首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
Mesorhizobium tianshanense is a nitrogen-fixing bacterium that can establish symbiotic associations with Glycyrrhiza uralensis in the form of root nodules. Nodule formation in rhizobia often requires various secreted carbohydrates. To investigate exopolysaccharide (EPS) production and function in M. tianshanense, we performed a genome-wide screen using transposon mutagenesis to identify genes involved in EPS production. We identified seven mutants that produced significantly lower amounts of EPS as well as a two-component sensor kinase/response regulator system that is involved in the activation of EPS synthesis. EPS mutants formed significantly less biofilm and displayed severely reduced nodulation capacity than wild type bacteria, suggesting that EPS synthesis can play important roles in the symbiosis process. Peng Wang, Zengtao Zhong and Jing Zhou have contributed equally to this work.  相似文献   

3.
The type I protein secretion system of Rhizobium leguminosarum bv. viciae encoded by the prsD and prsE genes is responsible for secretion of the exopolysaccharide (EPS)-glycanases PlyA and PlyB. The formation of a ring of biofilm on the surface of the glass in shaken cultures by both the prsD and prsE secretion mutants was greatly affected. Confocal laser scanning microscopy analysis of green-fluorescent-protein-labeled bacteria showed that during growth in minimal medium, R. leguminosarum wild type developed microcolonies, which progress to a characteristic three-dimensional biofilm structure. However, the prsD and prsE secretion mutants were able to form only an immature biofilm structure. A mutant disrupted in the EPS-glycanase plyB gene showed altered timing of biofilm formation, and its structure was atypical. A mutation in an essential gene for EPS synthesis (pssA) or deletion of several other pss genes involved in EPS synthesis completely abolished the ability of R. leguminosarum to develop a biofilm. Extracellular complementation studies of mixed bacterial cultures confirmed the role of the EPS and the modulation of the biofilm structure by the PrsD-PrsE secreted proteins. Protein analysis identified several additional proteins secreted by the PrsD-PrsE secretion system, and N-terminal sequencing revealed peptides homologous to the N termini of proteins from the Rap family (Rhizobium adhering proteins), which could have roles in cellular adhesion in R. leguminosarum. We propose a model for R. leguminosarum in which synthesis of the EPS leads the formation of a biofilm and several PrsD-PrsE secreted proteins are involved in different aspects of biofilm maturation, such as modulation of the EPS length or mediating attachment between bacteria.  相似文献   

4.
5.

Background

The bacterial cell surface is a crucial factor in cell-cell and cell-host interactions. Lactobacillus johnsonii FI9785 produces an exopolysaccharide (EPS) layer whose quantity and composition is altered in mutants that harbour genetic changes in their eps gene clusters. We have assessed the effect of changes in EPS production on cell surface characteristics that may affect the ability of L. johnsonii to colonise the poultry host and exclude pathogens.

Results

Analysis of physicochemical cell surface characteristics reflected by Zeta potential and adhesion to hexadecane showed that an increase in EPS gave a less negative, more hydrophilic surface and reduced autoaggregation. Autoaggregation was significantly higher in mutants that have reduced EPS, indicating that EPS can mask surface structures responsible for cell-cell interactions. EPS also affected biofilm formation, but here the quantity of EPS produced was not the only determinant. A reduction in EPS production increased bacterial adhesion to chicken gut explants, but made the bacteria less able to survive some stresses.

Conclusions

This study showed that manipulation of EPS production in L. johnsonii FI9785 can affect properties which may improve its performance as a competitive exclusion agent, but that positive changes in adhesion may be compromised by a reduction in the ability to survive stress.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0347-2) contains supplementary material, which is available to authorized users.  相似文献   

6.
Lactobacillus sakei strain 0-1 produces an exopolysaccharide (EPS) consisting of glucose and rhamnose in a ratio of 3:2. As part of a biochemical and molecular analysis of the EPS biosynthetic pathway in L. sakei strain 0-1, we have isolated a random set of EPS-negative mutants. Following treatment of cells with the mutagen ethylmethane sulfonic acid, a total of 10 mutants were identified that lacked the clear ropy appearance of wild-type colonies on agar plates. Their characterization revealed that eight mutants had completely lost the ability to synthesize the normal EPS. Six of these mutants lacked activities of enzymes involved in the biosynthesis of dTDP-rhamnose, required for EPS production. Only mutant strains 12 and 20 were directly affected in EPS synthesis. Strain 12 synthesized EPS with a different sugar composition, however. Interestingly, strain 12 showed temperature-dependent EPS synthesis, with the highest amounts synthesized at 12°C, and low amounts at the optimal temperature for growth (30°C). Two mutants were in fact EPS-positive, producing the normal EPS, but displayed a different cell morphology (elongated cells), indicating a modification in cell wall synthesis.  相似文献   

7.
Summary A recombinant plasmid pIJ3079 contains DNA sequences from Xanthomonas campestris pv campestris involved in coordinate negative regulation of production of the extracellular enzymes protease, endoglucanase, amylase and polygalacturonate lyase, and extracellular polysaccharide (EPS). Wild-type bacteria harbouring pIJ3079 and therefore carrying extra copies of the gene(s) therein showed reduced enzyme and EPS production and reduced aggresiveness to plants. Localised Tn5 mutagenesis of the corresponding region of the genome gave mutants producing higher levels of enzymes and EPS than the wild type, suggesting that the gene(s) may negatively regulate production in the normal cell. Enzyme and EPS production in the mutants was still dependent on previously characterised positive regulatory genes.  相似文献   

8.
Rhizobium leguminosarum secretes two extracellular glycanases, PlyA and PlyB, that can degrade exopolysaccharide (EPS) and carboxymethyl cellulose (CMC), which is used as a model substrate of plant cell wall cellulose polymers. When grown on agar medium, CMC degradation occurred only directly below colonies of R. leguminosarum, suggesting that the enzymes remain attached to the bacteria. Unexpectedly, when a PlyA-PlyB-secreting colony was grown in close proximity to mutants unable to produce or secrete PlyA and PlyB, CMC degradation occurred below that part of the mutant colonies closest to the wild type. There was no CMC degradation in the region between the colonies. By growing PlyB-secreting colonies on a lawn of CMC-nondegrading mutants, we could observe a halo of CMC degradation around the colony. Using various mutant strains, we demonstrate that PlyB diffuses beyond the edge of the colony but does not degrade CMC unless it is in contact with the appropriate colony surface. PlyA appears to remain attached to the cells since no such diffusion of PlyA activity was observed. EPS defective mutants could secrete both PlyA and PlyB, but these enzymes were inactive unless they came into contact with an EPS(+) strain, indicating that EPS is required for activation of PlyA and PlyB. However, we were unable to activate CMC degradation with a crude EPS fraction, indicating that activation of CMC degradation may require an intermediate in EPS biosynthesis. Transfer of PlyB to Agrobacterium tumefaciens enabled it to degrade CMC, but this was only observed if it was grown on a lawn of R. leguminosarum. This indicates that the surface of A. tumefaciens is inappropriate to activate CMC degradation by PlyB. Analysis of CMC degradation by other rhizobia suggests that activation of secreted glycanases by surface components may occur in other species.  相似文献   

9.
The genetics of the biosynthesis of an exocellular polysaccharide (EPS) from Zoogloea ramigera I-16-M is being investigated. Tn5 insertion mutants deficient in EPS production were isolated by screening for the absence of fluorescence on plates containing the dye Cellufluor (Polysciences Chemicals). Complementation of these mutations was achieved with a Z. ramigera I-16-M gene library constructed in a broad-host-range cosmid vector and introduced into the I-16-M mutants by conjugation. Four recombinant plasmids able to restore EPS production to all of these mutants were found to contain at least 14 kilobases of common insert DNA. Subcloning of the common region and restriction mapping the locations of Tn5 insertions have identified two complementation groups contained within a chromosomal segment of DNA that is between 4.6 and 6.5 kilobases in size. We have clearly demonstrated genetic instability in this region which leads to spontaneous deletions and possibly rearrangements resulting in the loss of EPS production.  相似文献   

10.
The dual roles of capsular extracellular polymeric substances (EPS) in the photocatalytic inactivation of bacteria were demonstrated in a TiO2-UVA system, by comparing wild-type Escherichia coli strain BW25113 and isogenic mutants with upregulated and downregulated production of capsular EPS. In a partition system in which direct contact between bacterial cells and TiO2 particles was inhibited, an increase in the amount of EPS was associated with increased bacterial resistance to photocatalytic inactivation. In contrast, when bacterial cells were in direct contact with TiO2 particles, an increase in the amount of capsular EPS decreased cell viability during photocatalytic treatment. Taken together, these results suggest that although capsular EPS can protect bacterial cells by consuming photogenerated reactive species, it also facilitates photocatalytic inactivation of bacteria by promoting the adhesion of TiO2 particles to the cell surface. Fluorescence microscopy and scanning electron microscopy analyses further confirmed that high capsular EPS density led to more TiO2 particles attaching to cells and forming bacterium-TiO2 aggregates. Calculations of interaction energy, represented by extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) potential, suggested that the presence of capsular EPS enhances the attachment of TiO2 particles to bacterial cells via acid-base interactions. Consideration of these mechanisms is critical for understanding bacterium-nanoparticle interactions and the photocatalytic inactivation of bacteria.  相似文献   

11.
During lateral root base nodulation, the microsymbiont Azorhizobium caulinodans enters its host plant, Sesbania rostrata, via the formation of outer cortical infection pockets, a process that is characterized by a massive production of H(2)O(2). Infection threads guide bacteria from infection pockets towards nodule primordia. Previously, two mutants were constructed that produce lipopolysaccharides (LPSs) similar to one another but different from the wild-type LPS, and that are affected in extracellular polysaccharide (EPS) production. Mutant ORS571-X15 was blocked at the infection pocket stage and unable to produce EPS. The other mutant, ORS571-oac2, was impaired in the release from infection threads and was surrounded by a thin layer of EPS in comparison to the wild-type strain that produced massive amounts of EPS. Structural characterization revealed that EPS purified from cultured and nodule bacteria was a linear homopolysaccharide of alpha-1,3-linked 4,6-O-(1-carboxyethylidene)-D-galactosyl residues. In situ H(2)O(2) localization demonstrated that increased EPS production during early stages of invasion prevented the incorporation of H(2)O(2) inside the bacteria, suggesting a role for EPS in protecting the microsymbiont against H(2)O(2). In addition, ex planta assays confirmed a positive correlation between increased EPS production and enhanced protection against H(2)O(2).  相似文献   

12.
By Tn5 mutagenesis of Rhizobium loti PN184 (NZP2037 str-1) and selection for nonfluorescence of colonies on Calcofluor agar, eight independently generated expolysaccharide (EPS) mutants (three smooth and five rough) were isolated. The parent strain, PN184, was found to produce an acidic EPS. This EPS was produced. with reduced O acetylation, by the smooth EPS mutants but not by the rough EPS mutants. Lipopolysaccharide was isolated from all mutants and was identical to that of PN184 as defined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All mutants were resistant to lysis by R. loti bacteriophage phi 2037/1. Cosmids that complemented the mutations in the rough EPS mutants were isolated from a pLAFR1 gene library of NZP2037 by complementation of the nonfluorescent phenotype. The genes identified were shown to be unlinked and located on the chromosome. All mutants were fully effective when inoculated onto Lotus pedunculatus, a determinate nodulating host, but were ineffective, inducing the formation of very small nodules or tumorlike growths, when inoculated onto Leucaena leucocephala, an indeterminate nodulating host. These results, obtained in an isogenic Rhizobium background, support suggestions that acidic EPS is required for effective nodulation of indeterminate nodulating legumes but is not required for effective nodulation of determinate nodulating legumes.  相似文献   

13.
14.
AIMS: To determine the role of the EpsA, EpsB, and EpsC proteins encoded at the 5'-end of the exopolysaccharide (EPS) gene cluster in regulation of EPS production in Lactococcus lactis. METHODS AND RESULTS: Deletion and paralog-replacement mutants of epsABCD were used to determine the function of EpsA, EpsB and EpsC in EPS production and polymer chain length determination in L. lactis. EpsA and EpsB appeared to be essential for EPS biosynthesis in L. lactis, while deletion of the phosphatase (EpsC) only had a minor effect on the EPS production level. Determination of the phosphorylation state of EpsB and analysis of a C-terminally truncated EpsB variant indicate that EPS biosynthesis in L. lactis is driven by a nonphosphorylated form of EpsB. CONCLUSIONS: The data presented here show that in L. lactis, EPS production is under control of a phosphoregulatory system and that EPS biosynthesis correlates with an unphosphorylated EpsB. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides molecular understanding of polysaccharide production in L. lactis that could eventually enable novel approaches to control EPS production by lactic acid bacteria during industrial fermentation processes.  相似文献   

15.
16.
Social (S)-motility in Myxococcus xanthus is a flagellum-independent gliding motility system that allows bacteria to move in groups on solid surfaces. S-motility has been shown to require type IV pili (TFP), exopolysaccharide (EPS; a component of fibrils) and lipopolysaccharide (LPS). Previously, information concerning EPS biogenesis in M. xanthus was lacking. In this study, we screened 5000 randomly mutagenized colonies for defects in S-motility and EPS and identified two genetic regions essential for EPS biogenesis: the EPS synthesis (eps) region and the EPS-associated (eas) region. Mutants with insertions in the eps and eas regions were defective in S-motility and fruiting body formation. These mutants failed to bind the dye calcofluor white, indicating that they lacked EPS; however, they retained normal TFP and LPS. Analysis of the eps locus showed several open reading frames (ORFs) that encode homologues to glycosyltransferases, glucanases and EPS transporters as well as regulatory proteins; the eas locus contains two ORFs: one exhibits homology to hypothetical proteins with a conserved domain of unknown function and the other displays no apparent homology to other proteins in the database. Further genetic mutagenesis analysis indicates that the whole eps region is involved in the biosynthesis of fibrils and fibril EPS. The operon at the proximal end of the eps region was analysed by generating in-frame deletion mutations. These mutants showed varying degrees of defects in the bacterium's ability to produce EPS or perform EPS-related functions, confirming the involvement of these genes in M. xanthus EPS biogenesis.  相似文献   

17.

Bacterial extracellular polymeric substances, which are basically bacterial metabolites, have currently become a subject of great concern of modern day microbiologists and biotechnologists. Among these metabolites, bacterial exopolysaccharides or EPS, in particular, have gained a significant importance. EPS are formed by the bacteria in their late exponential or stationary phase of growth under special situations for specific purposes. They take part in the formation of bacterial biofilms. There is a great diversity in the types of EPS. Strikingly enough, a same species of bacterium can produce different types of EPS under different situations. The importance of EPS is largely because of their different applications in various industries. Now that the bacterial EPS has got the potentiality to become an upcoming tool in various futuristic applications of human benefit, the focus currently develops towards how better they can be produced in the laboratory by promoting the favorable factors for their production. While studying with different EPS forming bacteria, both the intrinsic factors like genetic configuration of the bacteria and the extrinsic factors like culture conditions under the influence of different physico-chemical parameters in order to maximize the EPS production have been taken into consideration. Both the factors have proved their worth. Hence, towards a better outcome for EPS production, it is indicated that a genetic manipulation of the bacteria should be synchronized with a proper selection of its culture condition by controlling different physico-chemical parameters.

  相似文献   

18.
Extracellular polysaccharides play an important role in aggregation and surface colonization of plant-associated bacteria. In this work, we report the time course production and monomer composition of the exopolysaccharide (EPS) produced by wild type strain and several mutants of the plant growth promoting rhizobacterium (PGPR) Azospirillum brasilense. In a fructose synthetic medium, wild type strain Sp7 produced a glucose-rich EPS during exponential phase growth and an arabinose-rich EPS during stationary and death phase growth. D-glucose or L-arabinose did not support cell growth as sole carbon sources. However, glucose and arabinose-rich EPSs, when used as carbon source, supported bacterial growth. Cell aggregation of Sp7 correlated with the synthesis of arabinose-rich EPS. exoB (UDP-glucose 4'-epimerase), exoC (phosphomannomutase) and phbC (poly-beta-hydroxyburyrate synthase) mutant strains, under tested conditions, produced arabinose-rich EPS and exhibited highly cell aggregation capability. A mutant defective in LPS production (dTDP 4-rhamnose reductase; rmlD) produced glucose-rich EPS and did not aggregate. These results support that arabinose content of EPS plays an important role in cell aggregation. Cell aggregation appears to be a time course phenomenon that takes place during reduced metabolic cell activity. Thus, aggregation could constitute a protected model of growth that allows survival in a hostile environment. The occurrence of exoC and rmlD was detected in several species of Azospirillum.  相似文献   

19.
We have recently obtained strong genetic evidence that the acidic Calcofluor-binding exopolysaccharide (EPS I) of Rhizobium meliloti Rm1021 is required for nodule invasion and possibly for later events in nodule development. Thirteen loci on the second megaplasmid have been identified that are required for, or affect, the synthesis of EPS I. Mutations in certain of these loci completely abolish the production of EPS I and result in mutants that form empty Fix- nodules. exoH mutants fail to succinylate their EPS I and form empty Fix- nodules. We have identified two unlinked regulatory loci, exoR and exoS, whose products play negative roles in the regulation of expression of the exo genes. We have recently discovered that R. meliloti has a latent capacity to synthesize a second exopolysaccharide (EPS II) that can substitute for the role(s) of EPS I in nodulation of alfalfa but not of other hosts. Possible roles for Rhizobium exopolysaccharides in nodulation are discussed.  相似文献   

20.
Vibrio vulnificus is a human and animal pathogen that carries the highest death rate of any food-borne disease agent. It colonizes shellfish and forms biofilms on the surfaces of plankton, algae, fish, and eels. Greater understanding of biofilm formation by the organism could provide insight into approaches to decrease its load in filter feeders and on biotic surfaces and control the occurrence of invasive disease. The capsular polysaccharide (CPS), although essential for virulence, is not required for biofilm formation under the conditions used here. In other bacteria, increased biofilm formation often correlates with increased exopolysaccharide (EPS) production. We exploited the translucent phenotype of acapsular mutants to screen a V. vulnificus genomic library and identify genes that imparted an opaque phenotype to both CPS biosynthesis and transport mutants. One of these encoded a diguanylate cyclase (DGC), an enzyme that synthesizes bis-(3'-5')-cyclic-di-GMP (c-di-GMP). This prompted us to use this DGC, DcpA, to examine the effect of elevated c-di-GMP levels on several developmental pathways in V. vulnificus. Increased c-di-GMP levels induced the production of an EPS that was distinct from the CPS and dramatically enhanced biofilm formation and rugosity in a CPS-independent manner. However, the EPS could not compensate for the loss of CPS production that is required for virulence. In contrast to V. cholerae, motility and virulence appeared unaffected by elevated levels of c-di-GMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号