首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robotic spotting of cDNA and oligonucleotide microarrays   总被引:1,自引:0,他引:1  
DNA microarrays are a uniquely efficient method for simultaneously assessing the expression levels of thousands of genes. Owing to their flexibility and value, mechanically spotted microarrays remain the most popular platform. Here, we review recent technological advances with a focus on spotted arrays. Robotic spotting still poses numerous technical challenges. To reduce artefacts, many laboratories have recently investigated ways of improving the spotting process. We compare alternative options and discuss implications for next-generation systems. Together with modern approaches to data analysis, such developments bring greatly improved reliability to individual microarray experiments. Advancing towards the ultimate goal of delivering calibrated, truly quantitative gene-expression measurements on a genomic scale, microarray technology remains at the forefront of post-genomic systems biology.  相似文献   

2.
Strategy for the design of custom cDNA microarrays   总被引:1,自引:0,他引:1  
Lorenz MG  Cortes LM  Lorenz JJ  Liu ET 《BioTechniques》2003,34(6):1264-1270
DNA microarrays are valuable but expensive tools for expression profiling of cells, tissues, and organs. The design of custom microarrays leads to cost reduction without necessarily compromising their biological value. Here we present a strategy for designing custom cDNA microarrays and constructed a microarray for mouse immunology research (ImmunoChip). The strategy used interrogates expressed sequence tag databases available in the public domain but overcomes many of the problems encountered. Immunologically relevant clusters were selected based on the expression of expressed sequence tags in relevant libraries. Selected clusters were organized in modules, and the best representative clones were identified. When tested, this microarray was found to have minimal clone identity errors or phage contamination and identified molecular signatures of lymphoid cell lines. Our proposed design of custom microarrays avoids probe redundancy, allows the organization of the chip to optimize chip production, and reduces microarray production costs. The strategy described is also useful for the design of oligonucleotide microarrays.  相似文献   

3.
Zhu B  Ping G  Shinohara Y  Zhang Y  Baba Y 《Genomics》2005,85(6):657-665
As the data generated by microarray technology continue to amass, it is necessary to compare and combine gene expression data from different platforms. To evaluate the performance of cDNA and long oligonucleotide (60-mer) arrays, we generated gene expression profiles for two cancer cell lines and compared the data between the two platforms. All 6182 unique genes represented on both platforms were included in the analysis. A limited correlation (r = 0.4708) was obtained and the difference in measurement of low-expression genes was considered to contribute to the limited correlation. Further restriction of the data set to differentially expressed genes detected in cDNA microarrays (1205 genes) and oligonucleotide arrays (1325 genes) showed modest correlations of 0.7076 and 0.6441 between the two platforms. Quantitative real-time PCR measurements of a set of 10 genes showed better correlation with oligonucleotide arrays. Our results demonstrate that there is substantial variation in the data generated from cDNA and 60-mer oligonucleotide arrays. Although general agreement was observed in measurements of differentially expressed genes, we suggest that data from different platforms could not be directly amassed.  相似文献   

4.
Microarray chips produced by commercial vendors and academic laboratories are mostly generic in nature to facilitate wide applicability. With the sequencing of the human, mouse, and rat genomes, the thrust is to expand clone and oligonucleotide sets and increase the number of genes represented on a particular array. This is appropriate for discovery based investigations where microarray technology has been successfully utilized. However, array technology can also be employed to perform hypothesis based studies if optimized chips can be produced with relevant content. Existing array technology available at core facilities can be effectively utilized to produce a custom microarrays with genes that are most relevant to the research interests of individual investigators or research groups for use as a standard molecular tool. The power of this technology can be harnessed to further our understanding of specific biological problems without involvement in extensive data mining and analysis. The custom microarray approach is presented with procedural details for design and production in the context of neurobiological investigations.  相似文献   

5.
6.
Analysis of differential gene expression is a classic tool in experimental biology. Broadly applicable new methods to identify and quantitative differential mRNA profiles, such as long distance differential display PCR and cDNA microarrays, promise to greatly accelerate understanding of mechanisms of development, differentiation, and disease.  相似文献   

7.
Data extraction from composite oligonucleotide microarrays   总被引:1,自引:0,他引:1       下载免费PDF全文
Microarray or DNA chip technology is revolutionizing biology by empowering researchers in the collection of broad-scope gene information. It is well known that microarray-based measurements exhibit a substantial amount of variability due to a number of possible sources, ranging from hybridization conditions to image capture and analysis. In order to make reliable inferences and carry out quantitative analysis with microarray data, it is generally advisable to have more than one measurement of each gene. The availability of both between-array and within-array replicate measurements is essential for this purpose. Although statistical considerations call for increasing the number of replicates of both types, the latter is particularly challenging in practice due to a number of limiting factors, especially for in-house spotting facilities. We propose a novel approach to design so-called composite microarrays, which allow more replicates to be obtained without increasing the number of printed spots.  相似文献   

8.
9.
In situ synthesis of oligonucleotide microarrays.   总被引:8,自引:0,他引:8  
This contribution presents a brief overall look of the methods for the preparation of various types of DNA microarrays and a thorough examination of the methods for in situ synthesis of oligonucleotide microarrays.  相似文献   

10.
The aims were to evaluate the common reference design approach in microarray experiments and to evaluate the technical performance and the normalisation of cDNA microarrays with a limited number of spots. Total RNA from 3 normal and 3 tumour sample biopsies were used for synthesis of amino-allyl labelled cRNA. Equal amounts of cRNA from all samples were mixed as reference. After conjugation of cRNA with fluorophores (Cy3/Cy5), each individual tumour cRNA was hybridised to a cDNA microarray together with reference cRNA, scanned and analysed. We show that our procedures for producing cDNA microarrays are reproducible. The concordance between duplicated spots and replicate hybridisation was found to be high. We have demonstrated that our cDNA microarrays are of a high technical quality. The majority of the cDNA microarrays had low local spot background levels. Despite the high background levels for some local spots, variation could be minimized by locally weighted scatter plot smooth normalisation (LOWESS), which we showed was also suitable for normalisation of cDNA microarrays with a limited number of probes.  相似文献   

11.
SUMMARY: OligoArray is a program that computes gene specific and secondary structure free oligonucleotides for genome-scale oligonucleotide microarray construction or other applications. AVAILABILITY: The program code is distributed under the GNU General Public License and is freely available for non-profit use via request from the authors.  相似文献   

12.
ROSO: optimizing oligonucleotide probes for microarrays   总被引:1,自引:0,他引:1  
ROSO is software to design optimal oligonucleotide probe sets for microarrays. Selected probes show no significant cross-hybridization, no stable secondary structures and their Tm are chosen to minimize the Tm variability of the probe set. AVAILABILITY: The program is available on the internet. Sources are freely available, for non-profit use, on request to the authors. Supplementary information: http://pbil.univ-lyon1.fr/roso  相似文献   

13.
Gene expression analysis by means of microarrays is based on the sequence-specific binding of RNA to DNA oligonucleotide probes and its measurement using fluorescent labels. The binding of RNA fragments involving sequences other than the intended target is problematic because it adds a chemical background to the signal, which is not related to the expression degree of the target gene. The article presents a molecular signature of specific and nonspecific hybridization with potential consequences for gene expression analysis. We analyzed the signal intensities of perfect match (PM) and mismatch (MM) probes of GeneChip microarrays to specify the effect of specific and nonspecific hybridization. We found that these events give rise to different relations between the PM and MM intensities as function of the middle base of the PM, namely a triplet-like (C > G approximately T > A > 0) and a duplet-like (C approximately T > 0 > G approximately A) pattern of the PM-MM log-intensity difference upon binding of specific and nonspecific RNA fragments, respectively. The systematic behavior of the intensity difference can be rationalized on the level of basepairings of DNA/RNA oligonucleotide duplexes in the middle of the probe sequence. Nonspecific binding is characterized by the reversal of the central Watson-Crick (WC) pairing for each PM/MM probe pair, whereas specific binding refers to the combination of a WC and a self-complementary (SC) pairing in PM and MM probes, respectively. The Gibbs free energy contribution of WC pairs to duplex stability is asymmetric for purines and pyrimidines of the PM and decreases according to C > G approximately T > A. SC pairings on the average only weakly contribute to duplex stability. The intensity of complementary MM introduces a systematic source of variation which decreases the precision of expression measures based on the MM intensities.  相似文献   

14.
Multiple Arabidopsis thaliana clones from an experimental series of cDNA microarrays are evaluated in order to identify essential sources of noise in the spotting and hybridization process. Theoretical and experimental strategies for an improved quantitative evaluation of cDNA microarrays are proposed and tested on a series of differently diluted control clones. Several sources of noise are identified from the data. Systematic and stochastic fluctuations in the spotting process are reduced by control spots and statistical techniques. The reliability of slide to slide comparison is critically assessed within the statistical framework of pattern matching and classification.  相似文献   

15.
The discrimination between perfect-match and single-base-pair-mismatched nucleic acid duplexes was investigated by using oligonucleotide DNA microarrays and nonequilibrium dissociation rates (melting profiles). DNA and RNA versions of two synthetic targets corresponding to the 16S rRNA sequences of Staphylococcus epidermidis (38 nucleotides) and Nitrosomonas eutropha (39 nucleotides) were hybridized to perfect-match probes (18-mer and 19-mer) and to a set of probes having all possible single-base-pair mismatches. The melting profiles of all probe-target duplexes were determined in parallel by using an imposed temperature step gradient. We derived an optimum wash temperature for each probe and target by using a simple formula to calculate a discrimination index for each temperature of the step gradient. This optimum corresponded to the output of an independent analysis using a customized neural network program. These results together provide an experimental and analytical framework for optimizing mismatch discrimination among all probes on a DNA microarray.  相似文献   

16.
Fabrication of DNA microarrays using unmodified oligonucleotide probes   总被引:14,自引:0,他引:14  
Call DR  Chandler DP  Brockman F 《BioTechniques》2001,30(2):368-72, 374, 376 passim
Microarrays printed on glass slides are often constructed by covalently linking oligonucleotide probes to a derivatized surface. These procedures typically require relatively expensive amine- or thiol-modified oligonucleotide probes that add considerable expense to larger arrays. We describe a system by which unmodified oligonucleotide probes are bound to either nonderivatized or epoxy-silane-derivatized glass slides. Biotinylated PCR products are heat denatured, hybridized to the arrays, and detected using an enzymatic amplification system. Unmodified probes appear to detach from the slide surface at high pH (> 10.0), suggesting that hydrogen bonding plays a significant role in probe attachment. Regardless of surface preparation, high temperature (up to 65 degrees C) and low ionic strength (deionized water) do not disturb probe attachment; hence, the fabrication method described here is suitable for a wide range of hybridization stringencies and conditions. We illustrate kinetics of room temperature hybridizations for probes attached to nonderivatized slides, and we demonstrate that unmodified probes produce hybridization signals equal to amine-modified, covalently bound probes. Our method provides a cost-effective alternative to conventional attachment strategies that is particularly suitable for genotyping PCR products with nucleic acid microarrays.  相似文献   

17.
Microarrays have been used extensively in gene expression profiling and genotyping studies. To reduce the high cost and enhance the consistency of microarray experiments, it is often desirable to strip and reuse microarray slides. Our genome-wide analysis of microRNA expression involves the hybridization of fluorescently labeled nucleic acids to custom-made, spotted DNA microarrays based on GAPSII-coated slides. We describe here a simple and effective method to regenerate such custom microarrays that uses a very low-salt buffer to remove labeled nucleic acids from microarrays. Slides can be stripped and reused multiple times without significantly compromising data quality. Moreover, our analyses of the performance of regenerated slides identifies parameters that influence the attachment of oligonucleotide probes to GAPSII slides, shedding light on the interactions between DNA and the microarray surface and suggesting ways in which to improve the design of oligonucleotide probes.  相似文献   

18.
19.
In the microarray format of the minisequencing method multiple oligonucleotide primers immobilised on a glass surface are extended with fluorescent ddNTPs using a DNA polymerase. The method is a promising tool for large-scale single nucleotide polymorphism (SNP) detection. We have compared eight chemical methods for covalent immobilisation of the oligonucleotide primers on glass surfaces. We included both commercially available, activated slides and slides that were modified by ourselves. In the comparison the differently derivatised glass slides were evaluated with respect to background fluorescence, efficiency of attaching oligonucleotides and performance of the primer arrays in minisequencing reactions. We found that there are significant differences in background fluorescence levels among the different coatings, and that the attachment efficiency, which was measured indirectly using extension by terminal transferase, varied largely depending on which immobilisation strategy was used. We also found that the attachment chemistry affects the genotyping accuracy, when minisequencing on microarrays is used as the genotyping method. The best genotyping results were observed using mercaptosilane-coated slides attaching disulfide-modified oligonucleotides.  相似文献   

20.
Reuse of materials in DNA hybridization-based methods has been known since the advent of Southern membranes. Array-based comparative genomic hybridization is essentially Southern hybridization with multiple probes immobilized on a solid surface. We show that comparative genomic hybridization microarrays fabricated with maskless array synthesizer technology can be used up to four times with the application of 1,3-dimethylurea as an array-stripping agent. We reproducibly detected chromosomal aberrations (0.6-22.4Mb in size) in four hybridization rounds using regenerated microarray slides. We also demonstrated that regenerated arrays can detect smaller alterations (16-200kbp), such as common copy number variants, as well as complex aberration profiles in tumor DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号