首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, a protocol for zoospores production of Phytophthora cryptogea , an economically important plant pathogen was optimized. Five different concentrations of zoospores (5 × 105, 5 × 104, 5 × 103, 5 × 102, 5 × 101 zoospores/ml) from four different isolates of P. cryptogea (Maria 1, Maria 2, S3 1-A, Amazzone) were used as inoculum on pot marigold ( Calendula officinalis ) and gerbera ( Gerbera jamesonii ) plants. Maria 1 was the most virulent isolate both on pot marigold and gerbera plants according to disease severity. A rapid and sensitive pathogen DNA extraction protocol suitable for large quantities of plant samples was adopted. Conventional polymerase chain reaction (PCR) was able to detect the pathogen in artificially inoculated symptomless pot marigold (collected day 12) and gerbera plants (day 8) after pathogen inoculation, with the suspension of 5 × 105, 5 × 104, 5 × 103 P. cryptogea  zoospores/ml. Real-time PCR showed the possibility to detect the pathogen in artificially inoculated symptomless pot marigold (collected day 8) and gerbera plants (day 4) after pathogen inoculation, with the suspension of 5 × 105, 5 × 104 P. cryptogea  zoospores/ml. The first symptoms appeared on pot marigold plants 14 days after pathogen inoculation and on gerbera plants 10 days after inoculation. Real-time PCR showed the possibility to detect the pathogen 4 days before conventional PCR and 6 days before the appearance of disease symptoms both on pot marigold and gerbera plants.  相似文献   

2.
During exponential growth, each cell cycle of the α-purple bacterium Caulobacter crescentus gives rise to two different cell types: a motile swarmer cell and a sessile stalked cell. When cultures of C. crescentus are grown for extended periods in complex (PYE) medium, cells undergo dramatic morphological changes and display increased resistance to stress. After cultures enter stationary phase, most cells are arrested at the predivisional stage. For the first 6–8 days after inoculation, the colony-forming units (cfu) steadily decrease from 109 cfu ml−1 to a minimum of 3 × 107 cfu ml−1 after which cells gradually adopt an elongated helical morphology. For days 9–12, the cfu of the culture increase and stabilize around 2 × 108 cfu ml−1. The viable cells have an elongated helical morphology with no constrictions and an average length of 20 μm, which is 15–20 times longer than exponentially growing cells. The level of the cell division initiation protein FtsZ decreases during the first week in stationary phase and remains at a low constant level consistent with the lack of cell division. When resuspended in fresh medium, the elongated cells return to normal size and morphology within 12 h. Cells that have returned from stationary phase proceed through the same developmental changes when they are again grown for an extended period and have not acquired a heritable growth advantage in stationary phase (GASP) compared with overnight cultures. We conclude that the changes observed in prolonged cultures are the result of entry into a new developmental pathway and are not due to mutation.  相似文献   

3.
Aims:  Concentration of pathogens diluted in large volumes of water is necessary for their detection. An automated concentration system placed online in drinking water distribution systems would facilitate detection and mitigate the risk to public health.
Methods and Results:  A prototype concentrator based on dead-end hollow fibre ultrafiltration was used to concentrate Bacillus atrophaeus spores directly from tap water. Backflush was used to recover accumulated particulates for analysis. In field tests conducted on a water utility distribution system, 3·2 × 104–1·4 × 106 CFU ml−1 (6·1 × 106–3·0 × 108 CFU) were recovered from the filter when 2·9 × 107–1·0 × 109 CFU were spiked into the system. Per cent recovery ranged from 21% to 68% for flow volumes of 15–21 l. Tests using spore influent levels <10 CFU l−1 (spike < 1000 CFU) yielded 23–40% recovery for volumes >100 l.
Conclusions:  B. atrophaeus spores at levels <10 CFU l−1 were concentrated directly from tap water using an automated dead-end hollow-fibre ultrafiltration system.
Significance and Impact of the Study:  The prototype concentrator represents a critical step towards an autonomous system that could be installed in drinking water distribution lines or other critical water lines to facilitate monitoring. Recovered samples can be analysed using standard or rapid biosensor methods.  相似文献   

4.
Abstract:  In laboratory bioassays, the efficacy of the entomopathogenic fungus Beauveria bassiana against the spruce bark beetle, Ips typographus , was tested under various conditions. Four of the tested isolates and the commercial product Boverol® caused 99–100% mortality when tested at a concentration of 1.0 × 107 conidia/ml at 25°C. Using B. bassiana isolate 138 at a concentration of 1.0 × 106, the median survival time (MST) was 6.1 d and significantly longer compared with the MST of 4.2 and 4.0 d at 1.0 × 107 and 1.0 × 108 conidia/ml, respectively. In the next experiment, the beetles were maintained on spruce bark, filter paper or artificial diet during the bioassay with Boverol®, and significant differences in the MST of 3.6, 2.5 and 5.3 d, respectively, were noticed. The experiment with Boverol® at different temperatures showed that the beetles lived significantly longer at 15°C (MST 8.7 d) than at 20, 25, 30 and 35°C. At 25°C, the beetles died most rapidly (MST 3.5 d). At different relative humidities (RH) of 40, 70 and 100%, nearly all beetles were dead after treatment with a suspension of Boverol® at 1.0 × 107 conidia/ml. At 40% RH, 49% of the untreated beetles died after 7 d. The best effects were achieved with the following bioassay: beetles were fed for three days on artificial diet, then dipped into a solution of 1.0 × 107 conidia/ml and transferred on a piece of spruce bark in Petri dishes at 25°C and 70% RH.  相似文献   

5.
A simple, rapid and sensitive PCR-based method was developed for the detection of all five subspecies of Erwinia carotovora , including subsp. carotovora and subsp. atroseptica , and all pathovars/biovars of Erwinia chrysanthemi , on plant tissue culture material. Primers SR3F and SR1cR, based on a conserved region of the 16S rRNA gene, amplified a DNA fragment of 119 bp from all 65 such strains tested. Detection limits of the method in vitro were 2·0 × 102–3·4 × 103 cfu ml−1 (equivalent to 1–17 cfu per PCR) and, following extraction of genomic DNA from plant extract, detection limits were 2·3 × 102–1·9 × 104 cfu per microplant sample (equivalent to 5 cfu – 3·8 × 102 cfu per PCR). To improve the sensitivity of the method in planta , to obviate the need for complex and laborious DNA extractions, and to remove inhibitory substances present in the plant extract, an enrichment step was included prior to PCR. Following enrichment, the sensitivity of detection was <10 cfu per microplant sample. This method provides the first sensitive means of detecting latent infection caused by several economically important soft rot erwinias simultaneously on potato tissue culture material.  相似文献   

6.
In this study, we demonstrated the simultaneous detection of Escherichia coli and Salmonella enteritidis, by coupling immunomagnetic separation (IMS) with quantum dots (QDs) labeling. QDs having different emission wavelengths were conjugated with anti- E. coli and anti- Salmonella antibodies. QD–antibody conjugates were used to label immunomagnetically separated bacteria and the fluorescence intensities were measured for enumerations of both species. The concentrations of primary antibodies used in IMS, the ratio of QDs to antibodies during the conjugation and the concentration of QD–antibody conjugates used in labeling were optimized to enhance the sensitivity of the assay. After labeling bacteria with QDs, the quenching observed between bead–bacteria complex and QDs was eliminated by separating QDs from the complex using sodium dodecyl sulfate solution. The fluorescence intensities due to the capturing of different concentrations of bacteria were measured and the working ranges were found to be 5 × 102 to 5 × 105 cfu/mL for E. coli and 4  ×  102 to 4  ×  105 cfu/mL for S. enteritidis .

PRACTICAL APPLICATIONS


In this study, antibody-conjugated multicolor quantum dots (QDs) were used for simultaneous detection of Escherichia coli and Salmonella enteritidis . The results of this study indicate that QD labels can be used in multiplex, rapid and selective detection of bacteria with detection limits comparable with those of many novel methods in cases where the assay conditions are optimized. Furthermore, the assay can be modified for the simultaneous detection of more than two species through using QD labels having different emission wavelengths.  相似文献   

7.
Burkholderia pseudomallei is the etiologic agent of the disease melioidosis and is a category B biological threat agent. The genomic sequence of B. pseudomallei K96243 was recently determined, but little is known about the overall genetic diversity of this species. Suppression subtractive hybridization was employed to assess the genetic variability between two distinct clinical isolates of B. pseudomallei, 1026b and K96243. Numerous mobile genetic elements, including a temperate bacteriophage designated phi1026b, were identified among the 1026b-specific suppression subtractive hybridization products. Bacteriophage phi1026b was spontaneously produced by 1026b, and it had a restricted host range, infecting only Burkholderia mallei. It possessed a noncontractile tail, an isometric head, and a linear 54,865-bp genome. The mosaic nature of the phi1026b genome was revealed by comparison with bacteriophage phiE125, a B. mallei-specific bacteriophage produced by Burkholderia thailandensis. The phi1026b genes for DNA packaging, tail morphogenesis, host lysis, integration, and DNA replication were nearly identical to the corresponding genes in phiE125. On the other hand, phi1026b genes involved in head morphogenesis were similar to head morphogenesis genes encoded by Pseudomonas putida and Pseudomonas aeruginosa bacteriophages. Consistent with this observation, immunogold electron microscopy demonstrated that polyclonal antiserum against phiE125 reacted with the tail of phi1026b but not with the head. The results presented here suggest that B. pseudomallei strains are genetically heterogeneous and that bacteriophages are major contributors to the genomic diversity of this species. The bacteriophage characterized in this study may be a useful diagnostic tool for differentiating B. pseudomallei and B. mallei, two closely related biological threat agents.  相似文献   

8.
Abstract: Budded particles of nucleopolyhedrovirus (NPV) were found to infect perorally the 4th (prefinal) instar larvae of Bombyx mori L. that were treated by an optical brightener, Tinopal UNPA-GX (Tinopal). Host larvae were fed a diet containing 0.3% (w/w) Tinopal on day 1 in the 4th instar and then fed a diet contaminated by budded particles of NPV (1.0 × 106 TCID50 U/larva) that was pathogenic to B . mori (BmNPV) on day 2 (inoculation schedule 1). Another set of host larvae was fed a diet containing BmNPV budded particles (2.5 × 106 TCID50 U/larva) together with 0.3% (w/w) Tinopal on day 1 in the 4th instar (inoculation schedule 2). Host larvae treated by both schedules died of viral infection. The operation of schedule 2 is simpler than that of schedule 1, although the former required higher doses of the virus for satisfactory infection. We inoculated a baculovirus vector carrying human serum albumin (HSA) gene into 4th instar B . mori larvae by schedule 1. Recombinant HSA was detected in the homogenate of host larvae 4 days after inoculation. The peroral inoculation of BmNPV budded particles aided by Tinopal may thus lead to industrial pharmaceutical production using a baculovirus vector for large numbers of insect hosts.  相似文献   

9.
A cell-free crude extract containing the white line inducing principle (WLIP), a lipodepsipeptide produced by Pseudomonas 'reactans' , could inhibit browning of mushrooms caused by Pseudomonas tolaasii . Mushrooms inoculated with Ps. tolaasii at concentrations of 2·7 × 106 cfu ml−1 or higher showed the symptoms of the disease after 2 d of incubation. Mushroom caps treated with various concentrations of a crude WLIP preparation, and later inoculated with bacterial concentrations higher than the threshold value, did not develop the symptoms of the disease. One milligram of a crude WLIP preparation could block 50% of the symptoms caused by 1·2 × 107 cfu. The inhibition of browning was effective when incubating at low temperatures for 4 d. A suspension containing 1·6 mg ml−1 of pure WLIP was also able to inhibit the symptoms of brown blotch disease induced by 7·6 × 106 cfu ml−1 of Ps. tolaasii .  相似文献   

10.
Abstract The fate of a Bacillus amyloliquefaciens with the recombinant plasmid pSB20 sprayed on the phyllosphere of grass, and of a Tn 5 marked Pseudomonas syringae sprayed on the phyllosphere of bush beans was studied in planted soil microcosms. B. amyloliquefaciens showed a decline from 1.5×108 to 3.1×102 cfu g−1 on the phylloplane of grass in the course of the experiment. B. amyloliquefaciens was easy to follow by selective cultivation due to the complete absence of bacterial background growth. Southern blot hybridization of Hin dIII digested genomic DNA showed plasmid restriction patterns identical with pSB20 indicating high plasmid stability. In total DNA extracts from phyllosphere bacteria the recombinant plasmid was detectable by Southern blot hybridization up to 6×104 cfu g−1 (wet weight). Counts of hybridizing colonies showed that P. syringae established on the phyllosphere of bush beans at between 5×103 and 4×106 cfu g−1 fresh weight. During senescence of the bean plants the strain was no longer detectable by selective cultivation and subsequent colony hybridization. In contrast, Tn5 marked DNA was detected after PCR amplification over the whole period of the experiment.  相似文献   

11.
Aims:  To study the efficacy of the lytic phage φS1 in eliminating Pseudomonas fluorescens in the early stage of biofilm formation, using an in situ and real time methodology for cell quantification.
Methods and Results:  Cell adhesion and phage infection studies were carried out in a parallel plate flow chamber under laminar conditions. Cells were allowed to adhere until reaching 1·7–1·8 × 106 cells cm−2 and phage infection was performed with two different phage concentrations (2 × 109 PFU ml−1 and 1 × 1010 PFU ml−1). Phage concentration clearly affects the speed of infection. The less concentrated phage solution promoted a three times slower rate of cell removal but did not affect the overall percentage of cell removal. In fact, after a longer infection period the less concentrated phage solution reached the same 93% cell removal value.
Conclusions:  Phages are efficient in the eradication of bacterial cells at the early stage of biofilm formation and their presence at the surface did not allow bacterial recolonization of the surface.
Significance and Impact of the Study:  To date, no published studies have been made concerning in situ and real time quantification of cell removal from surfaces due to phage action.  相似文献   

12.
We investigated a non-mammalian host model system for fitness in genetic screening for virulence-attenuating mutations in the potential biowarfare agents Burkholderia pseudomallei and Burkholderia mallei . We determined that B. pseudomallei is able to cause 'disease-like' symptoms and kill the nematode Caenorhabditis elegans . Analysis of killing in the surrogate disease model with B. pseudomallei mutants indicated that killing did not require lipopolysaccharide (LPS) O-antigen, aminoglycoside/macrolide efflux pumping, type II pathway-secreted exoenzymes or motility. Burkholderia thailandensis and some strains of Burkholderia cepacia also killed nematodes. Manipulation of the nematode host genotype suggests that the neuromuscular intoxication caused by both B. pseudomallei and B. thailandensis acts in part through a disruption of normal Ca2+ signal transduction. Both species produce a UV-sensitive, gamma-irradiation-resistant, limited diffusion, paralytic agent as part of their nematode pathogenic mechanism. The results of this investigation suggest that killing by B. pseudomallei is an active process in C. elegans , and that the C. elegans model might be useful for the identification of vertebrate animal virulence factors in B. pseudomallei .  相似文献   

13.
Abstract A method was developed for direct extraction, purification and amplification of DNA from forest soil. Eighty-two % of the DNA in Pseudomonas aeruginosa UG2Lr introduced into soil was recovered. The detection limit for the strain was approximately 800 cfu g−1 of dry soil based on the polymerase chain reaction (PCR). Survival of κ-carrageenan-encapsulated and unencapsulated UG2Lr was monitored by antibiotic selective and bioluminescence-based nonselective plating and PCR-amplification of a tnsA fragment. After freeze-thaw treatment of soil samples, the unencapsulated UG2Lr declined from an initial population density of 1 × 109 cfu g−1 of dry soil to below the detection threshold of both selective (14 cfu g−1 of dry soil) and nonselective (1 × 103 cfu g−1 of dry soil) plating. However, presence of nonculturable UG2Lr cells in the soil was revealed by PCR and resuscitation of the bacteria. Population density of the encapsulated UG2Lr increased from 2.7 × 106 to 2.9 × 108 cfu g−1 of dry soil after a 3-week incubation at 22°C and declined to 6.3 × 106 cfu g−1 of dry soil after the freeze-thaw treatment.  相似文献   

14.
The sludge from hospital waste treatment facilities is a potential source of infectious organisms. The average numbers of micro-organisms in the sludge of hospital wastewater in Taiwan were as follows: total count 8·1 × 107 cfu g−1 (dry weight of sludge), and 1·4 × 106, 3·6 × 105, 1·6 × 105, 2·2 × 105 and 5·5 × 104 cfu g−1 (dry weight of sludge) for total coliforms, faecal coliforms, faecal streptococci, Pseudomonas aeruginosa and Salmonella spp., respectively . Salmonella spp. were detected in 37% (10 of 27) of the sludges from hospital wastewaters. Therefore, the treatment of such sludge to reduce pathogenic micro-organisms should be considered.  相似文献   

15.
This was a preliminary investigation to define the conditions of colonization of a human skin equivalent (SE) model with cutaneous microorganisms. SEs of 24 mm diameter were constructed with a dermal matrix of fibrin containing fibroblasts and a stratified epidermis. Microbial colonization of the SEs was carried out in a dry environment, comparable to ' in vivo ' skin, using a blotting technique to remove inoculation fluid. The microbial communities were sampled by scrub washing and viable cells enumerated on selective growth medium. Staphylococcus epidermidis , Propionibacterium acnes and Malassezia furfur (human skin commensals) and Staphylococcus aureus (transient pathogen) were colonized at inoculum densities of 102–106 CFU SE−1 on the surface of replicate SEs. Growth of all species was supported for upto 72–120 h, with recovery densities of between 104–109 CFU SE−1. A novel, real-time growth monitoring method was also developed, using S. aureus containing a lux cassette. Light output increased from 20 to 95 h, and colonization increased from 102 to 108 CFU SE−1, as confirmed by conventional recovery. Thus, the SE model has potential to investigate interactions between resident and transient microbial communities with themselves and their habitat, and for testing treatments to control pathogen colonization of human skin.  相似文献   

16.
In vitro and in planta sensitivity of an indirect enzyme-linked immunoassaytechnique, using a monoclonal antibody specific for the lipopolysaccharide (LPS) of Xanthomonas campestris pv. vesicatoria , was increased 10-foldby using a newextraction buffer (gl of : KH2PO4, 2; NaHPO4, 11·5; EDTAdisodium, 0·14; thimerosal, 0·02; and lysozyme, 0·2). The procedure improvedsensitivity without increasing background levels. In vitro , the limit of detection wasbetween 1×107 and 1×108 cells ml−1 with the conventionalextraction buffer phosphate-buffered saline (PBS) and less than 1×106 cells ml−1 when lysozyme extraction buffer was substituted for PBS. In comparing 22 X. c.vesicatoria strains, absorbance readings were increased close to three-fold with the lysozymeextraction buffer as opposed to PBS. When leaf tissue extract was spiked with the bacterium, thelimit of detection was 1×107 cfu ml−1 and 1×108 cfu ml−1 with the lysozyme solution and PBS, respectively, as the extraction buffers. Whenusing the lysozyme extraction buffer in combination with a commercial amplification system, thelimit of detection was decreased to less than 1×105 cfu ml−1 in leaftissue. The addition of the lysozyme and EDTA to the phosphate buffer resulted in release of asignificant quantity of LPS and concomitant dramatic increase in sensitivity. The new procedure,termed lysozyme ELISA (L-ELISA), should increase sensitivity of ELISA reactions where LPS isthe reacting epitope.  相似文献   

17.
Abstract:  The bioactivities of destruxins (dtx), depsipeptides isolated from Metarhizium anisopliae , against Spodoptera litura were tested in laboratory. For contacting toxicities, dtx-E was more effective than dtx-A and dtx-B. The LC50s values of dtx-A, B and E were 197.98, 292.00 and 113.99 mg/l at 48 h after treatment, while the LT50s were 42.65, 59.45 and 23.68 h at 300 mg/l. In the experiment of antifeedant activity, dtx-A, dtx-B and dtx-E at five concentrations (200, 100, 50, 25 and 12.5 mg/l) were bioassayed. Destruxins in a dose-dependent manner gave an apparent antifeedant activity. Generally, dtx-A, over dtx-B and dtx-E had the significant (P < 0.05) larger choice and no-choice antifeedant indexes (CAIs and NCAIs). At the concentration of 200 mg/l, the CAIs or NCAIs of dtx-A, dtx-B and dtx-E were 96.78, 84.93 and 85.90 or 89.75, 62.42 and 72.28 respectively. Furthermore, the synergistic activity of crude destruxin (CD) for pathogenicity of Paecilomyces javanicus strain Pj01 was detected. The LC50s values of single Pj01 and the mixtures of Pj01 plus CD at 100 or 200 mg/l (Pj01-CD100 or Pj01-CD200) were respectively 474.63 × 105, and 197.45 × 105 or 113.11 × 105 spores/ml at the fifth day after treated. Meanwhile, Pj01, Pj01-CD100 and Pj01-CD200 gave the LT50s values of 6.99 day, 5.49 day and 4.21 day at 100 × 105 spores/ml. Clearly, dtx decreased the values of LC50 and LT50 of the strain Pj01.  相似文献   

18.
Two pesticides, the insecticide imidacloprid and the herbicide acetochlor, were evaluated for their insecticidal and genotoxic effects in Drosophila melanogaster . Their insecticidal effects were assessed by calculating LC50 values after acute or chronic exposure of larvae and adults to different concentrations of the test compounds. After acute exposure, the LC50 of imidacloprid was 7.59 × 10−5 M for larvae and 1.43 × 10−4 M for adults, and after chronic exposure, it was 2.67 × 10−5 M and 6.09 × 10−5 M for larvae and adults, respectively. On the contrary, the herbicide acetochlor showed no acute or chronic insecticidal effect against either larvae or adults, even at very high concentrations (8 × 10−3 M). For the evaluation of genotoxic properties of the two pesticides, the Somatic Mutation and Recombination Test in D. melanogaster was used. Our results suggest that neither imidacloprid nor acetochlor exhibits mutagenic or recombinogenic activity at applicable concentrations.  相似文献   

19.
The effects of medium, isolate, temperature, light and pH on the formation and germination of Septoria tritici secondary conidia were tested. Of the six media tested, the malt–yeast extract agar was the best and generated 1.82 × 109 conidia/plate. The ten isolates tested showed different ability of conidia production. Darkness significantly reduced conidial formation and enhanced the transition of intermediates. The conidial germination and germ tube growth was strongly inhibited at 30°C. The suitable pH for conidial budding in malt–yeast broth (MYB) was between 5 and 9. At pH 2, 10 and 11, almost no new conidia were formed. The number of conidia reached 1.27 × 108 conidia/ml after 7 days in MYB, significantly more than that in potato dextrose broth, wheat leaf extract and H2O.  相似文献   

20.
Membrane-bound [NiFe]-hydrogenase from Hydrogenophaga sp. AH-24 was purified to homogeneity. The molecular weight was estimated as 100±10 kDa, consisting of two different subunits (62 and 37 kDa). The optimal pH values for H2 oxidation and evolution were 8.0 and 4.0, respectively, and the activity ratio (H2 oxidation/H2 evolution) was 1.61 × 102 at pH 7.0. The optimal temperature was 75 °C. The enzyme was quite stable under air atmosphere (the half-life of activity was c . 48 h at 4 °C), which should be important to function in the aerobic habitat of the strain. The enzyme showed high thermal stability under anaerobic conditions, which retained full activity for over 5 h at 50 °C. The activity increased up to 2.5-fold during incubation at 50 °C under H2. Using methylene blue as an electron acceptor, the kinetic constants of the purified membrane-bound homogenase (MBH) were V max=336 U mg−1, k cat=560 s−1, and k cat/ K m=2.24 × 107 M−1 s−1. The MBH exhibited prominent electron paramagnetic resonance signals originating from [3Fe–4S]+ and [4Fe–4S]+ clusters. On the other hand, signals originating from Ni of the active center were very weak, as observed in other oxygen-stable hydrogenases from aerobic H2-oxidizing bacteria. This is the first report of catalytic and biochemical characterization of the respiratory MBH from Hydrogenophaga .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号