首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations on sucrose and starch contents in leaves of 60-year-old beech trees ( FAGUS SYLVATICA L.) are the focus of the present study. Five trees were exposed to a twice ambient ozone regime (2 x O(3)) with a free-air canopy exposure system throughout the seasons and five trees under the prevailing ambient ozone regime served as controls (1 x O(3)). In order to examine chronic ozone (O(3)) effects, leaf samples from the sun and shade crowns of the trees were analyzed five times throughout the growing seasons in 2003 and 2004. Sucrose concentrations of leaves collected in 2004 were consistently lower than those taken in 2003, regardless of the O(3) treatment and crown position. However, the opposite was found for starch. O(3) caused a reduction of sucrose and starch contents of sun leaves in both years. Due to the fact that O(3)-responsiveness depends on the O(3) uptake through stomata during the season, all carbohydrate data were related to the cumulative O(3) uptake (COU). Little differences were found comparing sucrose and starch contents in leaves of trees grown under ambient or elevated O (3) regimes, possibly indicating the high capacity of leaves of adult beech to cope with rising O(3) exposure. Even under 2 x O(3), leaves were still able to regulate the O(3) intake by narrowing their stomata at the cost of CO(2)-uptake and sugar synthesis. In order to clarify whole-tree response patterns carbohydrate data were compared with photosynthesis, stomatal conductance and electron transport rates. In 2004 all parameters revealed a significant common response pattern to COU that indicated a reduction for all parameters under 2 x O(3).  相似文献   

2.
Three-year-old beech (Fagus sylvatica) seedlings growing in containers were placed into the sun and shade crown of a mature beech stand exposed to ambient (1 x O(3)) and double ambient (2 x O(3)) ozone concentrations at a free-air exposure system ("Kranzberg Forst", Germany). Pigments, alpha-tocopherol, glutathione, ascorbate, and gas exchange were measured in leaves during 2003 (a drought year) and 2004 (an average year). Sun-exposed seedlings showed higher contents of antioxidants, xanthophylls, and beta-carotene and lower contents of chlorophyll, alpha-carotene, and neoxanthin than shade-exposed seedlings. In 2003 sun-exposed seedlings showed higher contents of carotenoids and total glutathione and lower net photosynthesis rates (A(max)) compared to 2004. O(3) exposure generally affected the content of chlorophyll, the xanthophyll cycle, and the intercellular CO(2) concentration (c(i)). Seedlings differed from the adjacent adult trees in most biochemical and physiological parameters investigated: Sun exposed seedlings showed higher contents of alpha-tocopherol and xanthophylls and lower contents of ascorbate, chlorophyll, neoxanthin, and alpha-carotene compared to adult trees. Shade exposed seedlings had lower contents of xanthophylls, alpha-carotene, and alpha-tocopherol than shade leaves of old-growth trees. In 2003, seedlings had higher A(max), stomatal conductance (g(s)), and c(i) under 2 x O(3) than adult trees. The results showed that shade acclimated beech seedlings are more sensitive to O(3), possibly due to a lower antioxidative capacity per O(3) uptake. We conclude that beech seedlings are uncertain surrogates for adult beech trees.  相似文献   

3.
Combined delta(13)C and delta(18)O analyses of leaf material were used to infer changes in photosynthetic capacity (A(max)) and stomatal conductance (g(l)) in Fagus sylvatica and Picea abies trees growing under natural and controlled conditions. Correlation between g(l) and delta(18)O in leaf cellulose (delta(18)O(cel)) allowed us to apply a semi-quantitative model to infer g(l) from delta(18)O(cel) and also interpret variation in delta(13)C as reflecting variation in A(max). Extraction of leaf cellulose was necessary, because delta(18)O from leaf organic matter (delta(18)O(LOM)) and delta(18)O(cel) was not reliably correlated. In juvenile trees, the model predicted elevated carbon dioxide (CO(2)) to reduce A(max) in both species, whereas ozone (O(3)) only affected beech by reducing CO(2) uptake via lowered g(l). In adult trees, A(max) declined with decreasing light level as g(l) was unchanged. O(3) did not significantly affect isotopic signatures in leaves of adult trees, reflecting the higher O(3) susceptibility of juvenile trees under controlled conditions. The isotopic analysis compared favourably to the performance of leaf gas exchange, underlining that the semi-quantitative model approach provides a robust way to gather time-integrated information on photosynthetic performance of trees under multi-faced ecological scenarios, in particular when information needed for quantitative modelling is only scarcely available.  相似文献   

4.
The extraordinary drought during the summer of 2003 in Central Europe allowed to examine responses of adult beech trees (Fagus sylvatica) to co-occurring stress by soil moisture deficit and elevated O3 levels under forest conditions in southern Germany. The study comprised tree exposure to the ambient O3 regime at the site and to a twice-ambient O3 regime as released into the canopy through a free-air O3 fumigation system. Annual courses of photosynthesis (A max), stomatal conductance (g s), electron transport rate (ETR) and chlorophyll levels were compared between 2003 and 2004, the latter year representing the humid long-term climate at the site. ETR, A max and g s were lowered during 2003 by drought rather than ozone, whereas chlorophyll levels did not differ between the years. Radial stem increment was reduced in 2003 by drought but fully recovered during the subsequent, humid year. Comparison of AOT40, an O3 exposure-based risk index of O3 stress, and cumulative ozone uptake (COU) yielded a linear relationship throughout humid growth conditions, but a changing slope during 2003. Our findings support the hypothesis that drought protects plants from O3 injury by stomatal closure, which restricts O3 influx into leaves and decouples COU from high external ozone levels. High AOT40 erroneously suggested high O3 risk under drought. Enhanced ozone levels did not aggravate drought effects in leaves and stem.  相似文献   

5.
Deciduous forests covered the ice-free polar regions 280 to 40 million years ago under warm "greenhouse" climates and high atmospheric pCO2. Their deciduous habit is frequently interpreted as an adaptation for minimizing carbon losses during winter, but experiments with "living fossils" in a simulated warm polar environment refute this explanation. Measured carbon losses through leaf abscission of deciduous trees are significantly greater than losses through winter respiration in evergreens, yet annual rates of primary productivity are similar in all species. Here, we investigate mechanisms underlying this apparent paradox by measuring the seasonal patterns of leaf photosynthesis (A) under pCO2 enrichment in the same trees. During spring, A increased significantly in coastal redwood (Sequoia sempervirens), dawn redwood (Metasequoia glyptostroboides), and swamp cypress (Taxodium distichum) at an elevated pCO2 of 80 Pa compared with controls at 40 Pa. However, strong acclimation in Rubisco carboxylation capacity (Vc,max) completely offset the CO2 response of A in all species by the end of 6 weeks of continuous illumination in the simulated polar summer. Further measurements demonstrated the temporary nature of acclimation, with increases in Vc,max during autumn restoring the CO2 sensitivity of A. Contrary to expectations, the acclimation of Vc,max was not always accompanied by accumulation of leaf carbohydrates, but was associated with a decline in leaf nitrogen in summer, suggesting an alteration of the balance in plant sources and sinks for carbon and nitrogen. Preliminary calculations using A indicated that winter carbon losses through deciduous leaf abscission and respiration were recovered by 10 to 25 d of canopy carbon fixation during summer, thereby explaining the productivity paradox.  相似文献   

6.
Within the scope of quantifying ozone (O(3)) effects on forest tree crowns it is still an open question whether cuvette branches of adult trees are reasonable surrogates for O(3) responses of entire tree crowns and whether twigs exhibit autonomy in defense metabolism in addition to carbon autonomy. Therefore, cuvette-enclosed branches of mature beech (Fagus sylvatica) trees were compared with branches exposed to the same and different ozone regimes by a free-air fumigation system under natural stand conditions by means of a VICE VERSA experiment. For this purpose, cuvettes receiving 1 x O(3) air were mounted in trees exposed to 2 x O(3) and cuvettes receiving 2 x O(3) air were mounted in trees exposed to 1 x O (3) in the upper sun crown. At the end of the fumigation period in September 2004, leaves were examined for differences in gas exchange parameters, pigments, antioxidants, carbohydrates, and stable isotope ratios. No significant differences in foliar gas exchange, total carbohydrates, stable isotope ratios, pigment, and antioxidant contents were found as a consequence of cuvette enclosure (cuvette versus free-air branches) of the same O(3) concentrations besides increase of glucose inside the cuvettes and reduction of the de-epoxidation state of the xanthophyll cycle pigments. No significant ozone effect was found for the investigated gas exchange and most biochemical parameters. The total and oxidized glutathione level of the leaves was increased by the 2 x O(3) treatment in the cuvette and the free-air branches, but this effect was significant only for the free-air branches. From these results we conclude that cuvette branches are useful surrogates for examining the response of entire tree crowns to elevated O(3) and that the defence metabolism of twigs seems to be at least partially autonomous.  相似文献   

7.
Growth temperature alters temperature dependence of the photosynthetic rate (temperature acclimation). In many species, the optimal temperature that maximizes the photosynthetic rate increases with increasing growth temperature. In this minireview, mechanisms involved in changes in the photosynthesis-temperature curve are discussed. Based on the biochemical model of photosynthesis, change in the photosynthesis-temperature curve is attributable to four factors: intercellular CO2 concentration, activation energy of the maximum rate of RuBP (ribulose-1,5-bisphosphate) carboxylation (Vc max), activation energy of the rate of RuBP regeneration (Jmax), and the ratio of Jmax to Vc max. In the survey, every species increased the activation energy of Vc max with increasing growth temperature. Other factors changed with growth temperature, but their responses were different among species. Among these factors, activation energy of Vc max may be the most important for the shift of optimal temperature of photosynthesis at ambient CO2 concentrations. Physiological and biochemical causes for the change in these parameters are discussed.  相似文献   

8.
We present the results of a study of the effects of chronic exposure to elevated ozone on the cytokinins of mature beech trees. Methods for analysing the cytokinin (CK) content of beech (FAGUS SYLVATICA) were developed using seven enzyme-linked immunosorbent assays (ELISAs). Samples taken during 2003 and 2004 from 10 mature beech trees in Kranzberg forest, 5 trees exposed to twice ambient ozone (2 x O(3)) by free-air fumigation and 5 control trees (1 x O(3)), were analysed. In 2003 and 2004 the cytokinin content of leaf samples followed a similar seasonal pattern. In leaf samples, the content of aromatic types was equal to that of the isoprenoid types. In root samples, the level of aromatic types was no different from leaves, but that of the isoprenoid types was much higher. Leaf and phloem cytokinin contents for 2 x O(3) trees were lower than for 1 x O(3) at almost all sampling times. The effect of ozone was greater for leaves in the sun crown than for leaves in the shade crown. By contrast, the root and xylem contents of cytokinin for 2 x O(3) trees were greatly elevated over the values for 1 x O(3) trees early in the growing season. We propose that O(3)-associated CK destruction in leaves reduces CK-mediated root growth suppression. The resulting increases in root growth and ectomycorrhiza, reported by other groups in the Kranzberg forest project, are likely to be responsible for the increased CK export in xylem, although O(3)-associated CK destruction in the leaves appears to nullify this increase.  相似文献   

9.
Interactions between drought and O3 stress in forest trees   总被引:1,自引:0,他引:1  
Temperature increase and altered precipitation are facets of "Global Change", along with enhanced tropospheric ozone (O3) and CO2 levels. Both O3 and drought may curtail the probably limited capacity of "extra" carbon fixation in forest trees under a CO2-enriched atmosphere. In view of the exceptionally dry year of 2003 in Central Europe, this mini-review highlights O3/drought interactions in biochemical and ecophysiological responses of trees. Such interactions appear to vary, depending on the genotype and factorial scenarios. If O3 perturbs stomatal regulation, tolerance to both drought and persisting O3 exposure may be weakened, although drought preceding O3 stress may "harden" against O3 impact. Stomatal closure under drought may shield trees against O3 uptake and injury, which indeed was the case in 2003. However, the trees' "tuning" between O3 uptake and defence capacity is crucial in stress tolerance. Defence may be constrained due to limited carbon fixation, which results from the trade-off with O3 exclusion upon stomatal closure. Drought may cause a stronger reduction in stem growth than does ozone on an annual basis.  相似文献   

10.
Rising atmospheric carbon dioxide concentration ([CO(2)]) is widely recognized, but less appreciated is a concomitant rise in tropospheric ozone concentration ([O(3)]). In industrialized countries, [O(3)] has risen by 0.5% to 2.5% per year. Tropospheric [O(3)] is predicted to reach a global mean of >60 nL L(-1) by 2050 with greater averages locally. Previous studies in enclosures suggest that this level of [O(3)] will decrease leaf photosynthesis, thereby limiting growth and yield of Glycine max L. Merr. SoyFACE (Soybean Free Air gas Concentration Enrichment) is the first facility to elevate atmospheric [O(3)] (approximately 1.2x current) in replicated plots under completely open-air conditions within an agricultural field. Measurements of gas exchange (assimilation versus light and assimilation versus intercellular [CO(2)]) were made on excised leaves from control and treatment plots (n = 4). In contrast to expectations from previous chamber studies, elevated [O(3)] did not alter light-saturated photosynthesis (A(sat), P = 0.09), carboxylation capacity (V(c,max), P = 0.82), or maximum electron transport (J(max), P = 0.66) for the topmost most recently fully expanded leaf at any stage of crop development. Leaves formed during the vegetative growth stage did not show a significant ozone-induced loss of photosynthetic capacity as they aged. Leaves formed during flowering did show a more rapid loss of photosynthetic capacity as they aged in elevated [O(3)]. A(sat), V(c,max), and J(max) (P = 0.04, 0.004, and 0.002, respectively) were decreased 20% to 30% by treatment with ozone. This is noteworthy since these leaves provide photosynthate to the developing grain. In conclusion, a small (approximately 20%) increase in tropospheric [O(3)] did not significantly alter photosynthetic capacity of newly expanded leaves, but as these leaves aged, losses in photosynthetic carbon assimilation occurred.  相似文献   

11.
Laisk A  Sumberg A 《Plant physiology》1994,106(2):689-695
Photorespiration was calculated from chlorophyll fluorescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics and compared with CO2 evolution rate in the light, measured by three gas-exchange methods in mature sunflower (Helianthus annuus L.) leaves. The gas-exchange methods were (a) postillumination CO2 burst at unchanged CO2 concentration, (b) postillumination CO2 burst with simultaneous transfer into CO2-free air, and (c) extrapolation of the CO2 uptake to zero CO2 concentration at Rubisco active sites. The steady-state CO2 compensation point was proportional to O2 concentration, revealing the Rubisco specificity coefficient (Ksp) of 86. Electron transport rate (ETR) was calculated from fluorescence, and photorespiration rate was calculated from ETR using CO2 and O2 concentrations, Ksp, and diffusion resistances. The values of the best-fit mesophyll diffusion resistance for CO2 ranged between 0.3 and 0.8 s cm-1. Comparison of the gas-exchange and fluorescence data showed that only ribulose-1,5-bisphosphate (RuBP) carboxylation and photorespiratory CO2 evolution were present at limiting CO2 concentrations. Carboxylation of a substrate other than RuBP, in addition to RuBP carboxylation, was detected at high CO2 concentrations. A simultaneous decarboxylation process not related to RuBP oxygenation was also detected at high CO2 concentrations in the light. We propose that these processes reflect carboxylation of phosphoenolpyruvate, formed from phosphoglyceric acid and the subsequent decarboxylation of malate.  相似文献   

12.
植物光合作用模型参数的温度依存性研究进展   总被引:1,自引:0,他引:1  
综述了植物光合作用与温度响应模型研究的进展,围绕光合作用生化模型的4个主要参数:胞间CO2浓度、RuBP最大碳同化速率(Vc max)的活化能、RuBP最大再生速率(Jmax)的活化能和Jmax/Vc max,讨论了影响光合作用 温度响应曲线的内在机理.随着生长温度的升高,所有物种的Vc max活化能均呈增加趋势,而其他参数的变化因物种不同而存在明显差异,说明Vc max的活化能可能是决定光合作用温度依存性的首要参数.最后分析了研究中存在的问题并提出研究展望,认为应整合叶片与群落水平的光合作用模型,从叶面积、太阳辐射、冠层结构、冠层小气候和光合能力等方面研究植物群落对全球变化的响应机理.这对于人们理解和准确估算植物生长、群落碳收支和生态系统初级生产力具有重要意义.  相似文献   

13.
Databases are needed for the ozone (O(3)) risk assessment on adult forest trees under stand conditions, as mostly juvenile trees have been studied in chamber experiments. A synopsis is presented here from an integrated case study which was conducted on adult FAGUS SYLVATICA trees at a Central-European forest site. Employed was a novel free-air canopy O(3) fumigation methodology which ensured a whole-plant assessment of O(3) sensitivity of the about 30 m tall and 60 years old trees, comparing responses to an experimental 2 x ambient O(3) regime (2 x O(3), max. 150 nl O(3) l (-1)) with those to the unchanged 1 x ambient O(3) regime (1 x O(3)=control) prevailing at the site. Additional experimentation on individual branches and juvenile beech trees exposed within the forest canopy allowed for evaluating the representativeness of young-tree and branch-bag approaches relative to the O(3) sensitivity of the adult trees. The 2 x O(3) regime did not substantially weaken the carbon sink strength of the adult beech trees, given the absence of a statistically significant decline in annual stem growth; a 3 % reduction across five years was demonstrated, however, through modelling upon parameterization with the elaborated database. 2 x O(3) did induce a number of statistically significant tree responses at the cell and leaf level, although the O(3) responsiveness varied between years. Shade leaves displayed an O(3) sensitivity similar to that of sun leaves, while indirect belowground O(3) effects, apparently mediated through hormonal relationships, were reflected by stimulated fine-root and ectomycorrhizal development. Juvenile trees were not reliable surrogates of adult ones in view of O(3) risk assessment. Branch sections enclosed in (climatized) cuvettes, however, turned out to represent the O(3) sensitivity of entire tree crowns. Drought-induced stomatal closure decoupled O(3) intake from O(3) exposure, as in addition, also the "physiologically effective O(3) dose" was subject to change. No evidence emerged for a need to lower the "Critical Level for Ozone" in risk assessment of forest trees, although sensitive tree parameters did not necessarily reflect a linear relationship to O(3) stress. Exposure-based concepts tended to overestimate O(3) risk under drought, which is in support of current efforts to establish flux-related concepts of O(3) intake in risk assessment.  相似文献   

14.
Effects of doubled CO2 and O3 concentration on Soybean were studied in open-top chambers (OTC). Under doubled CO2 concentration, grain yield and biomass increased, the SOD activity, vitamin C (Vc) and carotenoid (Car) content also increased; Superoxide (O2-) generating rate decreased, relative conductivity and malondialdehyde (MDA) content significantly declined. But under doubled O3 concentration, the SOD activity, Vc and Car contents declined, resulting in imbalance of activated-oxygen production, enhanced O2- generating rate and accelerated process of lipid peroxidation and increase in MDA content and ion leakage of leaves. The final result was decreased grain yield and plant biomass. Interactive effects of doubled CO2 and O3 concentrations on soybean were mostly counteractive. However, the beneficial effects of concentration-doubled CO2 are more than compensate the negative effects imposed by doubled O3, and the latter in its turn partly counteracted the positive effects of the former.  相似文献   

15.
Effects of doubled CO2 and O3 concentration on Soybean were studied in open-top chambers (OTC). Under doubled CO2 concentration, grain yield and biomass increased, the SOD activity, vitamin C (Vc) and carotenoid (Car) content also increased; Superoxide (O2-.) generating rate decreased, relative conductivity and malondialdehyde (MDA) content significantly declined.But under doubled O3 concentration, the SOD activity, Vc and Car contents declined, resulting in imbalance of activated-oxygen production, enhanced O2-. generating rate and accelerated process of lipid peroxidation and increase in MDA content and ion leakage of leaves. The final result was decreased grain yield and plant biomass. Interactive effects of doubled CO2 and O3 concentrations on soybean were mostly counteractive. However, the beneficial effects of concentration-doubled CO2 are more than compensate the negative effects imposed by doubled O3, and the latter in its turn partly counteracted the positive effects of the former.  相似文献   

16.
Laisk A  Loreto F 《Plant physiology》1996,110(3):903-912
Using simultaneous measurements of leaf gas exchange and chlorophyll fluorescence, we determined the excitation partitioning to photosystem II (PSII), the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase, the dark respiration in the light, and the alternative electron transport rate to acceptors other than bisphosphoglycerate, and the transport resistance for CO2 in the mesophyll cells for individual leaves of herbaceous and tree species. The specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase for CO2 was determined from the slope of the O2 dependence of the CO2 compensation point between 1.5 and 21% O2. Its value, on the basis of dissolved CO2 and O2 concentrations at 25.5[deg]C, varied between 86 and 89. Dark respiration in the light, estimated from the difference between the CO2 compensation point and the CO2 photocompensation point, was about 20 to 50% of the respiration rate in the dark. The excitation distribution to PSII was estimated from the extrapolation of the dependence of the PSII quantum yield on F/Fm to F = 0, where F is steady-state and Fm is pulse-satuarated fluorescence, and varied between 0.45 and 0.6. The alternative electron transport rate was found as the difference between the electron transport rates calculated from fluorescence and from gas exchange, and at low CO2 concentrations and 10 to 21% O2, it was 25 to 30% of the maximum electron transport. The calculated mesophyll diffusion resistance accounted for about 20 to 30% of the total mesophyll resistance, which also includes carboxylation resistance. Whole-leaf photosynthesis is limited by gas phase, mesophyll diffusion, and carboxylation resistances in nearly the same proportion in both herbaceous species and trees.  相似文献   

17.
The principles, equipment and procedures for measuring leaf and canopy gas exchange have been described previously as has chlorophyll fluorescence. Simultaneous measurement of the responses of leaf gas exchange and modulated chlorophyll fluorescence to light and CO2 concentration now provide a means to determine a wide range of key biochemical and biophysical limitations on photo synthesis in vivo. Here the mathematical frameworks and practical procedures for determining these parameters in vivo are consolidated. Leaf CO2 uptake (A) versus intercellular CO2 concentration (Ci) curves may now be routinely obtained from commercial gas exchange systems. The potential pitfalls, and means to avoid these, are examined. Calculation of in vivo maximum rates of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) carboxylation (Vc,max), electron transport driving regeneration of RuBP (Jmax), and triose-phosphate utilization (VTPU) are explained; these three parameters are now widely assumed to represent the major limitations to light-saturated photosynthesis. Precision in determining these in intact leaves is improved by the simultaneous measurement of electron transport via modulated chlorophyll fluorescence. The A/Ci response also provides a simple practical method for quantifying the limitation that stomata impose on CO2 assimilation. Determining the rate of photorespiratory release of oxygen (Rl) has previously only been possible by isotopic methods, now, by combining gas exchange and fluorescence measurements, Rl may be determined simply and routinely in the field. The physical diffusion of CO2 from the intercellular air space to the site of Rubisco in C3 leaves has long been suspected of being a limitation on photosynthesis, but it has commonly been ignored because of the lack of a practical method for its determination. Again combining gas exchange and fluorescence provides a means to determine mesophyll conductance. This method is described and provides insights into the magnitude and basis of this limitation.  相似文献   

18.
Zhang XC  Yu XF  Ma YF 《应用生态学报》2011,22(3):673-680
采用开顶式气室盆栽培养小麦,设计2个大气CO2浓度(正常:400 μmol.mol-1;高:760 μmol·mol-1)、2个氮素水平(0和200 mg·kg-1土)的组合处理,通过测定小麦抽穗期旗叶氮素和叶绿素浓度、光合速率(Pn)-胞间CO2浓度(C1)响应曲线及荧光动力学参数,来测算小麦叶片光合电子传递速率等,研究了高大气CO2浓度下施氮对小麦旗叶光合能量分配的影响.结果表明:与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,高氮处理的小麦叶片叶绿素a/b升高.施氮后小麦叶片PSⅡ最大光化学效率(Fv/Fm)、PSⅡ反应中心最大量子产额(Fv'/Fm')、PSⅡ反应中心的开放比例(qr)和PSⅡ反应中心实际光化学效率(φPSⅡ)在大气CO2浓度升高后无明显变化,虽然叶片非光化学猝灭系数(NPQ)显著降低,但PSⅡ总电子传递速率(JF)无明显增加;不施氮处理的Fv'/Fm'、φPSⅡ和NPQ在高大气CO2浓度下显著降低,尽管Fv/Fm和qp无明显变化,JF仍显著下降.施氮后小麦叶片JF增加,参与光化学反应的非环式电子流传递速率(Jc)明显升高.大气CO2浓度升高使参与光呼吸的非环式电子流传递速率(J0)、Rubisco氧化速率(V0)、光合电子的光呼吸/光化学传递速率比(J0/Jc)和Rubisco氧化/羧化比(V0/Vc)降低,但使Jc和Rubisco羧化速率(Vc)增加.因此,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,而增施氮素使通过PSⅡ反应中心的电子流速率显著增加,促进了光合电子流向光化学方向的传递,使更多的电子进入Rubisco羧化过程,Pn显著升高.  相似文献   

19.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzymes from different species differ with respect to carboxylation catalytic efficiency and CO2/O2 specificity, but the structural basis for these differences is not known. Whereas much is known about the chloroplast-encoded large subunit, which contains the alpha/beta-barrel active site, much less is known about the role of the nuclear-encoded small subunit in Rubisco structure and function. In particular, a loop between beta-strands A and B contains 21 or more residues in plants and green algae, but only 10 residues in prokaryotes and nongreen algae. To determine the significance of these additional residues, a mutant of the green alga Chlamydomonas reinhardtii, which lacks both small-subunit genes, was used as a host for transformation with directed-mutant genes. Although previous studies had indicated that the betaA-betaB loop was essential for holoenzyme assembly, Ala substitutions at residues conserved among land plants and algae (Arg-59, Tyr-67, Tyr-68, Asp-69, and Arg-71) failed to block assembly or eliminate function. Only the Arg-71 --> Ala substitution causes a substantial decrease in holoenzyme thermal stability. Tyr-68 --> Ala and Asp-69 --> Ala enzymes have lower K(m)(CO2) values, but these improvements are offset by decreases in carboxylation V(max) values. The Arg-71 --> Ala enzyme has a decreased carboxylation V(max) and increased K(m)(CO2) and K(m)(O2) values, which account for an observed 8% decrease in CO2/O2 specificity. Despite the fact that Arg-71 is more than 20 A from the large-subunit active site, it is apparent that the small-subunit betaA-betaB loop region can influence catalytic efficiency and CO2/O2 specificity.  相似文献   

20.
Priwitzer  T.  Urban  O.  Šprtová  M.  Marek  M.V. 《Photosynthetica》1998,35(4):561-571
Differences between sun (E) and shaded (S) foliage were studied in a Norway spruce (Picea abies [L.] Karst.) stand. Response curves describing the dependence of the CO2 assimilation rate (PN) on the CO2 concentration at the catalytic site of ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBPCO (PN-Cc) were estimated using the simultaneous measurements of chlorophyll fluorescence and leaf gas exchange. Higher PN, higher electron transport (Ja), higher carboxylation capacity (Vc), and higher RuBPCO activity () for sun acclimated needles was found. The S-needles had higher portion of internal limitation and higher CO2 compensation concentration () than the E-needles. Because higher degree of limitation of photosynthesis by carboxylation was ascertained, it can be assumed that photosynthesis in shade foliage is limited mainly by lower carboxylation capacity and by low chloroplastic CO2 concentration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号