首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
STE2 encodes a component of the S. cerevisiae alpha-pheromone receptor that is essential for induction of physiological changes associated with mating. Analysis of C-terminal truncation mutants of STE2 demonstrated that the essential sequences for ligand binding and signal transduction are included within a region containing seven putative transmembrane domains. However, truncation of the C-terminal 105 amino acids of the receptor resulted in a 4- to 5-fold increase in cell-surface pheromone binding sites, a 10-fold increase in pheromone sensitivity, a defect in recovery of cell division after pheromone treatment, and a defect in pheromone-induced morphogenesis. Overproduction of STE2 resulted in about a 6-fold increase in alpha-pheromone binding capacity but did not produce the other phenotypes associated with the ste2-T326 mutant receptor. We conclude that the C-terminus of the receptor is responsible for one aspect of cellular adaptation to pheromone that is distinct from adaptation controlled by the SST2 gene, for decreasing the stability of the receptor, and for some aspect of cellular morphogenesis.  相似文献   

3.
Genetic map of Saccharomyces cerevisiae.   总被引:35,自引:0,他引:35       下载免费PDF全文
  相似文献   

4.
5.
The Ste2 gene encodes the yeast alpha-pheromone receptor that belongs to the superfamily of seven-transmembrane G protein-coupled receptors. Binding of pheromone induces activation of the heterotrimeric G protein triggering growth arrest in G1 phase and induction of genes required for mating. By random PCR-mediated mutagenesis we isolated mutant 8L4, which presents a substitution of an asparagine residue by serine at position 388 of the alpha-factor receptor. The 8L4 mutant strain shows phenotypic defects such as: reduction in growth arrest after pheromone treatment, diminished activation of the Fus1 gene, and impaired mating competence. The asparagine residue lies in the second half of the intracellular protruding C-terminal tail of the receptor, and its replacement by serine affects interaction with both the G(alpha) and Gbeta subunits. Since expression of the receptor as well as its kinetic parameters, i.e., ligand affinity and receptor number, are unaffected in the mutant strain, we propose that association of the C-terminal tail of the receptor with G(alpha) and Gbeta subunits is required for proper activation of the heterotrimeric G protein. Besides its described role in downregulation and in formation of preactivation complex, the results here shown indicate that the C-terminal tail of the receptor plays an active role in transmitting the stimulus of mating pheromone to the heterotrimeric G protein.  相似文献   

6.
7.
8.
9.
Three glutathione peroxidase homologs (YKL026C, YBR244W, and YIR037W/HYR1) were found in the Saccharomyces Genome Database. We named them GPX1, GPX2, and GPX3, respectively, and we investigated the function of each gene product. The gpx3Delta mutant was hypersensitive to peroxides, whereas null mutants of the GPX1 and GPX2 did not show any obvious phenotypes. Glutathione peroxidase activity decreased approximately 57 and 93% in the gpx3Delta and gpx1Delta/gpx2Delta/gpx3Delta mutants, respectively, compared with that of wild type. Expression of the GPX3 gene was not induced by any stresses tested, whereas that of the GPX1 gene was induced by glucose starvation. The GPX2 gene expression was induced by oxidative stress, which was dependent upon the Yap1p. The TSA1 (thiol-specific antioxidant) gene encodes thioredoxin peroxidase that can reduce peroxides by using thioredoxin as a reducing power. Disruption of the TSA1 gene enhanced the basal expression level of the Yap1p target genes such as GSH1, GLR1, and GPX2 and that resulted in increases of total glutathione level and activities of glutathione reductase and glutathione peroxidase. However, expression of the TSA1 gene did not increase in the gpx1Delta/gpx2Delta/gpx3Delta mutant. Therefore, de novo synthesis and recycling of glutathione were increased in the tsa1Delta mutant to maintain the catalytic cycle of glutathione peroxidase reaction efficiently as a backup system for thioredoxin peroxidase.  相似文献   

10.
11.
The use of tetrad analysis and complementation tests indicates that the groups of UV-sensitive mutants assigned the labels radI and rad3 are alleles of two single genes involved in the process of cellular repair of UV-induced damage in the yeast Saccharomyces cerevisiae.  相似文献   

12.
Genetic mapping of Ty elements in Saccharomyces cerevisiae.   总被引:7,自引:3,他引:4       下载免费PDF全文
We used transformation to insert a selectable marker at various sites in the Saccharomyces cerevisiae genome occupied by the transposable element Ty. The vector CV9 contains the LEU2+ gene and a portion of the repeated element Ty1-17. Transformation with this plasmid resulted in integration of the vector via a reciprocal exchange using homology at the LEU2 locus or at the various Ty elements that are dispersed throughout the S. cerevisiae genome. These transformants were used to map genetically sites of several Ty elements. The 24 transformants recovered at Ty sites define 19 distinct loci. Seven of these were placed on the genetic map. Two classes of Ty elements were identified in these experiments: a Ty1-17 class and Ty elements different from Ty1-17. Statistical analysis of the number of transformants at each class of Ty elements shows that there is preferential integration of the CV9 plasmid into the Ty1-17 class.  相似文献   

13.
14.
15.
Genetic regulation of the inducibility of sexual agglutination ability in the yeast Saccharomyces cerevisiae was studied. Detailed analysis of the degree of sexual agglutination was carried out; it showed that a greater number of genes are involved in the regulation of inducible sexual agglutination in strain H1-0 than previously assumed. Although dominancy of inducible phenotype over constitutive was confirmed, the effectiveness of one gene changing the constitutive phenotype to the inducible seemed to be somewhat low. Quantity per cell of agglutination substances responsible for sexual agglutination increased as the agglutination ability became greater.  相似文献   

16.
17.
Genetic map of Saccharomyces cerevisiae, edition 9.   总被引:89,自引:4,他引:85       下载免费PDF全文
  相似文献   

18.
Previous analysis of the bipolar budding pattern of Saccharomyces cerevisiae has suggested that it depends on persistent positional signals that mark the region of the division site and the tip of the distal pole on a newborn daughter cell, as well as each previous division site on a mother cell. In an attempt to identify genes encoding components of these signals or proteins involved in positioning or responding to them, we identified 11 mutants with defects in bipolar but not in axial budding. Five mutants displaying a bipolar budding-specific randomization of budding pattern had mutations in four previously known genes (BUD2, BUD5, SPA2, and BNI1) and one novel gene (BUD6), respectively. As Bud2p and Bud5p are known to be required for both the axial and bipolar budding patterns, the alleles identified here probably encode proteins that have lost their ability to interact with the bipolar positional signals but have retained their ability to interact with the distinct positional signal used in axial budding. The function of Spa2p is not known, but previous work has shown that its intracellular localization is similar to that postulated for the bipolar positional signals. BNI1 was originally identified on the basis of genetic interaction with CDC12, which encodes one of the neck-filament-associated septin proteins, suggesting that these proteins may be involved in positioning the bipolar signals. One mutant with a heterogeneous budding pattern defines a second novel gene (BUD7). Two mutants budding almost exclusively from the proximal pole carry mutations in a fourth novel gene (BUD9). A bud8 bud9 double mutant also buds almost exclusively from the proximal pole, suggesting that Bud9p is involved in positioning the proximal pole signal rather than being itself a component of this signal.  相似文献   

19.
Induction of forward adenine-dependent (Ade+----Ade-) mutations by HAP was used to analyse genetically yeast mutants with enhanced induced mutagenesis. Three mutations studied in detail segregated as a single mendelian trait and composed independent complementation groups (HIM1, HIM2, HIM3). the him1-1 mutation was centromere-linked, the him3-1 and him2-1 mutations being not. All three mutations did not show any cross-linkage. Uracil-DNA glycosylase activity was determined in crude cell extract from wild type strain and him mutants; no detectable differences were observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号