rumen acidosis and impact cow health. The hypothesis tested was that the energy supply and metabolic health of early-lactation Simmental cows can be maintained when high-quality hay rich in water-soluble carbohydrates (WSC) and crude protein (CP) is fed, despite the proportion of concentrates in the diet being reduced or even excluded. Twenty-four Simmental cows were allocated to one of four feeding groups beginning 10 d before the expected calving date, until 28 d thereafter. The feeding groups were 60CH (60% conventional fibre-rich hay plus 40% concentrate feed), 60HQH (60% high-quality hay plus 40% concentrate feed), 75HQH (75% high-quality hay plus 25% concentrate feed) and 100HQH (100% high-quality hay). The fibre-rich hay and high-quality hay differed in WSC content (110 g vs. 198 g of dry matter (DM)), neutral detergent fibre (646 g vs. 423 g of DM) and CP (65 g vs. 223 g of DM). Individual feed intake and milk production were monitored daily, and blood samples were collected weekly. Dry matter intake (DMI) and milk yield increased post partum, but 4 weeks post partum, the DMI of cows fed 100HQH only reached a daily mean DMI of 18.6 kg, whereas the DMI of the other groups averaged 21.9 kg (p < 0.046). The negative energy balance was less pronounced in cows fed 75HQH since they showed similar milk yields to the cows fed 60CH and 100HQH, but their energy intake was higher. Concentrations of milk components were similar across rations 60CH, 60HQH and 75HQH, as were most of blood parameters. Cows fed 100HQH responded to the energy deficit post partum with a higher ratio of non-esterified fatty acids to cholesterol and a higher concentration of ß-hydroxybutyrate (significant in comparison to cows fed 75HQH, p < 0.05). In conclusion, feeding high-quality hay with a WSC content of 20% in DM has the potential to decrease the proportion of concentrates in dairy cow feeding in early lactation, but cannot fully replace their supplementation due to a limited rumen capacity for forage intake.  相似文献   

13.
Three experiments were conducted to determine (1) the dose of glutamate needed to alter fermentation and nitrogen (N) partitioning in a continuous culture system, (2) the effect of supplemental glutamate in diets varying in rumen-undegradable protein on fermentation and N partitioning in a continuous culture system, and (3) the effect of dietary supplemental glutamate on the lactational performance of mid-lactation dairy cows, total tract nutrient digestibility, and ruminal microbial N synthesis. In experiment 1, the equivalent of 0, 40, or 80 g of supplemental glutamate per cow per day was added to a basal diet. The dietary treatments were evaluated in a continuous culture system. Glutamate decreased protein digestion and microbial growth while increasing non-ammonia, non-microbial N. Within the doses tested, the equivalent of 80 g glutamate per cow per day most effectively increased non-ammonia, non-microbial N. In experiment 2, dietary treatments consisted of diets formulated to have low rumen-undegradable protein (LRUP; 62 g/kg DM), low rumen-undegradable protein plus the equivalent of 80 g glutamate per cow per day (LRUP + G), and high rumen-undegradable protein [HRUP; 68 g/kg dry matter (DM)]. The dietary treatments were evaluated in a continuous culture system. When added to a diet low in rumen-undegradable protein, glutamate tended to decrease DM and organic matter (OM) digestibility, decreased total volatile fatty acid (VFA) production, increased fermenter pH, increased feed N converted to microbial N, and had no effect on microbial N production. The LRUP + G diet was similar to the HRUP diet and different from the LRUP diet in feed N converted to microbial N and ammonia N concentration. In experiment 3, 40 Holstein cows were utilized in a crossover study to test the effects of two dietary treatments: 0 or 80 g of supplemental glutamate per cow per day. The addition of glutamate to the diet of lactating dairy cows did not improve lactational performance or nutrient digestibility. Based on the results from these in vitro and in vivo experiments, the addition of glutamate to lactating cow diets is not recommended.  相似文献   

14.
It is well-established that altering the proportion of starch and fibre in ruminant diets can alter ruminal and post-ruminal digestion, although quantitative evidence that this reduces enteric methane (CH4) production in dairy cattle is lacking. The objective of this study was to examine the effect of varying grass-to-maize silage ratio (70 : 30 and 30 : 70 DM basis), offered ad libitum, with either a concentrate that was high in starch or fibre, on CH4 production, intake, performance and milk composition of dairy cows. A total of 20 cows were allocated to one of the four experimental diets in a two-by-two factorial design run as a Latin square with each period lasting 28 days. Measurements were conducted during the final 7 days of each period. Cows offered the high maize silage ration had a higher dry matter intake (DMI), milk yield, milk energy output and lower CH4 emissions when expressed per kg DMI and per unit of ingested gross energy, but there was no difference in total CH4 production. Several of the milk long-chain fatty acids (FA) were affected by forage treatment with the most notable being an increase in 18:0, 18:1 c9, 18:2 c9 c12 and total mono unsaturated FA, observed in cows offered the higher inclusion of maize silage, and an increase in 18:3 c9 c12 c15 when offered the higher grass silage ration. Varying the composition of the concentrate had no effect on DMI or milk production; however, when the high-starch concentrate was fed, milk protein concentration and milk FAs, 10:0, 14:1, 15:0, 16:1, increased and 18:0 decreased. Interactions were observed for milk fat concentration, being lower in cows offered high-grass silage and high-fibre concentrates compared with the high-starch concentrate, and FA 17:0, which was the highest in milk from cows fed the high-grass silage diet supplemented with the high-starch concentrate. In conclusion, increasing the proportion of maize silage in the diets of dairy cows increased intake and performance, and reduced CH4 production, but only when expressed on a DM or energy intake basis, whereas starch-to-fibre ratio in the concentrate had little effect on performance or CH4 production.  相似文献   

15.
The objective was to determine performance and milk fatty acid changes of high producing dairy cows in early lactation, under summer heat, by adding a supplemental rumen inert fat in the form of a saturated free fatty acid (856 g/kg C16:0/kg of total fatty acids) to the total mixed ration (TMR). Early lactation multiparous Holstein cows in two similar pens of 99 and 115 cows were used in a 2 × 2 Latin Square design experiment with 35 d periods during a period when daily high and low temperatures averaged 34.3 and 15.9 °C, the relative humidity averaged 51% and there were no rain events. The TMR was the same for both groups, consisting of approximately 435 g/kg forage and 565 g/kg concentrate, except that the vitamin/mineral premix had no added fat (control, C) or added fat (C16:0) at a level designed to deliver approximately 450 g/cow/d of supplemental fat if cows consumed 26.5 kg/d of dry matter (DM). The two TMR averaged 905 g/kg organic matter (OM), 318 g/kg neutral detergent fiber (aNDF), and 186 g/kg crude protein (CP). The ‘C’ TMR had 58 g/kg total fatty acids with an estimated net energy for lactation (NEl) of 7.3 MJ/kg (DM), while the C16:0 TMR had 72 g/kg total fatty acids and 7.5 MJ/kg NEl (DM). Whole tract digestibility of DM, OM, aNDF and CP tended (P<0.10) to increase, and that of fatty acids increased substantially (P<0.01), with C16:0 feeding, whereas, DM intake was not affected. Milk fat content decreased (P<0.01) with C16:0 feeding (37.5 versus 36.0 g/kg), whereas, true protein content tended (P=0.09) to increase. There was a tendency (P=0.07) for increased milk yield (36.69 versus 38.04 kg/d), while milk protein yield increased (P=0.03) with C16:0 supplementation (1.08 versus 1.13 kg/d). Milk fat yield was unaffected by treatment. Concentrations of short and medium chain milk fatty acids (C6:0–C15:0), decreased, or tended to decrease, with C16:0 addition (C13:0 and C15:0, P<0.10; all others, P≤0.05). The concentration of C16:0 increased (P<0.001) in milk triglycerides from cows fed C16:0 (27.10 versus 31.57 g/kg), the longer chain saturated fatty acids C17:0 and C18:0 decreased (P≤0.05) and other long chain unsaturated fatty acids were unaffected. Benefits of C16:0 feeding on cow productivity must be balanced against negative effects on the nutritive value of the milk (i.e., increased C16:0 in milk fatty acids) produced for human consumption. However, relatively low amounts of supplemental C16:0 (27.10 versus 31.57 g/kg in milk triglycerides for C and C16:0 supplemented cows, respectively) were actually secreted in milk, in spite of them being essentially fully digested in the digestive tract. Strategies to divide cows into production groups based on milk yield and/or milk fat proportions could further limit C16:0 secretion in milk. Supplemental dietary C16:0 may have positive effects on milk production that outweigh the negative health effects of the increased C16:0 content in the milk fat.  相似文献   

16.
The aim of this study was to examine the influence of glyphosate (GL) residues in feedstuffs on performance, energy balance and health-related characteristics of lactating dairy cows fed diets with different concentrate feed proportions. After an adaption period, 64 German Holstein cows (207 ± 49 d in milk; mean ± SD) were assigned to either groups receiving a GL contaminated total mixed ration (TMR) (GL groups) or an uncontaminated TMR (CON groups) during a 16 weeks trial. Contaminated feedstuffs used were legally GL-treated peas and wheat (straw and grain). GL and CON groups were subdivided into a “low concentrate” group (LC) fed on dry matter (DM) basis of 21% maize silage, 42% grass silage, 7% straw and 30% concentrate and a “high concentrate” group (HC) composed of 11% maize silage, 22% grass silage, 7% straw and 60% concentrate for ad libitum consumption. Body condition score, body weight, DM intake and milk performance parameters were recorded. In blood serum, β-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA) and glucose were measured and energy balance was calculated. Milk was analysed for GL residues. At week 0, 7 and 15, general health status was evaluated by a modified clinical score. The average individual GL intake amounted for Groups CONLC, CONHC, GLLC and GLHC to 0.8, 0.8, 73.8 and 84.5 mg/d, respectively. No GL residues were detected in milk. GL contamination did not affect body condition score, body weight, DM intake, nutrient digestibility, net energy intake, net energy balance or BHB, glucose, NEFA and milk performance parameters; whereas concentrate feed proportion and time did affect most parameters. The clinical examination showed no adverse effect of GL-contaminated feedstuffs on cows’ health condition. In the present study, GL-contaminated feedstuffs showed no influence on performance and energy balance of lactating dairy cows, irrespective of feed concentrate proportion.  相似文献   

17.
The postpartum period is crucial in dairy cows and is marked by major physiological and metabolic changes that affect milk production, immune response and fertility. Nutrition remains the most important lever for limiting the negative energy balance and its consequences on general health status in highly selected dairy cows. In order to analyze the effect of a commercial micronutrient on intrinsic parameters, performances and the epigenome of dairy cows, 2 groups of 12 Holstein cows were used: 1 fed a standard diet (mainly composed of corn silage, soybean meal and non-mineral supplement) and the other 1 fed the same diet supplemented with the commercial micronutrient (µ-nutrient supplementation) for 4 weeks before calving and 8 weeks thereafter. Milk production and composition, BW, body condition score (BCS), DM intake (DMI) and health (calving score, metritis and mastitis) were recorded over the study period. Milk samples were collected on D15 and D60 post-calving for analyses of casein, Na+ and K+ contents and metalloprotease activity. Milk leukocytes and milk mammary epithelial cells (mMECs) were purified and counted. The viability of mMECs was assessed, together with their activity, through an analysis of gene expression. At the same time points, peripheral blood mononuclear cells (PBMCs) were purified and counted. Using genomic DNA extracted from PBMCs, mMECs and milk leukocytes, we assessed global DNA methylation (Me-CCGG) to evaluate the epigenetic imprinting associated with the µ-nutrient-supplemented diet. The µ-nutrient supplementation increased BCS and BW without modifying DMI or milk yield and composition. It also improved calving condition, reducing the time interval between calving and first service. Each easily collectable cell type displayed a specific pattern of Me-CCGG with only subtle changes associated with lactation stages in PBMCs. In conclusion, the response to the µ-nutrient supplementation improved the body condition without alteration of global epigenetic status in dairy cows.  相似文献   

18.
The objective was to evaluate serum concentrations of nonesterified fatty acids (NEFA), cortisol, insulin, and progesterone (P4) of dairy cows maintaining or mobilizing body weight (BW). Eleven non-lactating, non-pregnant, and ovariectomized Gir × Holstein cows were stratified by BW and body condition score (BCS), and randomly assigned to: 1) BW loss (six cows; LOSS) and 2) BW maintenance (five cows; MAINT). Treatments were achieved through a grazing schedule using three pastures. From Days −7 to 1 of the study, all cows were maintained in Pasture A (12 kg of dry matter/cow daily). From Days 2 to 30, LOSS cows were maintained in Pasture B (less than 1.0 kg of dry matter/cow daily), whereas MAINT cows were maintained in Pasture C (12 kg of dry matter/cow daily). However, from Days 3 to 30 of the study, cows from both treatments were regrouped daily into Pasture A from 0600 to 1200 h to allow LOSS cows to consume, on average, 4.5 kg/d of forage dry matter. On Day −66 of the study, all cows received an intravaginal drug releasing device containing 1.9 g of P4 (replaced every 14 d and removed on Day 3). Cow BW and BCS were assessed on Day 0 and 30 and blood samples were collected daily from Days 0 to 30 at 0600 and 1200 h. Changes in BW and BCS were greater (P ≤ 0.05) in LOSS cows compared to MAINT cows. Within samples collected at 0600 h, serum NEFA concentrations were often greater (P < 0.05) in LOSS cows compared to MAINT after Day 14. Serum P4 concentrations were greater (P < 0.05) on Days 21 and 22, and tended (P < 0.10) to be greater on Days 16, 23, and 24 of the study in LOSS cows compared to MAINT. In conclusion, BW loss was associated with increased circulating concentrations of P4 in non-lactating ovariectomized dairy cows; this was mainly attributed to fat mobilization and consequent release of P4 stored in adipose tissues.  相似文献   

19.
Whole-plant faba bean silage has a high content in indigestible fiber. Improvement of fiber digestibility of faba bean silage would benefit animal production. However, there is no study on pretreating fibrolytic enzyme in whole-plant faba bean silage-based diet for dairy cows on animal performance. The objectives of this study were to evaluate the effects of pretreating whole-plant faba bean silage-baseddiet with fibrolytic enzyme (a mixture of xylanase and cellulase; AB Vista, UK) derived from Trichoderma reesei (FETR) on lactational performance, digestibility, ruminal fermentation characteristics, and feeding behavior of dairy cows. The animal trial was conducted using eight lactating Holstein cows (BW = 710 ± 44 kg and Days in Milk (DIM) = 121 ± 17 days) with four levels of FETR (0, 0.5, 0.75, and 1.0 mL of FETR/kg DM of silage) in a replicated Latin square design. These enzyme treatments were selected based on the previous in situ and in vitro findings that showed positive responses to the whole-plant faba bean silage. The enzyme treatments were directly applied on the silage prior to mixing process. The total mixed rations contained 31% of faba bean silage, 14% of grass hay, 3.5% of straw, 30% of barley and corn grain and 21.5% of concentrate. There was no significant difference of applying FETR on nutrient intake (P > 0.05) except for CP intake, which was reduced in FETR group compared to control (P < 0.01, 4.4 vs 4.54 kg/d). There was a linear effect found in NDF digestibility when treated with FETR, where maximum improvement was achieved with 0.5 mL of FETR application. The milk fat yield, percentage of milk fat and fat-corrected milk were linearly affected by the increasing level of enzyme. The cows fed a diet supplemented with enzymes tended to have a lower milk fat. Feed efficiency linearly responded to incremental levels of FETR. There was no enzyme effect on feeding behavior and nitrogen balance and utilization. Results from this study indicated that supplementing fibrolytic enzyme on whole-plant faba bean silage diets for dairy cows improved lactational performance, intake and digestibility with 0.5 mL of FETR application. However, adding higher enzyme level resulted in negative effects on animal performance.  相似文献   

20.
《Theriogenology》2016,86(9):1540-1548
The objective of this study was to investigate the effect of dietary supplementation of pioglitazone (PGT), a specific ligand for PPARγ, on metabolic dynamics, milk production, and reproductive performance of transition dairy cows. Eighty multiparous Holstein cows in their second or more lactations were blocked by the calving date and parity and assigned randomly to four dietary groups (n = 20 cow/treatment) including control (no PGT−/−), supplemented with PGT (6-mg PGT/kg body weight) from Day −14 to +21 relative to parturition (PGT+/+) or only during prepartum (PGT+/−) or postpartum periods (PGT−/+). Postpartum body condition score and body weight loss decreased (P < 0.05) in all PGT-supplemented groups. Milk yield was not affected by PGT supplementation (P > 0.05). Percentage of milk fat decreased (P < 0.05) in all PGT-treated groups; however, milk fat yield was lower (P < 0.05) in PGT (+/+) and PGT (+/−) groups compared with PGT (−/−). Peripartum (Day −7 to +7) concentrations of plasma nonesterified fatty acids and β-Hydroxybutyrate decreased in PGT (+/+) but not in the PGT (−/−) group (P < 0.05). During the postpartum period, PGT reduced (P > 0.05) plasma concentrations of nonesterified fatty acids in all PGT-treated groups but did not affect β-Hydroxybutyrate level. Plasma concentrations of triglycerides decreased in all PGT-supplemented groups. Supplementation of PGT increased the peripartum concentrations of plasma glucose in PGT (+/+) and PGT (+/−) groups compared with control. Plasma concentrations of insulin-like growth factor 1 were higher in PGT (+/+) compared with the control group during both the peripartum and postpartum periods. Plasma concentrations of growth hormone and insulin were not affected by PGT treatment (P > 0.05). Mean days to ovulation were lower in PGT (+/+) and PGT (-/+), and the proportion of cows ovulating by Day 14 postpartum was higher in PGT (+/+) compared with control. Days open were shorter in PGT (+/+), PGT (+/−), and PGT (−/+) groups compared with control. However, the proportion of pregnant cows at 120 days in milk were higher in all PGT-supplemented groups. The results showed positive effects of dietary supplementation of PGT, especially supplementation during both the prepartum and postpartum periods, on metabolic dynamics, ovarian function, and reproductive performance in transition dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号