首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The influence of the time of culture on GABA and taurine uptake was investigated in spontaneously matured cultures of glial and neuronal origins and in cultures treated with cyclic nucleotides. In the spontaneously matured cultures the capacity of the high-affinity neuronal GABA transport system increased with time in culture. Essentially opposite results were found for the uptake of GABA by glial cultures. In contrast with the neuronal uptake of GABA, the capacity of the taurine transport system was significantly decreased. Uptake of taurine into glia, however, exhibited a progressive increase with the period of culture. The values of Km, for the high-affinity systems were always found to range around 10 μM. It is suggested that, in mature cells, neuronal uptake sites are of prime importance for GABA transport, while taurine uptake may be more specifically directed towards glial cells. When cultures were treated with cyclic nucleotide derivatives, a morphological differentiation was induced, which could not be linked to a stimulation of GABA or taurine uptake systems as compared with the non-treated cultures.  相似文献   

2.
This work was carried out to evaluate the importance of glial cells in providing precursors for the in vivo synthesis of gamma-aminobutyric acid (GABA). Fluorocitrate, which selectively inhibits the tricarboxylic acid cycle in glial cells, was administered locally in rat neostriatum. Inhibition of the glial cell tricarboxylic acid cycle led to a decrease both in glutamine level and in gamma-vinyl GABA (GVG)-induced GABA accumulation, an observation indicating reduced GABA synthesis. The role of glutamine, which is synthesized in glial cells as a precursor for GABA, was further investigated by inhibition of glutamine synthetase with intrastriatally administered methionine sulfoximine. In this case, the glutamine level was reduced to near zero values, and the GVG-induced GABA accumulation was only half that of normal. The results show that glutamine is an important precursor for GABA synthesis, but it cannot be the sole precursor because it was not possible to depress the GVG-induced GABA accumulation completely.  相似文献   

3.
The effect of sodium n dipropylacetate (nDPA), a competitive GABA-T inhibitor with respect to GABA, has been investigated on glial and neuronal cellular GABA level. After 1 to 4 days incubation with nDPA in the culture medium, a decrease of GABA level in M5 neuroblastoma clonal cell lines and no modification of GABA level in C6 astrocytoma cells has been observed. The combined addition of nDPA 4 micrometer with dibutyryl cyclic AMP (1 mM) to the culture medium induces the same decrease in GABA level in C6 astrocytoma cells as the addition of DB-c-AMP alone. After shorter incubation time with nDPA (5-150 min), we observed a decreased GABA level in C6 astrocytoma glial cells.  相似文献   

4.
A mes-c-myc A1 (A1) cell line was generated by retroviral infection of cultured embryonic mesencephalic cells and selected by neomycin resistance. A1 cells cease to divide and undergo morphological differentiation after serum withdrawal or addition of c-AMP. Proliferating or morphologically differentiated A1 cells are all positive for vimentin and nestin, a marker of neural precursor, and show neuronal markers such as microtubule-associated protein 1, neuron-specific enolase and peripherin, and the glial marker glial fibrillary acidic protein. Neuronal and glial markers coexist in single cells. Furthermore, A1 cells show presence of glutamic acid decarboxylase 67 mRNA and its embryonic form EP10 and accumulate the neurotransmitter GABA. Electrophysiological studies demonstrate that morphologically differentiated A1 cells display voltage-gated sodium and potassium channels in response to depolarizing stimuli. A1 cells thus represent a novel, bipotent neural cell line useful for studying CNS differentiation and plasticity, as well as the molecular mechanisms underlying development of GABAergic neurotransmission.  相似文献   

5.
Neurotransmitters have been shown to control CNS neurogenesis, and GABA-mediated signaling is thought to be involved in the regulation of nearly all key developmental stages. Generation of dopaminergic (DA) neurons from stem/precursor cells for cell therapy in Parkinson's disease has become a major focus of research. However, the possible effects of GABA on generation of DA neurons from proliferating neurospheres of mesencephalic precursors have not been studied. In the present study, GABA(A), and GABA(B) receptors were found to be located in DA cells. Treatment of cultures with GABA did not cause significant changes in generation of DA cells from precursors. However, treatment with the GABA(A) receptor antagonist bicuculline (10(-5) M) led to a significant increase in the number DA cells, and treatment with the GABA(B) receptor antagonist CGP 55845 (10(-5) M) to a significant decrease. Simultaneous treatment with bicuculline and CGP 55845 did not induce significant changes. Apoptotic cell death studies and bromodeoxyuridine immunohistochemistry indicated that the aforementioned differences in generation of DA neurons are not due to changes in survival or proliferation of DA cells, but rather to increased or decreased differentiation of mesencephalic precursors towards the DA phenotype. The results suggest that these effects are exerted via GABA receptors located on DA precursors, and are not an indirect consequence of effects on the serotonergic or glial cell population. Administration of GABA(A) receptor antagonists in the differentiation medium may help to obtain higher rates of DA neurons for potential use in cell therapy for Parkinson's disease.  相似文献   

6.
Summary On embryonic day 18, synapse-like contacts are found on certain non-neuronal cells appearing in clusters in lamina I (LI) of the parieto-occipital cortex of the rat. The structural criteria of these cells resemble those of immature glial cells: (1) The elongated nuclei containing dispersed chromatin are enclosed by a membrane showing narrow folds. (2) The cytoplasm contains many free ribosomes and a few dilated cisterns of the rough endoplasmic reticulum with granular or filamentous contents. (3) The plasma membrane forms concave adaptations toward neighboring neuronal processes. (4) At least one of the processes makes contact with the basal lamina of a vessel wall. The presynaptic elements contain a varying number of synaptic vesicles, and the pre- and postsynaptic membranes show densifications. Certain neurons and glial cells of the neocortex have the capability to accumulate GABA at day 16 of embryonic life. Only the more differentiated glial cells accumulate GABA. Many of these elements closely resemble the glial cells receiving synapse-like contacts, e.g., with respect to their cytological characteristics, clustering, and laminar position. According to recent experiments with adult ganglion cells, GABA released from glial cells might promote synaptogenesis by increasing the number of postsynaptic thickenings on the surrounding neurons. Thus, it cannot be excluded that transitory axo-glial synapses, by inducing GABA release, play a specific role in the earliest stages of synaptogenesis.  相似文献   

7.
8.
The cellular mechanisms that regulate self-renewal versus differentiation of mammalian somatic tissue stem cells are still largely unknown. Here, we asked whether an RNA complex regulates this process in mammalian neural stem cells. We show that the RNA-binding protein Staufen2 (Stau2) is apically localized in radial glial precursors of the embryonic cortex, where it forms a complex with other RNA granule proteins including Pumilio2 (Pum2) and DDX1, and the mRNAs for β-actin and mammalian prospero, prox1. Perturbation of this complex by functional knockdown of Stau2, Pum2, or DDX1 causes premature differentiation of radial glial precursors into neurons and mislocalization and misexpression of prox1 mRNA. Thus, a Stau2- and Pum2-dependent RNA complex directly regulates localization and, potentially, expression of target mRNAs like prox1 in mammalian neural stem cells, and in so doing regulates the balance of stem cell maintenance versus differentiation.  相似文献   

9.
Summary The subcommissural organ (SCO), classified as one of the circumventricular organs, is composed mainly of modified ependymal cells, attributable to a glial lineage. Nevertheless, in the rat, these cells do not possess glial markers such as glial fibrillary acidic protein (GFAP), protein S100, or the enzyme glutamine synthetase (GS). They receive a synaptic 5-HT input and show pharmacological properties for uptake of GABA resembling the uptake mechanism of neurons. In this study, we examine the phenotype of several mammalian SCO (cat, mouse, rabbit) and compare them with the corresponding features of the rat SCO. In all these species, the SCO ependymocytes possess vimentin as an intermediate filament, but never express GFAP or neurofilament proteins. They do not contain GS as do glial cells involved in GABA metabolism, and when they contain protein S100 (rabbit, mouse), its rate is low in comparison to classical glial or ependymal cells. Thus, these ependymocytes display characteristics that differentiate them from other types of glial cells (astrocytes, epithelial ependymocytes and tanycytes). Striking interspecies differences in the capacity of SCO-ependymocytes for uptake of GABA might be related to their innervation and suggest a species-dependent plasticity in their function.  相似文献   

10.
Markers of neuronal cell differentiation (GABA accumulation, choline acetyltransferase activity) are shown to increase initially and then decline sharply in monolayer cultures of 9 day embryo neuroretinal (NR) cells. A glial marker (glutamine synthetase, GSase) is precociously inducible by hydrocortisone (HC) in dense'monolayer' NR cultures (containing aggregates of neuronal cells overlying the glial sheet) as well as in chick embryo retinal explants. The induced level of GSase activity is not maintained in the continued presence of HC, but rather declines by 20 days in vitro. Choline acetyltransferase (CAT) activity is higher in HC-treated cultures than in controls only during the period when induced GSase activity is detectable. Furthermore, the subsequent transdifferentiation of lens cells (monitored as δ crystallin content) in these cultures is delayed by 10 days and much reduced in extent when HC is present throughout the culture period.
We suggest a simple model to account for these results, on the basis of recent evidence that lens cells are derived mainly from the retinal epithelial cells (immature Müller glia) of 9-day embryonic NR, and that transdifferentiation results from a change in cell determination during the early stages of'monolayer' culture. In outline, our model proposes that early dedetermination of the retinal glia is associated with a decline of neuronal cell markers (dedifferentiation) followed eventually by loss of the neuronal cells. Hydrocortisone, by inducing transient glial cell differentiation (GSase activity), both prolongs the expression of a neuronal marker (CAT) and also reduces later transdifferentiation into lens.  相似文献   

11.
In mammalian peripheral sympathetic ganglia GABA acts presynaptically to facilitate cholinergic transmission and postsynaptically to depolarize membrane potential. The GABA effect on parasympathetic pancreatic ganglia is unknown. We aimed to determine the effect of locally applied GABA on cat pancreatic ganglion neurons. Ganglia with attached nerve trunks were isolated from cat pancreata. Conventional intracellular recording techniques were used to record electrical responses from ganglion neurons. GABA pressure microejection depolarized membrane potential with an amplitude of 17.4 +/- 0.7 mV. Electrically evoked fast excitatory postsynaptic potentials were significantly inhibited (5.4 +/- 0.3 to 2.9 +/- 0.2 mV) after GABA application. GABA-evoked depolarizations were mimicked by the GABA(A) receptor agonist muscimol and abolished by the GABA(A) receptor antagonist bicuculline and the Cl(-) channel blocker picrotoxin. GABA was taken up and stored in ganglia during preincubation with 1 mM GABA; beta-aminobutyric acid application after GABA loading significantly (P < 0.05) increased depolarizing response to GABA (15.6 +/- 1.0 vs. 7.8 +/- 0.8 mV without GABA preincubation). Immunolabeling with antibodies to GABA, glial cell fibrillary acidic protein, protein gene product 9.5, and glutamic acid decarboxylase (GAD) immunoreactivity showed that GABA was present in glial cells, but not in neurons, and that glial cells did not contain GAD, whereas islet cells did. The data suggest that endogenous GABA released from ganglionic glial cells acts on pancreatic ganglion neurons through GABA(A) receptors.  相似文献   

12.
The spontaneous efflux of [3H]GABA from the satellite glial cells of rat dorsal root ganglia and the efflux evoked by 64 mM-K+ were studied in the presence of 10-5M-amino-oxyacetic acid and found not to be affected by 10-4M-D 600 or by elevated (9.6mM) Ca2+ in the absence of Mg2+. [3H]GABA efflux was increased by replacing sodium ions in the washing medium by choline ions and 64 mM-K+ failed to increase the efflux further. The drugs veratridine (10-6 and 10-4M) and batrachotoxin (10-8 and 10-6 M) failed to alter the spontaneous efflux of [3H]GABA from the glial cells. A variety of compounds, including amino acids, a GABA analogue and a GABA antagonist were tested for their ability to affect [3H]GABA efflux. The results indicated that compounds which inhibit GABA uptake into glial cells were also able to stimulate [3H]GABA efflux from these cells. The results are discussed with reference to possible mechanisms involved in the release of GABA from glial cells.  相似文献   

13.
Abstract: GABA uptake and release mechanisms have been shown for neuronal as well as glial cells. To explore further neuronal versus glial components of the [3H]-γ-aminobutyric acid ([3H]GABA) release studies were performed with two different microdissected layers of the olfactory bulb of the rat: the olfactory nerve layer (ONL), consisting mainly of glial cells, and the external plexiform layer (EPL) with a high density of GABAergic dendritic terminals. In some experiments substantia nigra was used as a GABAergic axonal system and the trigeminal ganglia as a peripheral glial model. Spontaneous release of [3H]GABA was always lower in neuronal elements as compared with glial cells. A veratridine-evoked release was observed from the ONL but not from the trigeminal ganglia. Tetrodotoxin (TTX) abolished the veratridine-evoked release from the ONL, which also showed a partial inhibition when high magnesium concentrations were used in a Ca2+-free solution. β-Alanine was strongly exchanged with [3H]GABA from the ONL of animals with the olfactory nerve lesioned and from animals with no lesion; but only a small heteroexchange was found from the external plexiform layer. The β-alanine heteroexchange was able to deplete the releasable GABA store from the ONL of lesioned animals. In nonlesioned animals and the external plexiform layer, the veratridine-stimulated release of [3H]GABA was not significantly reduced after the β-alanine heteroexchange. Stimulation of the [3H]GABA release by high concentrations of potassium elicited a higher release rate from axonal terminals than from dendrites or glia. Neurones and glia showed a similar inhibition of [3H]GABA release when a high magnesium concentration was added to a calcium-free solution. When D-600 was used as a calcium-flux blocker no inhibition of the release was observed in glial cells, whereas an almost complete blockage was found in both neuronal preparations (substantia nigra and EPL). These results provide further evidence for differential release mechanisms of GABA from CNS neurones and glial cells.  相似文献   

14.
Insect skeletal muscle is relatively insensitive to applied GABA, responses are elicited only when relatively high concentrations of GABA are used (greater than 10(-6) M). Pretreatment of the muscle with the GABA uptake inhibitors nipecotic acid, beta-aminobutyric acid or beta-alanine increases the sensitivity of the muscle to GABA by as much as 1000-fold. The evidence suggests the existence of a GABA uptake mechanism in the insect neuromuscular system which could reside in glial cells.  相似文献   

15.
—Bulk prepared neuronal perikarya, nerve endings and glial cells have been used to study amino acid concentrations and GABA metabolism in vitro. All amino acids were more concentrated in synaptosomes and glial cells than in neuronal perikarya. Cell specificity was found with respect to the relative distribution of some amino acids. Glutamate decarboxylase activity was considerably higher in synaptosomes than in glial cells. The inhibitory effect of amino-oxyacetic acid on glutamate decarboxylase activity differed between synaptosomes and glial cells. γ-Aminobutyric acid-α-ketoglutarate transaminase had the highest activity in the glial cell fraction; the inhibition of amino-oxyacetic acid differed between glial and neuronal material. The metabolism of exogenous GABA just accumulated by a cell showed similar time characteristics in neuronal and glial material.  相似文献   

16.
17.
The role of MYC proteins in somatic stem and progenitor cells during development is poorly understood. We have taken advantage of a chick in vivo model to examine their role in progenitor cells of the developing neural tube. Our results show that depletion of endogenous MYC in radial glial precursors (RGPs) is incompatible with differentiation and conversely, that overexpression of MYC induces neurogenesis independently of premature or upregulated expression of proneural gene programs. Unexpectedly, the neurogenic function of MYC depends on the integrity of the polarized neural tissue, in contrast to the situation in dissociated RGPs where MYC is mitogenic. Within the polarized RGPs of the neural tube, MYC drives differentiation by inhibiting Notch signaling and by increasing neurogenic cell division, eventually resulting in a depletion of progenitor cells. These results reveal an unexpected role of MYC in the control of stemness versus differentiation of neural stem cells in vivo.  相似文献   

18.
A possible alternative route for production of a small glutamate pool in brain is from proline or ornithine to 1-pyrroline-5-carboxylate (P5C) and thence to glutamate. The conversion from ornithine to P5C is catalyzed by ornithine delta-aminotransferase (OrnT) whereas that from proline is catalyzed by proline oxidase (PrO). The conversion of P5C to glutamate is catalyzed by 1-pyrroline-5-carboxylate dehydrogenase (PDH). Biochemical assays of PDH and PrO in various rat brain regions indicate no positive correlation between the two enzymes nor between either activity and high-affinity glutamate uptake or the regional distribution of OrnT. We have localized PDH and PrO histochemically by modifications of the Van Gelder [J. Neurochem. 12, 231-237, (1965)] method for gamma-aminobutyric acid (GABA) transaminase. The enzymes were found only in certain types of glial cells; the best stained were the Bergmann glial cells of the cerebellum but, for PDH, there was also good staining of astrocytes in the dentate area of the hippocampus. Since both these areas are believed to have heavy glutamate innervation and numerous GABA interneurons, these findings may reflect an alternative route of glutamate production in glial cells near some glutamate and/or GABA tracts but they do not support this as a possible route for glutamate formation in most brain regions. The findings do, however, provide further evidence for chemical specialization of glial cells.  相似文献   

19.
Abstract: Two groups of GABA (γ-aminobutyric acid) analogues, one comprising derivatives of β-proline and the other compounds structurally related to nipecotic acid, were investigated as potential inhibitors of high-affinity GABA transport in neurons and glial cells, as well as displacers of GABA receptor binding. In addition to cis -4-hydroxynipecotic acid, which is known as a potent inhibitor of GABA uptake, homo-β-proline was the only compound which proved to be a potent inhibitor of glial as well as neuronal GABA uptake. IC50 values for GABA uptake into glial cells and brain cortex "prisms" were 20 and 75 μM, respectively, and the IC50 value obtained for GABA uptake into cultured neurons was 10 μM. A kinetic analysis of the action of homo-β-proline on GABA uptake into cultured astrocytes and neurons showed that this compound acts as a competitive inhibitor of GABA uptake in both cell types. From the apparent K m values, K i values for homo-β-proline of 16 and 6 μM could be calculated for glial and neuronal uptake, respectively. This mechanism of action strongly suggests that homo-β-proline interacts with the GABA carriers. Furthermore, homo-β-proline also displaced GABA from its receptor with an IC50 value of 0.3 μM. The cis -4-hydroxynipecotic acid analogues, cis- and trans-4-mercaptonipecotic acid, had no inhibitory effect on glial or neuronal GABA uptake. Other SH reagents, PCMB, NEM and DTNB, were shown to be relatively weak inhibitors of GABA uptake into cultured astrocytes, suggesting that SH groups are not directly involved in the interaction between GABA and its transport carrier.  相似文献   

20.
Markers of neuronal cell differentiation (GABA accumulation, choline acetyltransferase activity) are shown to increase initially and then decline sharply in monolayer cultures of 9 day embryo neuroretinal (NR) cells. A glial marker (glutamine synthetase, GSase) is precociously inducible by hydrocortisone (HC) in dens "monolayer' NR cultures (containing aggregates of neuronal cells overlying the glian sheet) as well as in chick embryo retinal explants. The induced level of GSase activity is not maintained in the continued presence of HC, but rather declines by 20 days in vitro. Choline acetyltransferase (CAT) activity is higher in HC-treated cultures than in controls only during the period when induced GSase activity is detectable. Furthermore, the subsequent transdifferentiation of lens cells (monitored as delta crystalline content) in these cultures is delayed by 10 days and much reduced in extent when HC is present throughout the culture period. We suggest a simple model to account for these results, on the basis of recent evidence that lens cells are derived mainly from the retinal epithelial cells (immature Müller glia) of 9-day embryonic NR, and that transdifferentiation results from a change in cell determination during the early stages of "monolayers' culture. In outline, our model proposes that early determination of the retinal glia is associated with a decline of neuronal cell markers (dedifferentiation) followed eventually by loss of the neuronal cells. Hydrocortisone, by inducing transient glial cell differentiation (GSase activity), both prolongs the expression of a neuronal marker (CAT) and also reduces later transdifferentiation into lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号